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ABSTRACT

Spatial sound reproduction systems with a large number of loudspeakers are increasingly being used. Wave
field synthesis is a reproduction technique using a large number of densely placed loudspeakers (loudspeaker
array). The underlying theory, however, assumes a continuous distribution of loudspeakers. Individual
loudspeakers placed at discrete positions constitute a spatial sampling process that may lead to sampling
artifacts. These may degrade the perceived reproduction quality and will limit the application of active
control techniques like active room compensation. The sampling artifacts for the reproduction of plane
waves have already been discussed in previous papers. This paper derives the spatial sampling artifacts and
anti-aliasing conditions for the reproduction of virtual point sources on linear loudspeaker arrays using wave
field synthesis techniques.

1. INTRODUCTION

High-resolution sound reproduction aims at creating
the perfect acoustic illusion of an existing or virtual
acoustic space. Various reproduction systems with
a varying number of loudspeaker channels emerged
over the past decades in order to achieve this goal.
An interesting class, within these approaches, are
those systems who are based on the concept of phys-
ically reproducing the sound of complex acoustic

scenes as natural as possible. One of the proposed
methods is wave field synthesis (WFS). In theory,
WFS creates an almost physically correct reproduc-
tion of almost any virtual wave field by a continuous
distribution of acoustic sources (secondary sources)
placed around the listening area. In practical im-
plementations this distribution will be realized by
a limited number of loudspeakers placed at discrete
positions. This spatial sampling of the continuous
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secondary source distribution may lead to spatial
sampling artifacts that corrupt the physical correct
reproduction of the desired virtual source.
Typical implementations of WFS systems are based
on (piecewise) linear loudspeaker arrays. A de-
tailed analysis of spatial aliasing artifacts for the
reproduction of plane waves has already been pub-
lished [1, 2, 3]. The frequency domain description of
time domain sampled signals, by way of their Fourier
transformation, has proven to be a powerful tool for
the description of time-domain aliasing artifacts. A
similar route has been chosen to analyze the effects
of spatial sampling in sound reproduction. By in-
terpreting acoustic wave fields as multidimensional
signals and modeling the spatial sampling similar
to time-domain sampling a rigid formulation of the
spatial sampling effects has been derived. Such a rig-
orous analysis for the reproduction of virtual point
sources is currently missing to the knowledge of the
authors.
This paper analyzes the spatial sampling artifacts
for the reproduction of virtual point sources using
linear loudspeaker arrays. The underlying frequency
domain description allows to conveniently identify
the aliasing contributions in the reproduced wave
field. It is further shown, that the truncation of the
secondary source distribution as occurring in practi-
cal implementations plays an important role in the
analysis of spatial sampling artifacts. The appear-
ance of spatial aliasing depends on the position of
the virtual source and the listener with respect to
the truncated loudspeaker array. Based on the de-
rived results anti-aliasing conditions are formulated.
The spatial sampling artifacts have implications on
(1) the objective and subjective reproduction qual-
ity, and (2) the application of active control tech-
niques. Recent results from subjective experiments
carried out with typical WFS systems revealed that
spatial aliasing artifacts can be perceived as col-
oration of the virtual source [4]. However, the under-
lying psychoacoustic mechanisms are not clear at the
current stage. A detailed analysis of spatial aliasing
artifacts may help to design appropriate subjective
experiments and to understand the psychoacoustic
mechanisms. The performance of active control ap-
plications like active listening room compensation
(ARC), active noise control (ANC) and acoustic echo
cancelation (AEC) will be limited by spatial alias-
ing. A detailed analysis of spatial aliasing artifacts
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Fig. 1: Geometry used to derive the sampling arti-
facts for linear loudspeaker arrays. The • denote the
sampling positions of the driving function DS(x, ω)
and the colored plane the reproduction area (y > 0).

helps to predict the performance of such techniques.

2. WAVE FIELD SYNTHESIS

The theory of WFS has been initially developed at
the Technical University of Delft [5]. A vivid re-
search community and a number of practical im-
plementations has evolved since then. The authors
have recently published an overview of the theory [6]
that serves as basis for the theoretical background
of WFS as presented here.

2.1. Basic Theory

Its mathematical foundation for three-dimensional
arbitrary shaped volumes is given by the Kirchhoff-
Helmholtz integral [7, 5]. Typical implementations
of WFS systems are restricted to the reproduction in
a plane only using (piecewise) linear loudspeaker ar-
rays. The theoretical basis for this situation is given
by the two-dimensional Rayleigh I integral [7, 5].
The Rayleigh I integral states that a linear distri-
bution of monopole line sources (secondary sources)
is capable of reproducing a desired wave field (vir-
tual source) in one of the half planes defined by the
linear distribution. The wave field in the other half
plane is a mirrored version of the desired wave field.
Without loss of generality the geometry depicted in
Fig. 1 is assumed: A linear secondary source distri-
bution which is located on the x-axis (y = 0) of a
Cartesian coordinate system. The reproduced wave
field is given by specializing the two-dimensional
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Rayleigh I integral [8]

