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ABSTRACT

This paper presents a multidimensional state-space approach
for the numerical simulation of sound propagation in enclo-
sures. The simulation algorithm is essentially based on the
wave digital filter principle however we will give a more di-
rect access to the numerical solution of the wave equation
here. To simulate sound propagation in enclosures, a de-
tailed treatment of the boundary conditions is necessary. We
focus in this paper on the treatment of memoryless boundary
conditions in the new simulation algorithm.

1 INTRODUCTION

The design of real and virtual acoustical environments re-
quires exact control of the sound field in enclosures. How-
ever, practical implementations such as concert halls, home
theaters, car interiors, or sound rendering in computer games
often fail to meet the user’s expectations. On the one hand,
the complexity of this task is considerable, since a number
of acoustic channels are used to control amplitude and phase
of sound waves in space and time. On the other hand, there
are no suitable computer design tools. Most of the existing
methods for the prediction of acoustical behaviour are based
on the simplifying assumption that sound propagation can
be modelled similar to the propagation of light waves. An
exact simulation of a dynamic sound field is unfortunately
only possible by numerically solving of the acoustical wave
equation. For free space propagation, this is not a major
problem, given that sufficient computing power is available.
However, to simulate sound propagation in enclosures a de-
tailed treatment of the boundary conditions is indispensable.
In this paper we present a multidimensional state-space ap-
proach for numerical simulation of sound propagation in en-
closures.
We proceed as follows: First we will introduce the core simu-
lation algorithm an its modifications for boundary conditions
in Section 2. Section 3 explains some details on the imple-
mentation and finally Section 4 shows some results using our
proposed algorithm for the sound propagation simulation of
a horn loudspeaker.

2 SIMULATION ALGORITHM

This section introduces the new algorithm for simulation
of sound propagation in enclosures. In this paper we will
concentrate on that part of the algorithm that handles the
boundaries of the simulation enclosure. Nevertheless we will
first shortly review the core algorithm.

2.1 Core Algorithm

The propagation of sound waves in air is governed by the
equation of motion and the equation of continuity for the
acoustic pressure p(x, t) and the acoustic fluid velocity vector
v(x, t) [1],
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∂

∂t
v(x, t) + grad p(x, t) = es(x, t) (1a)
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p(x, t) + div v(x, t) = js(x, t) (1b)

where t denotes time and x the vector of space coordinates
x, y, z. ρ0 is the static density of the air and c is the speed of
the sound. es and js are appropriate source terms. These two
physical principles form a set of two coupled partial differen-
tial equations (PDEs) describing the propagation of sound
waves. For our purposes a symmetric form of these equa-
tions is advantageous. This is achieved by introduction of
the normalization constant r0 =

√
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where the operators Dt,Dx,Dy,Dz denote partial derivation
with respect to time and to the components x, y, z of x.
The components of v are denoted by iκ, κ = 1 . . . 3 and
i4 = p/r0. Similarly, the components of es are denoted by
eκ, κ = 1 . . . 3 and e4 = r0js. This vector PDE is the start-
ing point for the derivation of our simulation algorithm. It is
essentially based on the multidimensional wave digital prin-
ciple [2]. However, a more direct access is utilized here, based
on a four-dimensional discrete-time and discrete-space state
space description.
The derivation of this discrete system according to the state-
space approach starts from the normalized vector PDE (2).
After a series of intermediate steps, the state-space repre-
sentation of a discrete-time and discrete-space algorithm is
obtained as follows

z = D [Az+ Be] , (3a)

i = Cz+ Fe. (3b)

In this state space representation z denotes the internal
state, e and i the input and output variables (acoustic pres-
sure and particle velocity), A, B, C, F are fixed matrixes and
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Fig. 1. Definition of the surface normal n for description of
boundary surfaces

D is a operator matrix containing shifts in both directions
of each spatial dimension as well as temporal delays. A de-
tailed derivation of the simulation algorithm can be found
in [3, 4].
The operator matrix D in the state equation (3a) contains
shifts in both directions of each spatial dimension. This re-
quires the knowledge of the previous states in all adjacent
points. However, if a point lies at the boundary of the spa-
tial domain, e.g. at the wall of an enclosure, one or more
of the adjacent points are beyond the boundary, where the
PDE is no more valid. The states of these points have to be
determined from boundary conditions rather than from the
PDEs (1). The next section introduces the modifications to
the core algorithm which are necessary to handle the bound-
aries of an enclosure.

