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Abstract

This paper presents a localization and tracking sys-
tem integrating multiple sensors. Object localiza-
tion results from local sensor systems are fused us-
ing a decentralized Kalman filter. An audiovisual
speaker tracking system is evaluated, which is based
upon a video based face tracker and a microphone
array. A quantitative analysis shows that the pre-
sented bimodal tracking system can deliver more
robust and reliable results than either of the two sin-
gle modalities.

1 Introduction

Modern object oriented coding algorithms, like the
emerging MPEG-4 standard, have strong require-
ments on machine based scene analysis. During
the recording of natural scenes, scene analysis can
be supplemented by object localization algorithms.
Many single-sensor techniques already exist for this
purpose. They are, e.g. based on microphone ar-
rays, video cameras, or range sensors. Since all of
these sensors have their specific strength and weak-
nesses, it is often advantageous to combine infor-
mation from various sensor modalities to arrive at
more robust position estimates. This paper presents
a multimodal object localization framework which
is based on data fusion by decentralized state esti-
mation. For this purpose the decentralized Kalman
filter is utilized.
We proceed as follows: The theory of multi-sensor
object localization is reviewed in Section 2. Based
on the derived algorithm an audiovisual speaker
tracking system is presented in Section 3 followed
by an quantitative analysis of the tracking accuracy
in Section 4.
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2 Multi-Sensor Object Localization

Object tracking and data fusion can be seen in
the context of parameter estimation. The data we
intend to fuse in our multimodal object localiza-
tion framework are position estimates delivered by
monomodal object localization algorithms based
on a single sensor type. In general object local-
ization algorithms deliver noisy position measure-
mentsyi[k] based on the raw sensor data of the lo-
cal sensors. Parameter estimation tries to estimate
the true value or state of the object based on the
measurements and appropriate system models. In
our case the system statex[k] consists of the object
position and other state variables. By integrating
parameter estimation with data fusion we build a
multimodal object localization algorithm based on
the Kalman filter as shown in the next sections.

2.1 Monomodal State Estimation

In situations where the systems dynamics can be
described by a state-space model, the Kalman fil-
ter (KF) algorithm provides an efficient computa-
tional solution for estimating the state of a sys-
tem. The Kalman filter can be characterized as a
model-based predictor followed by an observation-
dependent corrector. The linear discrete Kalman fil-
ter [3] is based upon a linear state-space model for
system characterization,

xi[k + 1] = A[k]xi[k] + b[k]u[k] + vi[k] (1a)

yi[k] = Ci[k]xi[k] + ni[k] (1b)

wherexi denotes the system state andu[k] a con-
trol input. The random variablesvi andni model
the additive process and measurement noise. They
are assumed to be independent from each other and
from the system statexi[k]. Furthermore it is as-
sumed that they are normally distributed with zero
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mean and covariance matrixesR
(i)
vv [k] andR

(i)
nn[k].

The input of the linear discrete Kalman filter is the
position estimate of the i-th sensor given through
the measurement vectoryi[k], whereCi[k] denotes
the observation matrix. Note that we assume iden-
tical state models (1a) for the local sensor nodes,
the measurement channels (1b), however, can differ
from each other. The Kalman filter algorithm con-
sists of a set of equations that can be found e.g. in
[3, 12].

2.2 Multimodal State Estimation

In the previous section we introduced the Kalman
filter for monomodal object localization. The po-
sition estimates computed by the local Kalman fil-
ters for each sensor system are only based on their
sensor observations. We now combine these local
estimates to arrive at a more robust global position
estimate. At first glance sensor data fusion can be
performed by mapping all local measurement vec-
torsyi[k] into one global measurement vector

y[k] =
[

y1[k] y2[k] . . . yM [k]
]T

(2)

and using the Kalman filter for state estimation.
This scheme is referred as measurement fusion and
has some benefits compared to state-vector fusion
as presented in [4]. The only drawback is the cen-
tralized structure of using one centralized Kalman
filter for multimodal state estimation. However,
a decentralized structure of the tracking system is
more useful in practical applications. This section
shows how to arrive at a joint position estimate us-
ing a decentralized Kalman filter, which is a decen-
tralized implementation of the standard Kalman fil-
ter [5, 16, 17].

