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Abstract— Spatial sound reproduction systems with a large
number of loudspeakers are increasingly being used. Wave field
synthesis is a reproduction system using a large number of
densely placed loudspeakers (loudspeaker array). This implies
a spatial sampling process that may lead to aliasing artifacts.
This paper derives the spatial aliasing artifacts of linear
loudspeaker arrays used for wave field synthesis and an anti-
aliasing condition.

I. INTRODUCTION

The goal of sound reproduction is to create the perfect
acoustic illusion. Various reproduction systems with an in-
creasing number of loudspeakers emerged over the past
decades in order to achieve this goal. One of the proposed
methods, Wave field synthesis (WFS), aims at reproducing
the sound of complex acoustic scenes as natural as possible
using densely placed loudspeakers. In theory, WFS creates
a physically correct reproduction of virtual wave fields
by a continuous distribution of secondary sources placed
around the listening area. In practical implementations this
distribution will be realized by a limited number of loud-
speakers placed at discrete positions. This implies a spatial
sampling process that may lead to spatial aliasing artifacts.
Typical implementations of WFS systems use (piecewise)
linear loudspeaker arrays. An anti-aliasing condition for
linear loudspeaker arrays was already derived in [1], [2].
However, no detailed analysis of the aliasing artifacts has
been performed. This paper analyzes the spatial aliasing
artifacts of linear loudspeaker arrays used for WFS based
reproduction and derives an anti-aliasing condition.
This paper is organized as follows: The next section briefly
introduces the concept of WFS, followed by a mathematical
analysis of the aliasing artifacts produced by infinite and
finite length loudspeaker arrays. An application example
illustrates the derived results.

II. WAVE FIELD SYNTHESIS

The theory of WFS has been initially developed at the
Technical University of Delft [3] and has been devel-
oped further by an active research community over the
past two decades. Its mathematical foundation for three-
dimensional arbitrary shaped volumes is given by the
Kirchhoff-Helmholtz integral [1], [3]. Typical implementa-
tions of WFS systems are restricted to the reproduction in a
plane only using (piecewise) linear loudspeaker arrays. The
theoretical basis of WFS for this specialized geometry is
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Fig. 1. Geometry used to derive the sampling artifacts for linear loud-
speaker arrays. The • denote the sampling positions of the driving function
DS(x, ω) and the gray plane the reproduction area for a plane wave with
incidence angle αpw using a finite length array.

given by the two-dimensional Rayleigh I integral [1], [3].
The Rayleigh I integral states that a linear distribution of
monopole line sources (secondary sources) is capable of
reproducing a desired wave field (virtual source) in one of the
half planes defined by the linear distribution. The wave field
in the other half plane is a mirrored version of the desired
wave field, due to the use of monopoles as secondary sources.
Without loss of generality the geometry depicted in Fig. 1
is assumed: A linear secondary source distribution which
is located on the x-axis (y = 0) of a Cartesian coordinate
system. The reproduced wave field is given by specializing
the two-dimensional Rayleigh I integral to this geometry as
follows

P (x, ω) =
∫ ∞

−∞
2jωρ0Vy(x0, ω)︸ ︷︷ ︸

D(x0,ω)

· j

4
H

(2)
0 (k |x − x0|)︸ ︷︷ ︸
G2D(x−x0,ω)

dx0 ,

(1)
where ρ0 denotes the static density of air, k = ω/c the
acoustic wave number, Vy(x0, ω) the particle velocity of the
virtual source S(x, ω) in direction of the positive y-axis and
H

(2)
0 (·) the zeroth-order Hankel function of second kind. The

vector x0 is defined as x0 = [ x0 0 ]T for the considered
geometry. The terms involving the wave field produced by
the secondary sources are abbreviated by G(x − x0, ω) and
those involving their strength (driving function) by D(x0, ω).
The secondary sources for the 2D case G2D, as given by
Eq. (1), can be interpreted as line sources intersecting the
listening area at the position x0 [1].
Practical implementations of WFS systems use closed loud-
speakers. These approximately have the characteristics of
acoustic point sources. This mismatch in source types may
produce various artifacts in the reproduced wave field that
only can be corrected to some extend [1], [4]. In the follow-



ing, the effects of sampling are derived for the artifact free
case with line sources as secondary sources. However, it is
shown later that the obtained results also hold for secondary
point sources.
As for time domain sampling, a frequency domain formu-
lation of the signals involved is useful in order to obtain
the sampling artifacts. Equation (1) comprises a convolution
along the x-axis. Applying a two-dimensional spatial Fourier
transformation [5] yields the pressure field in the spatio-
temporal frequency domain as

