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Abstract

There are many di�erent approaches either
for the localization of sound sources or for
tracking of visible objects in image sequences.
However, most applications use only one
modality, that is, they process only audio
or video information for object localization.
In this paper we introduce a method for
the estimation of object positions based on
joint audio-video information. The key tech-
nique is a modi�ed decentralized Kalman �l-
ter (MDKF), where the object localization
problem is viewed as state estimation. First,
the position of the object is estimated based
on audio and video information separately.
Then, the locally estimated results are further
processed in a decentralized Kalman �lter for
data fusion. At the output we obtain the joint
estimation results. Experiments have shown
that the joint estimation provides more cor-
rect localization results than obtained by us-
ing audio or video information only.

1 Introduction

Object localization based on audio and video
information is an important topic in various
applications, e.g. analysis of dynamic scenes,
video conferences, analysis of traÆc situa-
tions, and others.

In the past, many methods have been re-
ported for object localization based on audio
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or video information, respectively. Object lo-
calization using audio information requires a
microphone array. To estimate the position
of an object we record the sound signals gen-
erated by the object using a number of spa-
tially distributed microphone sensors. Assum-
ing that the amplitude gradient across the mi-
crophone array is negligible, the geometric in-
formation can be considered to be encoded in
the time di�erences of arrival of the wavefront
at the microphones. Therefore, the time de-
lays between di�erent microphone signals can
be expressed by the unknown source location
parameters. For this purpose there are two
methods, namely direct and indirect acoustic
source localization methods. The comparison
of these two methods can be found in [1].

Object localization using video informa-
tions is usually based on the analysis of image
sequences. There are basically two methods,
on which the analysis of video information
is based, namely the use of two-dimensional
and of three-dimensional models. For two-
dimensional models, a number of techniques
are in current use. They include comparison
between the foreground and background of a
scene, search for characteristic features e.g.
by template matching, segmentation accord-
ing to color information, and others. The use
of three-dimensional models is less advanced.
An example can be found in [2].

All methods for object localization using
audio or video informations su�er from errors
caused by reections, background noise and il-
lumination changes. Many developments have



been made to improve the localization for a
single modality. Here, we show how to im-
prove the accuracy of object localization by
joint audio-video signal processing. The basic
idea is to combine the di�erent locally esti-
mated results from the di�erent sensors by
data fusion techniques. The algorithm in-
troduced in this paper is based on the de-
centralized Kalman �lter [3,4]. To make the
method more general and more practical, we
propose here a modi�ed decentralized Kalman
�lter (MDKF).

The paper is organized as follows. Follow-
ing the introduction we review some theory
about the decentralized Kalman �lter and in-
troduce a new modi�ed decentralized Kalman
�lter. In section 3 and section 4 the two lo-
cal estimators for audio and video information
are described. The improvements of the local-
ization are shown in section 5.

2 Joint Audio-Video Sig-

nal Processing

Viewing object localization as a state estima-
tion problem has two advantages. At �rst,
we can apply Kalman �ltering techniques al-
ready developed for general estimation prob-
lems. This provides a solid mathematical ba-
sis for our data fusion problem. Secondly,
state estimation is compatible with models for
object movements derived from the physical
laws of dynamic motion.

A decentralized Kalman �lter structure
suitable for the use with di�erent kinds of
sensors has been introduced in [4]. A decen-
tralized Kalman �lter consists of a fusion cen-
tre and two and more local Kalman �lters,
which are used to generate the local estimate
based on the corresponding local measure-
ments. The local measurements are provided
by di�erent sensors. Furthermore, the local
Kalman �lters can also have di�erent state
space models. For joint audio-video object lo-
calization the audio sensor is a microphone
array and the video sensor is a camera. The
fusion of audio and video position estimations

is carried out in the fusion centre. The fusion
centre yields the global a posteriori estimation
for the object position.