2.2 Boundary Point Classification

A boundary in the three-dimensional domain in our context
is characterized by its location and its surface normal n

n =
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cosϕ cos θ
sinϕ cos θ
sin θ



 . (4)

The surface normal is a vector of unit length which is orthog-
onal to the tangential plane of the surface. For our purposes
the surface normal n is defined by the spherical coordinates
ϕ and θ according to Figure 1. Unfortunately this defini-
tion cannot be used straightforward for our discrete space
simulations because the boundary surface may not lie on
the grid points. The boundary points have to be defined in
conjunction with the spacial grid points. According to Fig-
ure 2 three types of points exist in our discrete simulation
space: interior points, boundary points and exterior points.
The interior points have interior or boundary points as di-
rect neighbors. The spatial shifts in the operator matrix D
can be carried out for all state components. These points
are handled by the core algorithm described in the previous

Fig. 2. Types of grid points: • interior points, ◦ boundary
points, · exterior points
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Fig. 3. Projection of the surface normal n in the spatial
discrete simulation grid. For simplicity only 2 dimensions
are shown here.

section. A point is a boundary point if it has at least one
neighbor point outside the boundary (exterior point). Thus
one or more of the shift operations in the operator matrix
D cannot be carried out and the missing state components
have to be calculated from the boundary conditions. Exte-
rior points lie outside of the simulation space and therefore
they do not have to be considered at all. The core algorithm
has to be extended to handle the boundary points correctly.
According to Figure 3 the existence of a neighbor point de-
pends only on the direction of the µ-th component nµ of the
surface normal n with µ ∈ (x, y, z). The state components of
the boundary points can be classified into two classes: exis-
tent state components and missing state components. Denot-
ing the ν-th component of the state vector z with zν there
are three possibilities for (µ, ν) ∈ {(x, 1), (y, 2), (z, 3)}
1. nµ > 0: The upper neighboring point in µ direction lies
outside. As a cause the component z2ν−1 cannot be cal-
culated out of the state equation. This state component
is labeled as missing state component.

2. nµ = 0: The two neighboring points lie on the bound-
ary surface. Therefore they can deliver the components
z2ν−1 and z2ν of the state vector.

3. nµ < 0: The lower neighboring point in µ direction lies
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outside. As a cause the component z2ν cannot be calcu-
lated out of the state equation. This state component
is labeled as missing state component.

Discarding the case when all state components can be cal-
culated directly there are overall 33 − 1 = 26 possibilities for
three spatial dimensions.

2.3 Boundary Conditions

The relation between the acoustic pressure p and the acoustic
fluid velocity component vn perpendicular to the boundary
can be expressed by the acoustic resistance Rw [5] in contin-
uous space as follows

p = Rwvn = Rwn
T
v (5)

for a memoryless boundary. We restrict the investigations
in this paper to memoryless boundary conditions but the
algorithm can also be extended to frequency dependent sur-
face reflection. The acoustic resistance Rw can be defined in
terms of the real valued surface reflection factor r as follows

Rw = ρ0c
1 + r

1− r
. (6)

Equation (5) can be rewritten in the variables used in the
continuous vector PDE (2)

r0i4 = Rwn
T


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

 . (7)

The basic idea of the modified algorithm for boundary points
is to split each boundary point into three virtual boundary
points with the same spatial location but surface normals
parallel to the x, y, z axis. This permits separate computa-
tion of the missing states. Figure 3 shows a example for the
projection of the surface normal n. Using Equation (4) we
can rewrite Equation (7) into its spatial projected compo-
nents

r0i4 = cosϕ cos θRwi1, (8a)

r0i4 = sinϕ cos θRwi2, (8b)

r0i4 = sin θRwi3. (8c)

2.3.1 Existing State Components

The existing state components are combined into the state
vector zi with the dimension (e × 1) with e = 3, 4, 5. The
existing boundary states can be calculated from the state
vector z with the help of a suitable transformation matrix
Ti containing only ones and zeros.

zi = T
T
i z (9)

The transformation matrix selects the appropriate state
components and is therefore dependent on the geometry of
the enclosure. For an efficient implementation the transfor-
mation matrix Ti can be calculated in advance for all 26
possibilities of boundary geometries.

2.3.2 Missing State Components

Similar as for the existing state components, the missing
state components are combined into the state vector zb with
the dimension (n × 1) with n = 1, 2, 3. The missing state
components can also be calculated from the state vector z
with the help of a suitable transformation matrix Tb similar
to Ti.

zb = T
T
b z (10)

The transformation matrixes have the following property

TiT
T
i +TbT

T
b = I (11)

which can be used together with (9) and (10) to derive the
state vector z from the vectors zi and zb

z =
(

TiT
T
i +TbT

T
b

)

z = Tizi +Tbzb (12)

The missing states zb have to be calculated from the bound-
ary conditions as follows

zb = Abzi + Bbe (13)

The matrixes Ab and Bb can be calculated using equa-
tion (8).

