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Abstract

In multi-party teleconferencing, the transport of separate speech
streams to a particular user and the subsequent spatial rendering
of the different streams enables a more efficient communication.
A simple means of spatial presentation at client side is thatof
binaural rendering and headphone presentation. For downward-
compatibility, e.g. when the transport mechanism does not sup-
port multiple parallel downlink streams, a system is proposed
that combines an automatic speaker classification mechanism
with a spatial rendering of the segregated streams. The com-
bined system aims at a better separability of the speakers than
conventional systems. The paper details the two basic com-
ponents, namely automatic speaker classification, and binaural
rendering. Based on a first evaluation of the approach, a proof
of concept is provided, and directions for further improvement
are discussed.
Index Terms: speech communication, audio systems, telecon-
ferencing, clustering methods, Gaussian distributions

1. Introduction
We consider a multi-party communication scenario, where the
communication between the participants is performed via tele-
phone networks. Such a scenario is also known as teleconfer-
encing. Problems that may arise with standard telephone equip-
ment are loss of intelligibility, comfort and task efficiency com-
pared to a natural multi-party communication. The problemsof
conventional teleconferences are mainly due to the loss of the
natural spatial auditory cues and the reduced bandwidth. Spa-
tial sound reproduction can improve intelligibility due tothe
cocktail-party effect [1], can increase quality already due to a
natural wideband sound reproduction [2] and was shown to lead
to an increased speaker recognition efficiency for simultaneous
talkers [3]. Spatial reproduction of a conference call requires to
transmit all voice streams of all participants to all local termi-
nals. However, in most traditional conference call systemsthe
streams are mixed together to one stream in the telephone net-
work.
The basic idea of this paper is to apply an automatic speaker
change detection and clustering algorithm to segregate the
mixed voice signal into streams. The separated streams are then
spatially distributed in a virtual auditory environment byan au-
dio rendering system in the local terminal, recreating the audi-
tory spatial cues of a natural communication situation. Figure 1
illustrates the proposed system.
Two methods for spatial sound reproduction can principallybe
differentiated: (1) recreation of the wave field within a limited
listening area, and (2) recreation of the wave field at the listen-
ers ears. Methods of type (1) use loudspeakers for reproduction,
methods according to (2) typically headphones. In this paper,
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Figure 1: Multi-party communication scenario considered for
this paper.

we focus on the second approach which is also known asbinau-
ral reproduction. However, the binaural rendering component
can be exchanged by almost any other spatial rendering tech-
nique available.
The paper is organized as follows: Section 2 introduces the
speaker clustering algorithm used for voice stream segregation,
Sec. 3 presents the binaural sound reproduction system and
Sec. 4 gives first evaluation results for the proposed combina-
tion of the two approaches.

2. Speaker change detection and clustering

We use the algorithm proposed in [4] to detect the speaker
change points. Specifically, if we wish to find if there is
a speaker change point at timet, two neighboring windows
of relatively small size are considered (Figure 2). The con-
tents of these windows are feature vectors extracted from the
speech signal. In this work, 13 mel frequency cepstral co-
efficients (MFCC) [5] are extracted every 10 ms and used as
feature vectors. In Figure 2, these sequences are denoted as
X = {x1, x2...xNx

} andY = {y1, y2...yNy
}, whereNx and

Ny are the numbers of feature vectors in these two windows,
respectively. Z represents the combination of these two se-
quences, withNz = Nx + Ny denoting the total number of
feature vectors. With this formulation of the problem, a speaker
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Figure 2: Two neighboring windowsX andY around timet to
decide if there is a speaker change point or not.

