A Multi-Sensor Object Localization System

S. Spors, R. Rabenstein and N. Strébel

Telecommunications Laboratory
University of Erlangen-Nuremberg
Cauerstrasse 7, 91058 Erlangen, Germany
E-mail: {spors, rabe, strobpg®LNT.de

Abstract 2 Multi-Sensor Object Localization

This paper presents a localization and tracking sysObject tracking and data fusion can be seen in
tem integrating multiple sensors. Object localiza-the context of parameter estimation. The data we
tion results from local sensor systems are fused ugntend to fuse in our multimodal object localiza-

ing a decentralized Kalman filter. An audiovisual tion framework are position estimates delivered by
speaker tracking system is evaluated, which is basg@ionomodal object localization algorithms based
upon a video based face tracker and a microphonen a single sensor type. In general object local-
array. A quantitative analysis shows that the preization algorithms deliver noisy position measure-
sented bimodal tracking system can deliver morénentsy;[k] based on the raw sensor data of the lo-

robust and reliable results than either of the two sincal sensors. Parameter estimation tries to estimate
gle modalities. the true value or state of the object based on the
measurements and appropriate system models. In
our case the system staté:] consists of the object
1 Introduction position and other state variables. By integrating
parameter estimation with data fusion we build a
Modern object oriented coding algorithms, like themultimodal object localization algorithm based on
emerging MPEG-4 standard, have strong requirethe Kalman filter as shown in the next sections.
ments on machine based scene analysis. During
the recording of natural_scenes, scene analy_sis ¢31  Monomodal State Estimation
be supplemented by object localization algorithms.
Many single-sensor techniques already exist for thign situations where the systems dynamics can be
purpose. They are, e.g. based on microphone agescribed by a state-space model, the Kalman fil-
rays, video cameras, or range sensors. Since all ¢ér (KF) algorithm provides an efficient computa-
these sensors have their specific strength and weatonal solution for estimating the state of a sys-
nesses, it is often advantageous to combine infotem. The Kalman filter can be characterized as a
mation from various sensor modalities to arrive atmodel-based predictor followed by an observation-
more robust position estimates. This paper presentiependent corrector. The linear discrete Kalman fil-
a multimodal object localization framework which ter [3] is based upon a linear state-space model for
is based on data fusion by decentralized state estsystem characterization,
mation. For this purpose the decentralized Kalman
filter is utilized. xilk +1] = Alk]xi[k] + bk]ulk] + vi[k] (1a)
We proceed as follows: The theory of multi-sensor vilk] = Cilk]x:[k] + n;[k] (1b)
object localization is reviewed in Section 2. Based
on the derived algorithm an audiovisual speaker ™ ™ .
tracking system is presented in Section 3 foIIowecfrOI input. The random variables; andn; model

by an quantitative analysis of the tracking accurac;}he additive process and measurement noise. They
in Section 4. are assumed to be independent from each other and

from the system state;[k]. Furthermore it is as-
*now with Siemens Medical Solutions, Erlangen, Germany ~ sumed that they are normally distributed with zero

wherex; denotes the system state aié] a con-
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mean and covariance matrixBs’) [k] andR.\\) [k].
The input of the linear discrete Kalman filter is the
position estimate of the i-th sensor given through
the measurement vectgr k], whereC; [k] denotes
the observation matrix. Note that we assume iden- audio video
tical state models (1a) for the local sensor nodes, localizer localizer
the measurement channels (1b), however, can differ
from each other. The Kalman filter algorithm con- yil4] yolk]
sists of a set of equations that can be found e.g. in
[3,12]. KF; KF,

object state
x[k]

P k-1] | Ri[k[h-1] Rolk|k-11{ P2k [k-1]