P̃ (k, ω) = D̃(kx, ω) G̃(k, ω) , (2)

where the respective variables in the spatial frequency do-
main are labeled by a tilde. The vector k = [ kx ky ]T

denotes the spatial frequency vector (wave vector), where
for acoustic wave fields |k| = ω/c.

III. SAMPLING ARTIFACTS PRODUCED BY
LINEAR LOUDSPEAKER ARRAYS

The driving function D(x, ω) is sampled at equidistant
positions, in order to model the effect of a spatially discrete
secondary source distribution. The process of sampling can
be described mathematically by multiplying the continuous
driving function with a series of Dirac functions

DS(x, ω) = D(x, ω) · 1
∆x

∞∑
µ=−∞

δ(x − ∆xµ) , (3)

where DS(x, ω) denotes the sampled driving function and
∆x the distance (sampling period) between the sampling
positions. These positions are indicated in Fig. 1 by the dots
•. The result of sampling is a series of weighted Dirac pulses
at the sampling positions. The spatio-temporal spectrum of
the sampled driving function can be calculated by applying
a spatial Fourier transformation to Eq. (3) with respect to the
x-coordinate

D̃S(kx, ω) = 2π
∞∑

η=−∞
D̃C(kx − 2π

∆x
η, ω) . (4)

As for time domain sampling, spatial sampling results in a
repetition of the spectrum of the continuous driving func-
tion D̃(kx, ω) on the spatial frequency kx-axis. Introducing
D̃S(kx, ω) into Eq. (2) yields the spectrum of the wave
field P̃S(k, ω) produced by a sampled secondary source
distribution

P̃S(k, ω) = 2π
∞∑

η=−∞
D̃(kx − 2π

∆x
η, ω) G̃(k, ω) . (5)

The reproduced wave field for a spatially sampled secondary
source distribution is given by the sampled driving function
D̃S(kx, ω) weighted by the spectrum G̃(k, ω) of the sec-
ondary sources. Hence, spatial sampling of the secondary
source distribution can be understood as a sampling and
interpolation process. The interpolator is given by the char-
acteristics of the secondary sources.
In order to derive the effects of spatial sampling and a
sampling theorem, the spatio-temporal spectrums of the

secondary sources G̃(k, ω) and the driving function D̃(kx, ω)
have to be considered. The spatial Fourier transformation of a
secondary line source can be calculated by way of its Hankel
transformation. It is given as

G̃2D(k, ω) = − 1
4(k2
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+
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√
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√

k2
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c
) . (6)

The spectrum of the driving function D̃(kx, ω) depends from
the wave field of the virtual source S(x, ω). It is sufficient
to consider a plane wave as wave field for the virtual
source, since arbitrary wave fields can be decomposed into
plane waves [5]. The following section derives the sampling
artifacts for the reproduction of plane waves.

A. Sampling Artifacts for the Reproduction of Plane Waves

The wave field of a monochromatic plane wave with
incidence angle αpw is given as [5]

Spw(x, ω) = e−j ω
c (x cos αpw+y sin αpw) , (7)

where αpw denotes the incidence angle of the plane wave
(see Fig. 1). The driving signal for the reproduction of a
plane wave is given according to Eq. (1) as

Dpw(x, ω) = −2j
ω

c
sin(αpw) e−j ω

c x cos αpw . (8)

For the upper half plane (y > 0), the secondary source
distribution is only capable of reproducing plane waves
traveling into the positive y-direction [1], [3]. Thus, it is
reasonable to limit the incidence angle of the virtual plane
waves to 0 ≤ αpw < π in the following. Calculating the
spectrum D̃pw(kx, ω) of the driving signal and introducing it
together with the spectrum of the secondary sources (6) into
Eq. (5) derives the reproduced wave field P̃S,pw(k, ω) as

P̃S,pw(k, ω) = π
ω

c
sin αpw

∞∑
η=−∞

δ(kx− 2π

∆x
η−ω

c
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×
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)
. (9)