2.1 Decentralized Kalman Fil-
ter with Single State Model

If a dynamic system can be described by a
state-space model, we can apply a Kalman �l-
ter for estimating the system state. Suppose
that a system can be described by a single
state model

x[k + 1] = A[k]x[k] + b[k]u[k] + v[k](1)

y[k] = C[k]x[k] + n[k]; (2)

where v[k] and n[k] represent the process
and measurement random noise, respectively.
Usually, it is assumed that v[k] and n[k] are
normally distributed with zero mean and co-
variance matrices Rvv[k] and Rnn[k].
Kalman �lters are basically classi�ed as

central Kalman �lters and decentralized
Kalman �lters. A Kalman �lter is said to be
a central Kalman �lter, if all measurements
are processed by this Kalman �lter. A decen-
tralized Kalman �lter is de�ned as a kind of
Kalman �lter, in which the measurements are
�rst processed through di�erent local Kalman
�lters. Their estimations are sent into a fu-
sion centre for data fusion. If the measure-
ments come from di�erent kinds of sensors, it
is favourable to use a decentralized Kalman
�lter to estimate the system state. The de-
centralized Kalman �lter may not only reduce
the calculation complexity but also improve
the estimation accuracy.
Figure 1 shows the structure of the decen-

tralized Kalman �lter used for joint audio-
video object localization, where we have two
kinds of sensors, microphone array and video
camera. The microphone array captures the
sound wave and yields the digital signals
through an A/D converter, while the video
camera supplies an image sequence of the ob-
ject. The measurements from audio and video
sensors are �rst fed into the corresponding lo-
cal central Kalman �lters to generate the local
estimations, respectively. The fusion centre



then combines the local estimations to calcu-
late a global estimation of the system state.
To describe a decentralized Kalman �lter it
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Figure 1: Decentralized Kalman �lter for joint
audio-video object localization.

is necessary to assume that the process noise
vi[k] and the measurement noise ni[k] are in-
dependent. Under this assumption we can ex-
press the global a posteriori state estimation
in Figure 1 as [4]

x̂[kjk] = P[kjk]
�
P�1[kjk � 1]x̂[kjk � 1]

+
2X

i=1

fP�1
i [kjk]x̂i[kjk]

� P�1
i [kjk � 1]x̂i[kjk � 1]g

�
; (3)

where the matrices P[kjk � 1] and P[kjk]
denote the global a priori and a posteri-
ori estimation error covariance, respectively.
Pi[kjk� 1] and Pi[kjk] are the corresponding
local error covariances.

2.2 Decentralized Kalman Fil-
ter with Multiple State
Model

In subsection 2.1 we assumed that the system
has only a single state model. However, in
some situations it is diÆcult to use only one
state model to describe a system. For exam-
ple, if we want to describe a object that may
perform di�erent kinds of motion, we should
use di�erent motion models. Furthermore, for
a multiple state system the applied Kalman
�lter should be adaptive according to the mea-
surements to decide which model will be used.
In this case, the optimal a posteriori state es-
timation can be written as [5]

x̂[kjk] =
LX
i=1

x̂�i
[kjk]p(�ijY[k]); (4)

where �i denotes the i-th state-space model
to be used and p(�ijY[k]) is the model prob-
ability. Figure 2 shows the block diagram
of a central adaptive Kalman �lter. Here,
Y[k] denotes the measurement vector contain-
ing all measurements from di�erent sensors,
while y1[k] and y2[k] represent the measure-
ment vectors from sensor 1 and sensor 2, re-
spectively.

Replacing each central Kalman �lter in Fig-
ure 2 by a decentralized Kalman �lter accord-
ing to Figure 1 gives the structure of the de-
centralized adaptive Kalman �lter with multi-
ple state models for di�erent kinds of motions.
An example for L = 2 is shown in Figure 3.
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Figure 2: Block diagram of the adaptive
Kalman �lter.
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Figure 3: Block diagram of the decentralized
adaptive Kalman �lter.

2.3 Modi�ed Decentralized
Kalman Filter (MDKF)

From equations (1) and (2) we know that the
diÆculty to use the Kalman �lter for state
estimation is to �nd an expression between
measurement y[k] and the system state x[k].
In many applications it is not possible to de-
scribe the measurement channel by a mathe-
matical method according to (2), because the
relation between the system state x[k] and
the measurement values y[k] is very involved.
Also the use of an extended Kalman �lter can-
not solve this problem.
For example, in joint audio-video object

localization the measurements from the au-
dio sensors are digital signals representing the
sound pressure and the measurements from
the video sensors are images of the object.
Suppose that we choose the system state as

x[k] =

2
6664

xx[k]
vx[k]
xy[k]
vy[k]

3
7775 ; (5)

where xx[k], xy[k], vx[k], vy[k], are the hori-
zontal and vertical components of the object
position and velocity at k. Then, it is very
diÆcult to �nd a function to express the re-
lationship between x[k] and y[k]. However,
without a measurement channel expression as
in equation (2), it is not possible to use the
decentralized Kalman �lter.
To solve this problem, we propose a mod-

i�ed decentralized Kalman �lter. Its struc-

ture is shown in Figure 4. In addition to the
decentralized Kalman �lter, local estimators
are inserted between sensors and local central
Kalman �lters. They estimate the object po-
sition from the sensor signals y1[k] and y2[k],
respectively. The local estimators perform no
recursive estimation and can provide only es-
timates of the current object position

zi[k] =

"
zxi

[k]
zyi [k]

#
; i = 1; 2: (6)

On the other hand, they do not need a motion
model of the object.
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Figure 4: Modi�ed decentralized Kalman �l-
ter (MDKF) for joint audio-video object lo-
calization.