2.2.1 Single State Model

The decentralized Kalman filter (DKF) as used for
the fusion of different modalities is a multi-sensor
Kalman filter that has been divided up into modules
associated with the local sensor systems. Each node
computes a local a posteriori estimatex̂i[k|k] of the
object position based on the position measurements
yi of the local sensori. These partial estimates are
finally assimilated to provide a global a posteriori
estimatex̂[k|k] in the fusion center. Figure 1 il-
lustrates the structure of the decentralized Kalman
filter. The time-update equations and measurement-

Figure 1: Structure of a multimodal object local-
ization algorithm using a decentralized Kalman fil-
ter. Two modalities are fused here: audio based and
video based object localization results. The esti-
mated stateŝxi[k|k] of the local Kalman filters (KF)
are fused by the fusion center to a global state esti-
matex̂[k|k].

update equations of a DKF with M sensors can, e.g.
be found in [3]. If the measurement noise compo-
nentsni[k] of the local position measurements are
independent, the centralized state estimate can be
separated. It is assumed that the global state equa-
tion, describing the object dynamics, is equal for all
local Kalman filters. Then the global state equation
can be described in the same way as the local sys-
tem dynamics

x[k + 1] = A[k]x[k] + b[k]u[k] + v[k]. (3)

The global a posteriori state estimate can be ex-
pressed as

x̂[k|k] = P[k|k]
(
P−1[k|k − 1]x̂[k|k − 1]+

M∑
i=1

{P−1
i [k|k]x̂i[k|k]−P−1

i [k|k−1]x̂i[k|k−1]}
)
,

(4)

whereP[k|k − 1] andP[k|k] denote the global a
priori and a posteriori error estimate covariances,

666



respectively, whilePi[k|k−1] andPi[k|k] are their
local counterparts at the two local processors. The
vectorx̂[k|k−1] is the global a priori state estimate,
and x̂i[k|k − 1] together withx̂i[k|k] denote the
local a priori and local a posteriori state estimates,
respectively.
The global a posteriori error covariance matrix is
given by

P−1[k|k] = P−1[k|k − 1] +

M∑
i=1

{P−1
i [k|k] − P−1

i [k|k − 1]}. (5)

Equations (4) and (5) summarize the decentralized
Kalman filter algorithm. There is no need for com-
munications from the fusion center to the local
Kalman filters in this scenario. The fusion cen-
ter only needs access to the a priori and posteri-
ori state estimateŝxi[k|k − 1] and x̂i[k|k] of the
local Kalman filters and the appropriate error co-
variance matrixesPi[k|k − 1] andPi[k|k]. It is
also possible to include reliability data provided by
the local localization algorithms into the data fusion
scheme. This can be done with the help of the mea-
surement error covariance matrixR(i)

nn[k]. The re-
spective values of the measurement error covariance
matrixR

(i)
nn[k] can be adjusted according to the ac-

tual state of the local object localizer. If for example
the object localizer has lost the object at the current
timestep, high values for the diagonal elements of
the measurement error covariance matrix of the re-
spective local sensor would be chosen. This results
in reduced trust of the fusion center in these mea-
surements.
Theoretically there is no performance loss in the de-
centralized system, it delivers the same results as
the centralized Kalman filter. Therefore, the DKF
is a good choice for decentralized measurement fu-
sion. The benefits of the DKF are the modular con-
cept, allowing to add sensor systems on the fly, and
the ease of parallel implementation.