The reproduced spectrum consists of a real and an imaginary
part. The imaginary part can be identified as being produced
by the near-field of the secondary sources. This part is
neglected first for the derivation of the sampling artifacts. For
a fixed temporal frequency ω, the first Delta function in the
real part of Eq. (9) can be interpreted as a series of Dirac lines
perpendicular to the ky-axis at the positions kx = 2π

∆xη +
ω
c cos αpw. The second Delta function can be interpreted as
a circular Dirac pulse with the radius ω

c . Figure 2 illustrates
the real part of P̃S,pw in the spatial kx-ky-frequency plane.
Due to the sifting property of Dirac functions, the result of
the multiplication of the two Dirac functions is given by
their intersections in the spatial frequency plane. The result
for η = 0 comprises the desired plane wave. The other terms
in the sum for η �= 0 are potential aliasing contributions.
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Fig. 2. Illustration of the real part of the spectrum P̃S reproduced by a discrete secondary monopole source distribution for the reproduction of a plane
wave with incidence angle αpw. The resulting spectrum is given by the intersection of the two Dirac functions at the positions indicated by the dots •.

For the situation shown in Fig. 2, the result are two Dirac’s
at the positions indicated by the dots •. In this particular
example, these two Dirac’s represent the desired wave field
of a plane wave traveling into the positive y-direction for the
upper half plane (y > 0) and into the negative y-direction
for the lower half plane (y < 0). This symmetry results from
the reproduction using only secondary monopole sources.
For an increasing distance ∆x between the secondary sources
there may also be additional contributions besides the desired
plane wave in the reproduced wave field. In this case, the
repetitions of the Dirac lines in the real part of Eq. (9) for
η �= 0 move towards the circular Delta function. If these
repetitions overlap with the circular Delta function additional
plane wave contributions result. These contributions consti-
tute spatial aliasing due to spatial sampling of the secondary
source distribution. They are avoided if the frequency of the
reproduced plane wave is limited. An anti-aliasing condition
for the driving function can be derived from Fig. 2 and
Eq. (9) as

ω ≤ 2π c

∆x (1 + |cos αpw|) . (10)

Thus, a reduction of the temporal frequency of the repro-
duced monochromatic plane wave avoids spatial aliasing
present in the reproduced wave field. For an arbitrary wave
field condition (10) has to be fulfilled for the minimum and
maximum incidence angle and the highest frequency of its
plane wave contributions. Please note that the condition (10)
differs from the one derived in [1] since the propagation
characteristics of the secondary sources are included.
If the anti-aliasing condition (10) is not fulfilled, aliasing arti-
facts will be present in the reproduced wave field. According
to Fig. 2 and Eq. (9) these artifacts are a superposition of
plane waves (for η �= 0) with different incidence angles than
the desired plane wave. However, only those spectral repeti-
tions of the Dirac lines result in spatial aliasing contributions
where the circular Dirac pulse and the Dirac lines in Fig. 2
intersect. Hence, only a subset ηal of all possible spectral
repetitions η will be present in the reproduced wave field
for a particular incidence angle and frequency of the desired

plane wave. This subset includes all ηal ∈ Z\0 for which the
following condition holds∣∣∣∣ 2π

∆x
ηal +

ω

c
cos αpw

∣∣∣∣ ≤ ω

c
. (11)

Using this subset, the incidence angles αηal of the plane
waves representing aliasing can be derived from Eq. (9) as

cos αpw,ηal =
2π
∆xηal + ω

c cos αpw
ω
c

. (12)

Up to now, only the real part of the reproduced spectrum was
considered. The poles of the imaginary part are also located
on the circle shown in Fig. 2. Applying the sifting property
of the Delta function, the spectrum of these contributions
is given by evaluation the imaginary part at kx = 2π

∆xη +
ω
c cos αpw. The result is not bandlimited in the ky but in the
kx direction. Hence, the anti-aliasing condition (10) applies
also to the imaginary part. The aliasing contributions of the
imaginary part have the form of evanescent plane waves.