change at timet is found if

log p(X|θx) + log p(Y |θy) > log p(Z|θz) , (1)

whereθx and θy are parameters of single Gaussian densities
estimated fromX andY , respectively.θz are parameters of a
Gaussian mixture model (GMM) with 2 Gaussian components,
estimated from the data-setZ.
This search is performed for all time instants in the window
shown in Figure 2. If more than one point satisfies the condition
given by Eq.1, the point maximizing the difference between the
terms on the right and the left hand side of Eq.1 is considered
to be the speaker change point. If a change point is found in
the window, a new window is initiated starting from the change
point. If no change point is found in the entire window, the win-
dow size is increased by appending a few more feature vectors,
and this process is repeated.
Once the speaker change points are found, the next step is to
assign speaker labels to these speaker segments. This process is
commonly referred to as speaker clustering. The algorithm used
here for speaker clustering is similar to the algorithm proposed
in [6], however, modified to run in an online fashion. IfSx and
Sy are two speaker segments detected by the speaker change de-
tection algorithm described above, they are compared to deter-
mine if they belong to the same speaker or not. To achieve this,
we consider two GMMs with parametersθx andθy , estimated
over the two segments. The number of Gaussian components
in these GMMs,Mx andMy are proportional to the length of
these segments. In addition, another GMM with parameter set
θ is used to model the union of two segmentsS. The parameter
setθ is trained using data from both the segments and number
of Gaussian components in this GMM.M is kept equal to the
sum of the numbers of Gaussian components in two individual
GMMs mentioned above, i.e.M = Mx + My . With these
notations, two segments are considered to belong to different
speakers if

log p(Sx|θx) + log p(Sy|θy) > log p(S|θ) . (2)

Eq.2 is basically similar to Eq.1. The important differenceis
that the segments considered for clustering are generally much
larger compared to the windows (as shown in Figure 2) consid-
ered for speaker change detection. As the size (number of fea-
ture vectors) of the segments grows, more and more parameters
are required to model the speaker characteristics. Therefore,
Eq.2 is based on GMMs (with the number of components pro-
portional to the size of the segments) instead of single Gaussian
densities. Each new segment resulting from the speaker change
detection process is compared with all previous segments byus-
ing Eq. 2. If no match for this segment is found, a new speaker
is hypothesized and a new speaker label is provided. The data
for this new speaker is saved in a buffer. If a match from a pre-
vious speaker is found, then the union of the two data-setsS is

saved in a buffer for this particular matching speaker.
The computational complexity of the proposed algorithm allows
it to run in real-time.

3. Binaural sound reproduction

Binaural sound reproduction techniques aim at recreating the
wave field of a virtual acoustic scene at the entrances of the
listeners ears. If optimally performed, the listener will have the
impression of residing in the desired acoustic scene. The human
auditory system is essentially based on analyzing the acoustic
cues created by the scattering performed by the upper body and
the head, and the acoustic properties of the pinna [7]. These
cues depend mainly on the position of the listener in the virtual
scene and the orientation of the listeners head with respectto
his shoulders. However, due to inter-individual anatomical dif-
ferences there is also a considerable inter-individual variation
of these cues.
A straightforward realization of binaural sound reproduction is
to place small probe microphones in the listeners ear canalsor
in an artificial (dummy) head, record the sound and reproduce
it via headphones. This approach is also known asdummy-head
stereophony. However, this simple approach is not very flexible
since almost all degrees of freedom are fixed by the recording
setup.
More flexibility can be reached by using sets of impulse re-
sponses. For the following discussion, the reproduction ofone
virtual point source for a listener residing at one fixed position
is considered (Figure 3). The desired auditory cues are cap-
tured by the impulse responses corresponding to the acoustic
transmission path from the virtual source position to the listen-
ers ears. If captured in a reverberant environment, these im-
pulse responses are often referred to asbinaural room impulse
responses (BRIR), if captured under free-field acoustic condi-
tions, ashead-related impulses responses (HRIR). Now, a flex-
ible reproduction of (synthetic) virtual scenes can be achieved
with a database of BRIRs captured for all desired listener posi-
tions and head orientations.
The binaural reproduction of a virtual source with headphones
is performed by convolving the source signals(t) with the ap-
propriate BRIRs as follows

qL,R(t) = hL,R(xL, ϕ, δ, α, β, r, t) ∗ s(t) , (3)