2.2 Multimodal State Estimation 1 N . 1
Py [k|k] | xi[k[K] Xo[k k]| Py [k|k]

In the previous section we introduced the Kalman
filter for monomodal object localization. The po- fusion center
sition estimates computed by the local Kalman fil-
ters for each sensor system are only based on their l

sensor observations. We now combine these local N

estimates to arrive at a more robust global position X[k|k]

estimate. At first glance sensor data fusion can be

performed by mapping all local measurement vecFigure 1: Structure of a multimodal object local-

torsy;[k] into one global measurement vector ization algorithm using a decentralized Kalman fil-
ter. Two modalities are fused here: audio based and
vkl =] yilk] yalk] ... ywmlk] ]T (2) video based object localization results. The esti-

mated state®;[k|k] of the local Kalman filters (KF)
and using the Kalman filter for state estimation.are fused by the fusion center to a global state esti-
This scheme is referred as measurement fusion andatex |k |k].
has some benefits compared to state-vector fusion

as presented in [4]. The only drawback is the cen-

tralized structure of using one centralized Kalman-Pdate equations of a DKF with M sensors can, e.g.
filter for multimodal state estimation. However, P& found in [3]. If the measurement noise compo-

a decentralized structure of the tracking system i§€NtSD: [k] of the local position measurements are
more useful in practical applications. This section'”depe”dent' the centralized state estimate can be

shows how to arrive at a joint position estimate usSeParated. Itis assumed that the global state equa-

ing a decentralized Kalman filter, which is a decen.lion: describing the object dynamics, is equal for all

tralized implementation of the standard Kalman fil-'ocal Kalman filters. Then the global state equation
ter [5, 16, 17]. can be described in the same way as the local sys-

tem dynamics
2.2.1 Single State Model x[k + 1] = A[k]x[k] + b[k]ulk] + V[k]. (3)

The decentralized Kalman filter (DKF) as used forThe global a posteriori state estimate can be ex-
the fusion of different modalities is a multi-sensor pressed as

Kalman filter that has been divided up into modules

associated with the local sensor systems. Each node %[k|k] = P[k|k] (P’l[k|k — 1)%[k|k — 1]+
computes a local a posteriori estim&tgk| k] of the
object position based on the position measuremeniMz 1 . 1 .

y: of the local sensoi. These partial estimates are £ (P [klk]%: kK] P, [k|k_1lxi[k|k_1]}>’
finally assimilated to provide a global a posteriori = (4)
estimatex|[k|k| in the fusion center. Figure 1 il-

lustrates the structure of the decentralized KalmamhereP[k|k — 1] andP[k|k] denote the global a
filter. The time-update equations and measuremenpriori and a posteriori error estimate covariances,
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respectively, whilé@;[k|k—1] andP; k| k] are their  [10]. Assuming that we can find appropriate state-
local counterparts at the two local processors. Thepace models for different parts of the object trajec-
vectork|[k|k—1] is the global a priori state estimate, tory, an adaptive Kalman filter can learn from the
andx;[k|k — 1] together withx;[k|k] denote the measurements which of these models is the correct
local a priori and local a posteriori state estimatespne. A derivation of the adaptive Kalman filter can
respectively. be found, e.g. in [3].

The global a posteriori error covariance matrix is

given by . . .
2.3 Nonlinear State Estimation

P kK] =P klk—1] + In the previous sections, we assumed that the sys-
M tem dynamics and the measurement channel can be
Z{Pi—l[;ﬁ\k] — P{l[k|k —1]}. (5) described by alinear state-space model (1). In some
i=1 cases nonlinear state-space models are required. A
nonlinear measurement equation is required for ex-
Equations (4) and (5) summarize the decentralizedmple when position estimates performed in differ-
Kalman filter algorithm. There is no need for com-ent coordinate systems have to be fused or the local
munications from the fusion center to the localsensor systems have offsets and different orienta-
Kalman filters in this scenario. The fusion cen-tions to the global coordinate system.
ter only needs access to the a priori and posteriThe state-space description of a nonlinear system is
ori state estimateg;[k|k — 1] andx;[k|k] of the  given as follows
local Kalman filters and the appropriate error co-
variance matrixe®;[k|k — 1] andP;[k|k]. It is x[k + 1] = f(x[k], u[k], k) + v[K] (6a)
also possible to include reliability data provided by _
the local localization algorithms into the data fusion yIF = h(x[k], k) + nlk] (6b)
scheme. This can be .done with th(ei)help of the mea'wheref(-) andh(.) denote known nonlinear re-
surement error covariance matig,,[k]. The re-