B. Truncated Loudspeaker Arrays

Up to now, the linear secondary source distribution was
assumed to be of infinite length. However, practical imple-
mentations of linear loudspeaker arrays will always be of
finite length. It is shown in the following that this truncation
has consequences on the aliasing artifacts derived in the
previous section.
The truncation of the infinite secondary source distribu-
tion can be modeled by multiplying the loudspeaker driv-
ing function D(x, ω) with a rectangular window function.
The multiplication with this window function leads to a
convolution with a sinc function in the spatial frequency
domain. The effects of truncation for linear arrays have been
discussed in detail by [1], [3]. For simplicity these effects
are approximated only in the following.
For the reproduction of plane waves, the effect of truncation
can be approximated quite well by simple geometric means,
as illustrated by the gray area in Fig. 1. This approximation
states that a plane wave will be reproduced only in a



tilted rectangular area in front of the array, whose width is
equivalent to the aperture of the array and length is infinite.
The area is tilted by the incidence angle αpw of the plane
wave to be reproduced. Outside of this area the energy of
the reproduced wave field will be quite low. Inside of this
area the reproduced wave field will approximately match the
virtual source wave field when neglecting sampling. Some
aperture artifacts will be present [1], [3].
As a consequence to this limited reproduction area, the alias-
ing effects discussed above depend on the listener position.
This is due to the fact, that not all plane waves can be
reproduced at all listener positions. Those plane waves who
are relevant at a given listener position can be found easily
by the geometric approximation discussed above (see also
Fig. 1).
A special case is represented by a plane wave with an
incidence angle of αpw = 90o and listener positions far away
from the array: no aliasing artifacts are present here. The
aliasing frequency is infinite for this case.

C. Secondary Point Sources

Typical implementations of two-dimensional WFS systems
use point sources (loudspeakers) instead of line sources as
secondary sources. The wave field produced by a point
source is given by the 3D free-field Green’s function G3D(x−
x0, ω) [5]. The spatial Fourier transformation of G3D is given
as

G̃3D(k, ω) =
1
4π

1√
k2

x + k2
y − (ω

c )2
. (13)

The poles of the spatial Fourier transformation G̃3D(k, ω)
are again located on a circle with radius ω

c in the kx-ky-
domain. Due to the same reasons as for the imaginary part
of secondary line sources, the sampling theory presented so
far can also be applied to secondary point sources.

D. Application Example

In the following example the reproduction of a monochro-
matic plane wave with an incidence angle of αpw = 90o

and a frequency of f0 = 10 kHz using a linear discrete
distribution of secondary line sources is considered. The
sampling distance between the secondary sources is chosen
to ∆x = 0.15m. Figure 3 illustrates the incidence angles
of the reproduced plane waves in a polar diagram for an
array with infinite length. Each line represents a plane
wave traveling into the depicted direction. The dashed line
represents the desired plane wave, the solid lines the aliasing
contributions. Besides the desired plane wave, eight plane
waves constituting aliasing are reproduced in this particular
example.
The gray wedge shown in Fig. 3 illustrates the effect of
truncation for an array with a total length of l = 2 m and a
listener position in the center of the array (xl = 0 m) at a
distance of yl = 1 m. Only plane wave contributions within
the angles depicted by the gray wedge are reproduced.

Fig. 3. Incidence angle of the desired plane wave αpw (dashed line) and
its aliasing contributions αpw,ηal (solid lines). The gray wedge illustrates
the effect of truncation for one particular listener position.

IV. CONCLUSION

The presented theory of spatial sampling for linear
loudspeaker arrays revealed that for the reproduction of
monochromatic plane waves, spatial aliasing can be inter-
preted as plane waves itself. Due to the aperture effects of
finite length linear arrays these aliasing artifacts depend from
the listener position.
For reproduction purposes spatial aliasing does not play
a dominant role since the human auditory system doesn’t
seem to be too sensible for spatial aliasing [1], [3]. A
loudspeaker distance of ∆x = 10 . . . 30 cm has proven to be
suitable in practice for reproduction only purposes. However,
spatial aliasing limits the application of techniques like active
listening room compensation [6], active noise control (ANC)
and acoustic echo cancelation (AEC).
Since typical listening rooms exhibit a rectangular shape,
rectangular arrays are frequently used to build WFS systems.
Rectangular arrays can be regarded as a superposition of
truncated linear arrays. Hence, the sampling theory intro-
duced in this paper can be applied with minor changes to
rectangular geometries.
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