wherexL denotes the position of the listener,ϕ andδ the az-
imuth and elevation of the listeners head,α, β and r the az-
imuth, elevation and distance of the virtual source relative to
the listener’s head, andhL,R(·) the impulse responses from the
virtual source position to the left/right ear of the listener, re-
spectively. The geometric parameters are illustrated in Fig. 3.
To select the appropriate BRIRs from the database requires in-
formation about the head orientation of the listener. When the
orientation of the head or the virtual source position is changed,
the current BRIRs need to be replaced.
We implemented a real-time PC-based binaural sound repro-
duction system using the principles outlined above. The system
is based on a real-time convolution engine that is fed with the
appropriate BRIRs derived from a user-defined database. The
head-orientation is tracked by a commercially available orienta-
tion tracking system. The virtual scene is controlled by a graph-
ical user interface that is operated via a touch screen. Sound
reproduction is done via high quality headphones.
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Figure 3: Illustration of the coordinate system used for binau-
ral sound reproduction. Only the horizontal plane (z = 0) is
shown.

4. Evaluation
In order to provide a proof of concept and to evaluate the sys-
tem implementation we carried out an instrumental verification
of the speaker segmentation algorithm as well as a first evalua-
tion with human test subjects.
We utilized the VeriDat database [8] to compile the test items.
The database is primarily intended to serve for speaker identi-
fication research in mobile networks. It contains speech from a
large variety of female and male speakers. We used uttered Ger-
man digits from this database to suppress contextual semantic
cues in the speaker identification test. The Digit strings from
various speakers were concatenated and long segments of si-
lences were removed. We compiled five test-sequences: One
test sequence with two speakers and two sequences for three
and four speakers (40 s – 1 min duration). To emphasize the
downward-compatibility to traditional telephony, the test se-
quences are sampled at 8 kHz.

4.1. Instrumental evaluation of speaker detection and clus-
tering

There are, in total, 48 speaker changes in the five test samples.
Many of these changes occur within 2 seconds. The speaker
change point detection algorithm found all 48 of them correctly,
while finding 12 false change points. The subsequent clustering
algorithm discarded most of the false alarms. After clustering,
there are 46 change points found with 2 false change points. The
efficiency of the clustering algorithm is 88.20%, i.e. 88.20%
of the speech frames were correctly associated to the speakers.
The majority of the clustering error comes from errors when the
found number of speakers is higher than the actual number of
speakers. The number of speakers found for the speech files
with 2, 3, 3, 4 and 4 speakers were 2, 3, 4, 5 and 5 respectively.

4.2. Auditory evaluation of proposed system

4.2.1. Test setup and procedure

The number of speakers as well as the representation method
were varied between the test items. The spatial presentation
methods were (1) diotic (“mono”), and one binaural presenta-
tion each with (2) automatically segmented (“auto”) and (3)ide-

ally segmented (“ideal”) voice streams. The latter one serves
as a reference. The speakers were arranged symmetrically
based on the order of their first occurrence, using the angles
α = {60o,−60o, 0o, 30o,−30o}, β = 0o relative to the lis-
tener (at a distance ofr = 2 m). With the three presentations
methods this results in 15 test sequences (1·3+2·3+2·3). In or-
der to avoid effects due to inaccurate head-tracking, we chose a
static presentation for the experiments, and the subjects were in-
structed not to turn their head. In order to process the test items
for the spatial representation, the segmented voice streams were
convolved by BRIRs measured in a low-reverberant studio. Its
early reflections support the localization [7] and lead to a more
natural presentation than anechoic HRTFs. We used a AKG
K240 DF headphone for the experiments. 16 native German
subjects (7 female, 9 male) participated in the test. The test
items were presented according to a15 × 12 diagram-balanced
square design [9]. The three 2-speaker items were presentedas
training material in a randomized fashion at the beginning of
each listening session, yielding the targeted 15 presentations.
The test subjects had to report the speakers and the speaker
change points via a graphical user interface operated on a touch
screen. After each test item the subjects had to give two judge-
ments using a slider: (1) “How did you perceive the audio repro-
duction?” and (2) “How complicated was the speaker assign-
ment task?”. The extreme points of the sliders where labeledas
“pleasant”, “unpleasant” (1) and “difficult”, “easy” (2). The po-
sition of the slider was internally mapped to a variable ranging
from 0 to 100.