A ~lationships which are in general dependent on the
spective values of the measurement error covarianGg o indexk Following the construction of the de-

matrix R/, ] can be adjusted according to the ac-centralized linear Kalman filter, we assume identi
tual state of the local object localizer. If for example .5| nonlinear plant equatior®(-). The measure-
the object localizer has lost the object at the currenfyant models of the distributed sensors need, how-

timestep, high values for the diagonal elements ofyer, not to be identical. In the case of distributed
the measurement error covariance matrix of the resensors, we get

spective local sensor would be chosen. This results
in reduced trust of the fusion center in these mea- yilk] = hy(x:[k], k) + 0[] @)
surements.

Theoretically there is no performance loss in the de\'/vhere the measurement noise componeans] are
centralized system, it delivers the same results aégain assumed to be mutually independent
the centralized Kalman filter. Therefore, the DKFIdeaIIy, the final state estimate after fusing all in-

is & good choice for decentralized measurement fug; iq,al nonlinear estimates should be identical to
sion. The benefits of the DKF are the modular conya centralized state estimate. Due to the nonlin-
cept, allowing to add sensor systems on the fly, and o quations, a general solution to this problem ap-
the ease of parallel implementation. pears to be difficult, and, to the knowledge of the

authors, no general solution to has been presented
2.2.2  Multiple State Models so far. _ o

Nevertheless a possible solution is to use the ex-
In situations where objects can perform complexended Kalman filter (EKF) to perform nonlinear
movements with different types of motion, it will state-estimation in a centralized fashion. The ex-
be difficult to construct one state-space model thatended Kalman filter linearises the nonlinearities of
always fits. These problems can be overcome byhe state-space equation (6) about the filter's esti-
using interacting multiple model (IMM) estimators mated trajectory. For this purpose a linearized ver-
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sion of the nonlinear state-space equation is used localization strategies can be divided loosely into
three classes:
x[k + 1] =~ f(X[k|k], u[k]) + e maximizing the output power of a steered
AJR](x[k] = [kIK]) + vIK] ~(8a) beamformer |
e estimating the time delays of arrival (TDOAS)
between microphone pairs for an acoustic
ylk] ~ h(&[k|k 11 k) + wavefront i
s e high-resolution spectral estimation concepts
ClE](x[k] — %[k|k]) + nk] ~ (8b) A detailed discussion of the different approaches is
where A[k] andC[k] denote the Jacobian matricesPeyond the scope of this paper, but can be found
of the partial derivatives of(-) andh(-). The same N [2]. _ o _
derivation as for the centralized linear Kalman filter We are currently investigating two different algo-
can then be used as illustrated in [3]. rithms for acoustic source localization: The first al-
In cases where the system dynamics can be d&orithm is based upon adaptive estimation of the
scribed by a linear state-space model (1a) and §0M impulse responses between the source and the
nonlinear measurement equation (6b), the extende®icrophones as described in [1]. By computing
Kalman filter can be combined with the decentral-the delay between the direct paths of a microphone
ized Kalman filter. Fortunately, the decentralizedPair the TDOA is obtained (second class). The sec-
Kalman filter shown in Figure 1 is composed of au-ond algorithm utilizes an efficient implementation
tonomous components. This makes it possible +Qf a steered filter and sum beamformer for evaluat-
replace the local, initially linear Kalman filters with ing the beamformer output associated with each hy-
extended Kalman filters where required. pothesized speaker position [14, 15]. The acoustic
The straightforward derivation of the extendedSOurce position is found by maximizing the output
Kalman filter leads to problems in numerical stabil-Power of the steered beamformer (first class). To
ity during implementation. For practical implemen- inhibit erroneous estimates when no speech signal
tation the unscented Kalman filter (UKF) [18, 8] is present, a speech pause detector is employed for

provides a solution to overcome these problems. Poth algorithms. . ) .
The audio localization algorithms provide estimates

. . . of the azimuthd[k] and the ranger[k]. Due
3 Implementation of an Audio-Visual o the nonlinear relationship of the measurements