The results z1[k] and z2[k] from the local
estimators are now used as input for the de-
centralized Kalman �lter. In contrast to Fig-
ure 1, there is a simple relationship between
system state x[k] and the input signals of the
local Kalman �lter z1[k] and z2[k] (see (8)).
The remaining blocks in Figure 4, namely

the local Kalman �lter 1 and 2 and the fu-
sion centre, represent a decentralized Kalman



�lter as in Figure 1. It is based on a linear
motion model for the object dynamics and on
a measurement model.
A simple motion model is obtained by as-

suming constant object velocity and a carte-
sian coordinate system. The resulting state-
space equation can be expressed as2
6664

xx[k + 1]
vx[k + 1]
xy[k + 1]
vy[k + 1]

3
7775

| {z }
x[k+1]

=

2
6664
1 T 0 0
0 1 0 0
0 0 1 T

0 0 0 1

3
7775

| {z }
A[k]

2
6664

xx[k]
vx[k]
xy[k]
vy[k]

3
7775

| {z }
x[k]

+ v[k]; (7)

where T is the time interval between subse-
quent estimates.
The corresponding measurement channel

can be now simply described as

"
zxi[k]
zyi[k]

#
| {z }

zi[k]
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"
1 0 0 0
0 0 1 0

#
| {z }

C[k]

2
6664

xx[k]
vx[k]
xy[k]
vy[k]

3
7775

| {z }
x[k]

+ ni[k]; i = 1; 2 (8)

where ni[k] denotes the local estimation er-
rors.

3 Object Localization

from Audio Information

From Fig. 4 we can see that the audio and
video informations measured by microphone
array and camera are �rst fed into two local
estimators, respectively, in order to generate
the local estimates. They act as inputs signals
to the decentralized Kalman �lter for data fu-
sion. Therefore, the two local estimators play
an important role in the whole system, since
their accuracy can directly inuence the �nal
estimation results. In this section we describe
the audio local estimator. The video local es-
timator is given in the next section.
The basic processing chain for object lo-

calization from audio information is shown in
Figure 5. In order to localize the position of

the acoustic source, we record sound signals,
which is done with a microphone array. Then
characteristic features of the recorded signals,
in which the object position information is en-
coded, have to be extracted. At last, the ex-
tracted characteristics are used as inputs of
the estimation algorithm to get the actual es-
timated source position.

estimation
algorithmcharacteristics

extraction ofdata
acquisition

object
position

array
sensor

Figure 5: Processing chain for acoustic source
localization.

The important topics in the processing
chain shown in Figure 5 are the extraction of
characteristic features and the subsequent es-
timation algorithm. In the proposed method
we choose the time delays between the di�er-
ent microphones in the array as object char-
acteristics. The �rst step for the extraction
of the characteristic features is the calculation
of cross correlation sequences between the dif-
ferent microphone signals. This is done in a
block wise fashion. The block length and the
audio sampling rate are chosen such that the
time interval between subsequent position es-
timates corresponds to the frame rate of the
video system. The calculated short time cor-
relation functions are then used to estimate
the source position with a steered beamformer
[1]. If the object to be localized is a mov-
ing human speaker, a speech pause detector
is used to prevent erroneous position estima-
tion during speech pauses.

A crucial point in the implementation of the
steered beamformer is the calculation com-
plexity. Two measures for its reduction have
been applied. At �rst, the steered beam-
former is realized by a summed-correlator al-
gorithm to avoid the manipulation of variable
delays in the microphone signal lines.

Secondary, a hierarchical search structure
is used. In a certain experimental setup, a
full search of all passible discrete object local-
izations would have required to search for a
total of 2496 possible positions. Application



of a three stage algorithm in a cartesian grid
similar to [6] reduced the search positions to
269. A further reduction is possible in a polar
coordinate system by hierarchically searching
for 1) the angle, 2) the distance and 3) the
exact position. This resulted in a further de-
crease of the number of search position to 139
in the speci�c example.