4.2.2. Results

The results of the subjective evaluation of the proposed sys-
tem have been verified by an analysis of variance (ANOVA)
to prove the statistical significance of the (here used as fixed)
factors “presentation mode” and ”number of speakers”. Fig-
ure 4 shows the performance of the test subjects to detect the
speaker changes in terms of correctly detected, substituted (de-
tected speaker change but identified wrong speaker) and deleted
(missed) speaker changes for the different representationmeth-
ods and number of speakers. Figure 4(a) shows that for the
three and four speaker case the spatial representation consider-
ably increases the ability of the subjects to correctly detect the
speaker changes. In both cases their performance is best forthe
ideal segmented spatial representation and worst for the “mono”
representation. The performance of the subjects for the auto-
matically segmented spatial representation is in between these.
Figure 4(b) and 4(c) show similar tendencies for the insertion
and deletion of speaker changes by the subjects. Figure 5 il-
lustrates the results of the task difficulty ratings given bythe
subjects. As in the case of the speaker change detection, the
ratings for the ideal segmented spatial representation arebest,
and worst for the mono representation. The ratings for the au-
tomatic segmented spatial representation are somewhat in be-
tween these two representation methods. Figure 6 gives the re-
sults of the pleasantness ratings given by the subjects. Here, the
performance of the automatic segmented spatial representation
for the three and four speaker case performs worst, followedby
the mono representation and the ideal segmented spatial repre-
sentation. According to the comments given by the test subjects,
the misclassifications of the automatic speaker clusteringhave
been perceived as very annoying, since they lead to changes in
perceived location during ongoing utterances. These errors are
thought to be the cause for reduced speaker identification per-
formance in this case (“auto”).
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(a) Correctly detected speaker changes
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(b) Substituted speaker changes
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(c) Deleted speaker changes

Figure 4: Performance of the test subjects to detect the speaker changes. The bars denote the 95% confidence intervals.
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Figure 5: Task difficulty (bars: 95% confidence intervals).
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Figure 6: Pleasantness of the representation as perceived by the
subjects (bars: 95% confidence intervals).

5. Conclusions
The proposed system for the spatial representation of multi-
party teleconferences provides downward compatibility totra-
ditional teleconference systems, where the voice streams of the
different participants are mixed in the telephone network.The
results of the first instrumental and auditory evaluation prove
that spatial reproduction of multi-party communications highly
alleviates teleconferencing applications. However, the results
also show that the automatic speaker clustering in the localter-
minal has to be improved in order to reduce the impact of lo-
cation changes of the spatially rendered speech signals. Fu-
ture work will focus on improvements of the two components,
and on other evaluation paradigms more realistically addressing
conversations as in practical conferencing applications.

6. References
[1] A. Bronkhorst, “The Cocktail Party phenomenon: A review

of research on speech intelligibility in multi-talker condi-
tions,” Acta Acustica utd w. Acustica, vol. 86, pp. 117–128,
2000.

[2] A. Raake,Speech Quality of VoIP: Assessment and Predic-
tion. Wiley, 2006.

[3] B. Drullman and A. Bronkhorst, “Multichannel speech in-
telligibility and talker recognition using monaural, bin-
aural, and three-dimensional auditory presentation,”J.
Acoust. Soc. Am., vol. 107, no. 4, pp. 2224–2235, 2000.

[4] J. Ajmera, I. McCowan, and H. Bourlard, “Robust speaker
change detection,”IEEE Signal Processing Letters, vol. 11,
no. 8, pp. 649–652, 2004.

[5] S. B. Davis and P. Mermelstein, “Comparison of parametric
representations for monosyl- labic word recognition in con-
tinuously spoken sentences,”IEEE Transactions on Acous-
tics, Speech, Signal Processing, pp. 357–366, 1980.

[6] J. Ajmera and C. Wooters, “A robust speaker clustering al-
gorithm,” IEEE Automatic Speech Recognition and Under-
standing workshop (ASRU), pp. 357–366, 2004.

[7] J. Blauert,Spatial Hearing: The Psychophysics of Human
Sound Localization. The MIT Press, 1997.

[8] U. Turk and F. Schiel, “Speaker verification based on the
German VeriDat database,” inEurospeech, 2003, pp. 3025–
3028.

[9] W. A. Wagenaar, “Note on the construction of digram-
balanced Latin Squares,”Psychological Bulletin, vol. 72,
pp. 384–386, 1969.