2.2.2 Multiple State Models

In situations where objects can perform complex
movements with different types of motion, it will
be difficult to construct one state-space model that
always fits. These problems can be overcome by
using interacting multiple model (IMM) estimators

[10]. Assuming that we can find appropriate state-
space models for different parts of the object trajec-
tory, an adaptive Kalman filter can learn from the
measurements which of these models is the correct
one. A derivation of the adaptive Kalman filter can
be found, e.g. in [3].

2.3 Nonlinear State Estimation

In the previous sections, we assumed that the sys-
tem dynamics and the measurement channel can be
described by a linear state-space model (1). In some
cases nonlinear state-space models are required. A
nonlinear measurement equation is required for ex-
ample when position estimates performed in differ-
ent coordinate systems have to be fused or the local
sensor systems have offsets and different orienta-
tions to the global coordinate system.
The state-space description of a nonlinear system is
given as follows

x[k + 1] = f(x[k], u[k], k) + v[k] (6a)

y[k] = h(x[k], k) + n[k] (6b)

wheref(·) andh(·) denote known nonlinear re-
lationships which are in general dependent on the
time indexk. Following the construction of the de-
centralized linear Kalman filter, we assume identi-
cal nonlinear plant equationsf(·). The measure-
ment models of the distributed sensors need, how-
ever, not to be identical. In the case of distributed
sensors, we get

yi[k] = hi(xi[k], k) + ni[k] (7)

where the measurement noise componentsni[k] are
again assumed to be mutually independent.
Ideally, the final state estimate after fusing all in-
dividual nonlinear estimates should be identical to
the centralized state estimate. Due to the nonlin-
ear equations, a general solution to this problem ap-
pears to be difficult, and, to the knowledge of the
authors, no general solution to has been presented
so far.
Nevertheless a possible solution is to use the ex-
tended Kalman filter (EKF) to perform nonlinear
state-estimation in a centralized fashion. The ex-
tended Kalman filter linearises the nonlinearities of
the state-space equation (6) about the filter’s esti-
mated trajectory. For this purpose a linearized ver-
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sion of the nonlinear state-space equation is used

x[k + 1] ≈ f(x̂[k|k], u[k]) +

A[k](x[k] − x̂[k|k]) + v[k] (8a)

y[k] ≈ h(x̂[k|k − 1], k) +

C[k](x[k] − x̂[k|k]) + n[k] (8b)

whereA[k] andC[k] denote the Jacobian matrices
of the partial derivatives off(·) andh(·). The same
derivation as for the centralized linear Kalman filter
can then be used as illustrated in [3].
In cases where the system dynamics can be de-
scribed by a linear state-space model (1a) and a
nonlinear measurement equation (6b), the extended
Kalman filter can be combined with the decentral-
ized Kalman filter. Fortunately, the decentralized
Kalman filter shown in Figure 1 is composed of au-
tonomous components. This makes it possible to
replace the local, initially linear Kalman filters with
extended Kalman filters where required.
The straightforward derivation of the extended
Kalman filter leads to problems in numerical stabil-
ity during implementation. For practical implemen-
tation the unscented Kalman filter (UKF) [18, 8]
provides a solution to overcome these problems.

3 Implementation of an Audio-Visual
Object Localization System

The implementation of a joint audio-video process-
ing system based on the theory discussed so far is
illustrated below. There are many ways to imple-
ment the decentralized state estimator shown in the
previous sections. These depend on the objects ob-
served, the types of sensors available, and the re-
quirements for localization and tracking. A system
intended to track a single person in an audio-visual
environment is presented here. It consists of a mi-
crophone array for audio localization and a video
camera for tracking of human faces. Both sensors
are combined using the recursive estimation scheme
presented before. We only concentrate on 2 dimen-
sional object localization in this context.