Object Localization System 0[k], (k] to the components of the state vectdk]
The implementation of a joint audio-video process- &
ing system based on the theory discussed so far is 0[k] = arctan (M) (9a)
illustrated below. There are many ways to imple- k]
ment the decentralized state estimator shown in the rlk] = @2 [k] + y?[k] (9b)

previous sections. These depend on the objects ob-
served, the types of sensors available, and the réhe extended Kalman filter has to be used for local
quirements for localization and tracking. A systemstate estimation. In this case the Jacobian matrix
intended to track a single person in an audio-visuaf %] takes the form

environment is presented here. It consists of a mi-

Yy x
crophone array for audio localization and a video T2 42 0 2+ 42
camera for tracking of human faces. Both sensor§ k] = z 0 y
are combined using the recursive estimation scheme Va2 42 \/1’2 + 2
presented before. We only concentrate on 2 dimen- (10)

sional object localization in this context.

3.2 Video Localization

3.1 Audio Localization . o . .
The video localization system is a real-time

In general microphone arrays are used for acoudace tracker with the following main elements:
tic source localization. The existing acoustic sourcdoreground-background segmentation, detection of
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It is assumed that the object moves with piecewise
constant velocity.

3.4 Real-Time Implementation

This section addresses real-time implementation is-
sues of the described algorithms. The computa-
tional requirements of the decentralized state esti-
mation and data fusion algorithms are quite low.
The state estimates of the local Kalman filters have
to be updated only each time new measurements
are computed by the audio and video localization
algorithms. The global position estimate is then
computed by the fusion center each time the local
‘state estimates arrive. However, the whole system
has to be synchronized properly. The decentralized
Kalman filter presented so far, assumes temporal
skin-color regions, and detection of eye-like re-alignment of the localization subsystems. This can
gions. Foreground-background segmentation is peR€ 0vercome by using an asynchronous formulation
formed by comparing the actual captured frameof the decentralized Kalman filter [11].

with an pre captured background image at the beThe main computational complexity of the multi-
ginning of the tracking process. Skin color Segmensensor ObjeCt localization SyStem lies in the local-
tation is carried out on the detected foreground piszation algorithms itself. The current version of the
els. For this purpose a statistical skin color modefacetracking algorithm was implemented on an SGI
[7] is utilized. Based on the results from the skin O2 workstation, providing real-time operation with
color detection task a robust statistics based alga?® frames per second. Several optimizations had
rithm estimates the center position and size of thé0 be performed on the algorithm described above,
face in the actual frame. To overcome with prob-details of the implementation can be found in [13].
lems of skin color ambiguity additionally the eyesAudio localization however, has even higher com-
are searched in the detected facial area. This is pePutational requirements because of the higher di-
formed by a principle component analysis (pCA)mensionaIity of the input signals when using more
[9] based eye detection scheme. The relevant chaftan two microphones. A sufficiently high mea-
acteristics of human eyes are learned from a set giurement update rate of the TDOA based localiza-
training images. These characteristics representdiPn algorithm using four microphones could only
by a set of basis vectors, the eigeneyes, are thetf achieved by downsampling the input signals and
matched against the input frame. Some typicaimplementing the adaptive room impulse estimation
snapshots of tracking sessions can be seen in Fi§ the frequency domain.

ure 2. Details on the face tracker can be found in

(13]. 4 Quantitative Analysis

Figure 2: Sample results of the facetracking algo
rithm

3.3 Fusion Center Tracking of a human speaker in an audio-visual en-
vironment is a very interesting application. Unfor-
The fusion center recursively combines the local dunately, it does not easily facilitate a quantitative
posteriori estimateg;[k|k] from the local Kalman analysis since the true speaker position cannot be
filters into a global a posteriori estimagék|k]. It  determined accurately by other means. To demon-
is based on the algorithm outlined in the above secstrate the robustness and accuracy of joint audio-
tions. To track a real object using a Kalman filter,video tracking, this work will resort to an alterna-
a suitable motion model is needed. Since it is diffi-tive setup: tracking of a model railway along an
cult to accurately describe complex maneuvers, weval track in a plane. Knowledge of the fixed rail-
use a linear model as a first approximation insteadway track contour together with continuous mea-
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Figure 3: View from the video camera on the model E16]
railway