A more detailed description of the audio lo-
cal estimation based on a steered beamformer
is given in [1,8].

4 Object Localization for

Video Information

The localization estimator from video infor-
mation is based on object color segmentation.
The methods of object localization through
object color are relatively new. Some results
have been reported in [6,7]. The algorithm
consists of two steps. First, the object is rec-
ognized through segmentation from the still
background. Then, the color informations of
pixels, which lie in the recognized area, are
analysed to determinate the dominating re-
gion of the object.

The extraction of the foreground is based on
the analysis of image di�erences . By compar-
ison of two images at di�erent times, the part
in which there is small di�erence will be classi-
�ed into background, and the part with large
di�erence belongs to foreground. In the case
that a stationary background is used, e.g. in
a video conference, the di�erence is obtained
through comparison with a reference image.

The di�erence between color images can be
obtained in many ways. One of the possi-
bilities is that only the illumination changes
are taken into account. If the color informa-
tion should be considered, a distance mea-
sure, e.g. the euclidian distance between the
color channels can be applied. The foreground
and background are segmented according to
a threshold. Decision errors in the bound-
ary can be eliminated through a median �lter.
Fig.6 shows an example for the segmentation
of the foreground and background with and

without median �lter.

Figure 6: Segmentation of the foreground and
background with (top) and without (bottom)
median �lter.

The recognition of object color is limited to
the analysis of foreground. It is important to
choose the correct color space to analyse the
color information. If one takes the analysis
in the RGB color space, then all three color
channels have to be processed. Furthermore,
the brightness can inuence the color channels
and impair the object color detection. So, it is
useful to choose a color system that consists
of an intensity channel and two color chan-
nels, for example the YUV color space or the
YCrCb color space. For simplicity we can ne-
glect the intensity channel Y, which makes the
detection robust against illumination changes.
Figure 7 shows a skin color distribution and
a color distribution from clothing and back-
ground.
Because only a small area in the CrCb plane
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Figure 7: Skin color distribution (top) and
the color distribution from clothing and back-
ground (bottom) in the CrCb plane.

is considered as object color, all pixels in
the foreground should be compared to decide
whether they belong to the object color area.
An example for face localization is shown in
Figure 8, where the white pixels indicate face
color. It is clear to see that not only the face
color area but also another skin color area
is recognized. Therefore, to correctly local-
ize the face, the position and size of the face
have to be determined. First, the frequency
distribution of the face color along the x and
y direction is represented by two histograms.
From the mean and variance values the po-
sition and size of the face can be evaluated.
But the other color areas may misrepresent
the face size. To avoid this error we use a
method proposed in [6]. The result in Fig-
ure 9 shows that the hand in the lower right
corner does not inuence the determination of

the face position and size.

Figure 8: Recognition of the skin color areas
in an image (white: skin color, black: no skin
color)

.

Figure 9: Determination of the position and
size of the face in color regions of the other
skin colors

.

5 Experiments

To test the proposed method we have used
it for estimating the position of a whistling
model railway moving along an oval track.
The local estimates are obtained using the lo-
cal estimators introduced in subsection 3 and



Table 1: Error variance of the audio, video
and global estimation

audio estimation �2
d1

1; 8 � 10�3 m2

video estimation �2
d2

2; 4 � 10�4 m2

global estimation �2
d 1; 5 � 10�4 m2

subsection 4. The results are given in Table 1,
where �2

d1
, �2

d2
and �2

d denote the variance of
the audio local estimation, video local estima-
tion and global estimation of the true position
x[k].

The results show that the error variance of
the video estimation can be reduced consider-
ably by data fusion with the audio estimation,
although the audio estimation is less accurate
than the video estimation.

6 Conclusion

In this paper we have introduced a method for
object localization using joint audio-video sig-
nal processing. A new modi�ed decentralized
Kalman �lter (MDKF) was introduced to es-
timate the global object position. As local es-
timators, a steered beamformer approach has
been applied for acoustic source localization
and skin color detection has been used to lo-
calize human faces in video sequences.

Experiments have shown that the modi�ed
decentralized Kalman �lter (MDKF) is an ef-
fective approach for the system state estima-
tion, especially, when the measure channel is
diÆcult to describe. Furthermore, the MDKF
can also provide more estimation accuracy
than the local estimators.
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