3.1 Audio Localization

In general microphone arrays are used for acous-
tic source localization. The existing acoustic source

localization strategies can be divided loosely into
three classes:

• maximizing the output power of a steered
beamformer

• estimating the time delays of arrival (TDOAs)
between microphone pairs for an acoustic
wavefront

• high-resolution spectral estimation concepts
A detailed discussion of the different approaches is
beyond the scope of this paper, but can be found
in [2].
We are currently investigating two different algo-
rithms for acoustic source localization: The first al-
gorithm is based upon adaptive estimation of the
room impulse responses between the source and the
microphones as described in [1]. By computing
the delay between the direct paths of a microphone
pair the TDOA is obtained (second class). The sec-
ond algorithm utilizes an efficient implementation
of a steered filter and sum beamformer for evaluat-
ing the beamformer output associated with each hy-
pothesized speaker position [14, 15]. The acoustic
source position is found by maximizing the output
power of the steered beamformer (first class). To
inhibit erroneous estimates when no speech signal
is present, a speech pause detector is employed for
both algorithms.
The audio localization algorithms provide estimates
of the azimuthθ[k] and the ranger[k]. Due
to the nonlinear relationship of the measurements
θ[k], r[k] to the components of the state vectorx[k]

θ[k] = arctan
( y[k]

x[k]

)
(9a)

r[k] =
√

x2[k] + y2[k] (9b)

the extended Kalman filter has to be used for local
state estimation. In this case the Jacobian matrix
C[k] takes the form

C[k] =




− y

x2 + y2
0

x

x2 + y2
0

x√
x2 + y2

0
y√

x2 + y2
0


 .

(10)

3.2 Video Localization

The video localization system is a real-time
face tracker with the following main elements:
foreground-background segmentation, detection of

666



Figure 2: Sample results of the facetracking algo-
rithm

skin-color regions, and detection of eye-like re-
gions. Foreground-background segmentation is per-
formed by comparing the actual captured frame
with an pre captured background image at the be-
ginning of the tracking process. Skin color segmen-
tation is carried out on the detected foreground pix-
els. For this purpose a statistical skin color model
[7] is utilized. Based on the results from the skin
color detection task a robust statistics based algo-
rithm estimates the center position and size of the
face in the actual frame. To overcome with prob-
lems of skin color ambiguity additionally the eyes
are searched in the detected facial area. This is per-
formed by a principle component analysis (PCA)
[9] based eye detection scheme. The relevant char-
acteristics of human eyes are learned from a set of
training images. These characteristics represented
by a set of basis vectors, the eigeneyes, are then
matched against the input frame. Some typical
snapshots of tracking sessions can be seen in Fig-
ure 2. Details on the face tracker can be found in
[13].

3.3 Fusion Center

The fusion center recursively combines the local a
posteriori estimateŝxi[k|k] from the local Kalman
filters into a global a posteriori estimatêx[k|k]. It
is based on the algorithm outlined in the above sec-
tions. To track a real object using a Kalman filter,
a suitable motion model is needed. Since it is diffi-
cult to accurately describe complex maneuvers, we
use a linear model as a first approximation instead.

It is assumed that the object moves with piecewise
constant velocity.

3.4 Real-Time Implementation

This section addresses real-time implementation is-
sues of the described algorithms. The computa-
tional requirements of the decentralized state esti-
mation and data fusion algorithms are quite low.
The state estimates of the local Kalman filters have
to be updated only each time new measurements
are computed by the audio and video localization
algorithms. The global position estimate is then
computed by the fusion center each time the local
state estimates arrive. However, the whole system
has to be synchronized properly. The decentralized
Kalman filter presented so far, assumes temporal
alignment of the localization subsystems. This can
be overcome by using an asynchronous formulation
of the decentralized Kalman filter [11].
The main computational complexity of the multi-
sensor object localization system lies in the local-
ization algorithms itself. The current version of the
facetracking algorithm was implemented on an SGI
O2 workstation, providing real-time operation with
25 frames per second. Several optimizations had
to be performed on the algorithm described above,
details of the implementation can be found in [13].
Audio localization however, has even higher com-
putational requirements because of the higher di-
mensionality of the input signals when using more
than two microphones. A sufficiently high mea-
surement update rate of the TDOA based localiza-
tion algorithm using four microphones could only
be achieved by downsampling the input signals and
implementing the adaptive room impulse estimation
in the frequency domain.