surements of the engine’s exact position along the
track provided the ground truth against which the
audio-video tracking results can be compared. Fig- 1
ure 3 shows an example view from the video cam-

era on the model railway. To demonstrate the in-
creased robustness of joint audio-video processing
against sensor failure, it has been assumed that both
modalities suffer from poor localization conditions

at different times. The audio localization results are Fusion Reslts (FC)
shown in the upper plot of Figure 4(a). The dashed 18— ‘ ‘ ‘
line is the railway track. The sequence of position
estimates from the summed correlator beamformer
is indicated by crosses (+). They represent the in-
put data,y: [k], to the local extended Kalman fil- ¢
ter, KFi. The estimation result computed by the
Kalman filter is depicted as a solid line. Since the
state estimation process started at the bottom part o P ‘ ‘ ‘
the track, the initial error during the first steps of the Y =~ M
Kalman recursion is clearly visible. Furthermore, Estimation Errors
there are two instances in the sequence of positiorgo.zs : — .

A . . global estimate
estimates where the raw position estimates (obser-— ol - - - audio estimate ||
vations) were dropped to mimic a silent acoustic ’ —— video estimate
source. In both cases, the Kalman filter extrapo-
lated the position estimates based on the linear mo-
tion model of the local Kalman filter. When new
input data became available, the position estimates
resumed their proper course. The situation is simi-
lar for video localization shown in the lower plot of
Figure 4(a). Since the camera usually has a much
higher spatial resolution than the microphone array,
the video position estimates are significantly more
accurate in general. Again, two instances with miss-
ing video observations were simulated. As in theFigure 4: Sample results from experiments with the
case of the audio localizer, the associated video panodel railway

0.8 1 1.2 1.4 1.6 1.8
X — axis [m]

(a) position estimates from the local Kalman filters

absolute position error

time indexk —>

(b) global position estimate and absolute position error
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sition estimates were linearly extrapolated since thd&keferences

associated video Kalman filtédKF2, uses the same
motion model as the audio Kalman filté&F;. The

fusion result is shown in the upper plot of Figure [1] J. Benesty. Adaptive eigenvalue decomposi-

4(b). It may be seen that the joint estimation algo-
rithm successfully removes deviations due to unreli-
able audio or video observations. Finally, the lower
plot in Figure 4(b) shows how the audio, video, and
joint audio-video position estimates differ from the

true object positions. The absolute position errors 3

of the audio and video position estimates peak at
the startup of the audio estimator and when there are

failures related to missing mono-modal sensor ob- [

servations. Since these deviations do not coincide in
time, the joint estimate relies on the more accurate
single localizer estimate in these cases. This exam-
ple shows that joint audio-video object localization

provides more robust results than either of the two [5

mono-modal methods employed independently.

(6]

5 Discussion and Conclusions

This paper presented a localization and tracking[7]

system integrating multiple sensor systems. The de-
centralized Kalman filter recursively combines lo-

cal audio and video state estimates into a more re-
liable global state and, thus, position estimate. To

this end, a common model of the system dynamics[8]

and a common coordinate system is needed. Al-
though audio position estimates are often less accu-
rate than the results obtained with a video localizer,
they can still provide useful input for a joint audio-
video object localization system. Nevertheless, by

introducing a joint audio-video processor, a local- [9]

izer that yields more reliable results than either one
of the single-sensor systems is obtained.

The principles of multimodal object tracking are
not limited to the use of decentralized Kalman fil-

ters. More advanced state estimation techniquels-O]

like the CONDENSATION algorithm [6] were also
proposed for state estimation in our context. These
algorithms overcome the limitations of the Kalman
filter, mainly the assumption of a unimodal density

to model the system state. Due to our observationg11]

the decentralized adaptive Kalman filter does not
seem to limit the performance of our multimodal
tracking algorithm. The underlying assumptions
were shown to be valid in our scenarios.
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