2.4 Modified State-Space Description

The algorithms described for existing and missing state com-
ponents can be merged into one modified state space descrip-
tion of the whole algorithm. The existing state components
follow from a state equation similar to (3a). The missing
state components follow from the interior states and the
boundary conditions. The existing and missing state com-
ponents are therefore also called interior and boundary state
components. The state space representation has to consider
both types of states appropriately. Its general form is given
by

zi =
(
T
T
i D

)
[Az+ Be] , (14a)

zb = Abzi + Bbe, (14b)

z = Tizi +Tbzb, (14c)

i = Cz+ Fe. (14d)

The matrices Ti and Tb depend on the geometry and de-
scribe whether a state is an interior state zi or a boundary
state zb. Equation (14a) is very similar to the state equa-
tion (3a), except that it delivers only the interior states.
The boundary states are computed in (14b) from the inte-
rior states and the boundary conditions, which determine Ab

and Bb. Both interior and boundary states are merged into
the complete state vector z in (14c). It is used to deliver the
output quantities in (14d) and to update the interior states
in (14a).

3 IMPLEMENTATION

The algorithm described above has been implemented in C++
in an object oriented fashion. This implementation is based
on a multidimensional systems library which was developed
at our laboratory. In the current version, objects with rect-
angular shape and analytical objects of 2nd degree (e.g. el-
lipsoids) with given surface reflexion factor can be modeled.
Available sources include point sources, loudspeaker arrays
and horn loudspeakers. The respective sound pressure of the
wavefield can be captured at any point within the spatial
grid.
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(a) t = 1.3 ms
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Fig. 4. Snapshots of the simulated wavefield for the modified OS waveguide. The horn was exited with an sinusoidal signal
starting at t = 0 at the throat of the horn.

4 RESULTS

To show the performance of the algorithm described above,
we computed the wave propagation for an complex geome-
try. The experimental setup consists of an horn loudspeaker
placed at one wall of an room which has the size 1.8×1.8×1.8
m (w × d × h). All surrounding walls of the room have a
surface reflection factor of r = 0 and are therefore absorbing.
This way free field conditions are modelled. The geometry
of the horn loudspeaker is a modified oblate spheroidal (OS)
waveguide. The surface of the horn loudspeaker has an sur-
face reflection factor of r = 0.99. The simulation gives in-
sights into the wave propagation inside and outside the horn
loudspeaker and helps to optimize the design of horn loud-
speakers. The simulation was performed in three-dimensions
with the algorithm described in this paper, especially the
boundary conditions where treated as outlined in the sec-
tions above. In order to visualize the wavefield we captured
the acoustic sound pressure at one cutting plane through the
horn loudspeaker. Figure 4 shows snapshots of the wavefield
at t = 1.3 ms and t = 2.5 ms after for an sinusoidal excita-
tion starting at t = 0 at the throat of the horn. The results
show that numerical simulation of acoustic wave propaga-
tion through the proposed algorithm is able to reproduce
the physical effects of transmission, reflection and diffrac-
tion. The simulation of the modified OS waveguide shows
also the benefits of this geometry clearly. The results show
that the diffraction effects caused at the mouth of an unal-
tered OS waveguide are nearly suppressed by the modified
geometry. Using our method it is also possible to calcu-
late the frequency response of the loudspeaker at each point
within the room. This can simply be done by using a Dirac
impulse for excitation of the horn and recording of the im-
pulse response somewhere in the room.
Other examples and scenarios can be found in [6].

5 REFERENCES

[1] K.H. Kuttruff, “Sound in enclosures,” in Handbook of
Acoustics, M.J. Crocker, Ed. John Wiley and Sons, Inc.,
1998.

[2] A. Fettweis, “Multidimensional wave-digital principles:
From filtering to numerical integration,” in Proc. Int.
Conf. Acoustics, Speech, and Signal Processing (ICASSP
94). IEEE, April 1994, pp. VI–173 – VI–181.

[3] R. Rabenstein and A. Zayati, “Sound field simulation by
computational acoustics. Part I: Simulation algorithm,”
Int. Journal of Adaptive Control and Signal Processing,
vol. 14, pp. 663–680, 2000.

[4] S. Spors and R. Rabenstein, “Characterization of acous-
tical environments by numerical simulation,” in 7th In-
ternational Workshop on Acoustic Echo and Noise Con-
trol (IWAENC), Darmstadt, Germany, 2001, pp. 195–
198.

[5] L. J. Ziomek, Fundamentals of Acoustic Field Theory and
Space-Time Signal Processing, CRC Press, Boca Raton,
1995.

[6] http://www.LNT.de/~spors/WPSIM.

4