4 Quantitative Analysis

Tracking of a human speaker in an audio-visual en-
vironment is a very interesting application. Unfor-
tunately, it does not easily facilitate a quantitative
analysis since the true speaker position cannot be
determined accurately by other means. To demon-
strate the robustness and accuracy of joint audio-
video tracking, this work will resort to an alterna-
tive setup: tracking of a model railway along an
oval track in a plane. Knowledge of the fixed rail-
way track contour together with continuous mea-
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Figure 3: View from the video camera on the model
railway

surements of the engine’s exact position along the
track provided the ground truth against which the
audio-video tracking results can be compared. Fig-
ure 3 shows an example view from the video cam-
era on the model railway. To demonstrate the in-
creased robustness of joint audio-video processing
against sensor failure, it has been assumed that both
modalities suffer from poor localization conditions
at different times. The audio localization results are
shown in the upper plot of Figure 4(a). The dashed
line is the railway track. The sequence of position
estimates from the summed correlator beamformer
is indicated by crosses (+). They represent the in-
put data,y1[k], to the local extended Kalman fil-
ter, KF1. The estimation result computed by the
Kalman filter is depicted as a solid line. Since the
state estimation process started at the bottom part of
the track, the initial error during the first steps of the
Kalman recursion is clearly visible. Furthermore,
there are two instances in the sequence of position
estimates where the raw position estimates (obser-
vations) were dropped to mimic a silent acoustic
source. In both cases, the Kalman filter extrapo-
lated the position estimates based on the linear mo-
tion model of the local Kalman filter. When new
input data became available, the position estimates
resumed their proper course. The situation is simi-
lar for video localization shown in the lower plot of
Figure 4(a). Since the camera usually has a much
higher spatial resolution than the microphone array,
the video position estimates are significantly more
accurate in general. Again, two instances with miss-
ing video observations were simulated. As in the
case of the audio localizer, the associated video po-
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sition estimates were linearly extrapolated since the
associated video Kalman filter,KF2, uses the same
motion model as the audio Kalman filter,KF1. The
fusion result is shown in the upper plot of Figure
4(b). It may be seen that the joint estimation algo-
rithm successfully removes deviations due to unreli-
able audio or video observations. Finally, the lower
plot in Figure 4(b) shows how the audio, video, and
joint audio-video position estimates differ from the
true object positions. The absolute position errors
of the audio and video position estimates peak at
the startup of the audio estimator and when there are
failures related to missing mono-modal sensor ob-
servations. Since these deviations do not coincide in
time, the joint estimate relies on the more accurate
single localizer estimate in these cases. This exam-
ple shows that joint audio-video object localization
provides more robust results than either of the two
mono-modal methods employed independently.

5 Discussion and Conclusions

This paper presented a localization and tracking
system integrating multiple sensor systems. The de-
centralized Kalman filter recursively combines lo-
cal audio and video state estimates into a more re-
liable global state and, thus, position estimate. To
this end, a common model of the system dynamics
and a common coordinate system is needed. Al-
though audio position estimates are often less accu-
rate than the results obtained with a video localizer,
they can still provide useful input for a joint audio-
video object localization system. Nevertheless, by
introducing a joint audio-video processor, a local-
izer that yields more reliable results than either one
of the single-sensor systems is obtained.
The principles of multimodal object tracking are
not limited to the use of decentralized Kalman fil-
ters. More advanced state estimation techniques
like the CONDENSATION algorithm [6] were also
proposed for state estimation in our context. These
algorithms overcome the limitations of the Kalman
filter, mainly the assumption of a unimodal density
to model the system state. Due to our observations,
the decentralized adaptive Kalman filter does not
seem to limit the performance of our multimodal
tracking algorithm. The underlying assumptions
were shown to be valid in our scenarios.
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