P (x, ω) = −
∫

∞

−∞

D(x0, ω)G(x − x0, ω)dx0 , (1)

where x = [x y]T with y > 0 and x0 = [x0 0]T .
The functions D(x0, ω) and G(x−x0, ω) denote the
(secondary source) driving function and the wave
field of the secondary sources, respectively. For two-
dimensional reproduction the wave field of the sec-
ondary sources is given by the two-dimensional free-
field Green’s function

G(x − x0, ω) =
j

4
H

(2)
0 (

ω

c
|x − x0|) , (2)

where H
(2)
0 (·) denotes the Hankel function of second

kind and zeroth-order [9]. Equation (2) can be in-
terpreted as the field of a line source intersecting the
listening area at the position x0.
The secondary source driving function is given as

D(x0, ω) = 2
∂

∂n
S(x, ω)

∣
∣
∣
x=x0

, (3)

where ∂
∂n

denotes the directional gradient with n =
[0 1]T . We aim at investigating the spatial sam-
pling artifacts for virtual point sources in this pa-
per. The analogon to monopole point sources in
three-dimensional wave propagation are in two di-
mensions monopole line sources. Hence, the wave
field of the virtual source is given by the wave field
of a line source

S(x, ω) =
j

4
H

(2)
0 (

ω

c
|x − xs|) , (4)

where xs = [xs ys]
T denotes the position of the line

source with ys < 0.
We will rely on the theory of two-dimensional WFS,
as introduced above, for the derivation of the sam-
pling artifacts . We will assume that the secondary
sources have the characteristics of line sources. Prac-
tical implementations of WFS systems use closed
loudspeakers as secondary sources. These approx-
imately have the characteristics of acoustic point
sources. This mismatch in source types may pro-
duce various artifacts in the reproduced wave field
that can only be corrected to some extend [7, 10].
This technique is known as 2.5D WFS.
Within this paper, the effects of sampling are de-
rived for two-dimensional WFS with line sources as

secondary sources. It was shown in [2, 11] that the
anti-aliasing conditions derived for plane waves and
two-dimensional WFS hold also for 2.5D reproduc-
tion.

2.2. Spatio-temporal Frequency Domain Repre-

sentation

The reproduced wave field is given, accordingly to
Eq. (1) and (2), as a convolution along the x-axis.
The driving function D(x, ω) is convolved with the
secondary source wave field G(x − x0, ω). Apply-
ing a spatial Fourier transformation to Eq. (1) with
respect to the x-coordinate results in

P̃ (kx, y, ω) = −D̃(kx, ω)G̃(kx, y, ω) , (5)

where kx denotes the spatial frequency (wave num-
ber), spatial frequency domain quantities are de-
noted by a tilde over the respective variable. The
spatial Fourier transformation of P (x, ω) is defined
as

P̃ (kx, y, ω) =

∫
∞

−∞

P (x, ω) ejkxxdx . (6)

The Fourier transformation of D(x, ω) is defined ac-
cordingly, the Fourier transformation G̃(kx, y, ω) is
given by transforming G(x − x0, ω) for x0 = 0.
Equation (5) reveals that the spatial convolution is
represented by a scalar multiplication in the spa-
tial frequency domain. This representation has been
proven to be very efficient in the calculation of the
reproduced wave field and the description of sec-
ondary source sampling [2, 3, 1, 12, 7]. However,
the spatial Fourier transform of the driving function
and the secondary source are required for specific re-
sults. These will be derived in the following.
Both, the description of the secondary sources given
by (2) and the desired virtual line source (4) con-

tain the Hankel function H
(2)
0 (·). The spatial Fourier

transform, with respect to the x-coordinate, of the

Hankel function H
(2)
0 (ω

c
|x − x0|) can be computed

by exploiting the symmetry of the involved func-
tions, applying suitable substitutions and using the
integrals [13, 6.677-3/4]. It is given as

Fx{H(2)
0 (

ω

c
|x− x0|)} = ejkxx0×

×







2√
( ω

c
)2−k2

x

e−j
√

( ω
c
)2−k2

x (y−y0) for |kx| <
∣
∣ω

c

∣
∣ ,

2j√
k2

x−( ω
c
)2

e−
√

k2
x−( ω

c
)2 (y−y0) for

∣
∣ω

c

∣
∣ < |kx| ,

(7)
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which is valid for y > y0.
The spatial Fourier transformation of the secondary
sources G̃(kx, y, ω) is given by multiplying Eq. (7)
with j/4 and introducing x0 = 0

G̃(kx, y, ω) =







j
2

e
−j

√
( ω

c
)2−k2

x y√
( ω

c
)2−k2

x

for |kx| <
∣
∣ω

c

∣
∣ ,

− 1
2

e
−

√
k2

x−( ω
c

)2 y√
k2

x−( ω
c
)2

for
∣
∣ω

c

∣
∣ < |kx| ,

(8)
which is valid for y > 0. The spectrum G̃(kx, y, ω)
consists of two contributions: a traveling wave con-
tribution for |kx| <

∣
∣ω

c

∣
∣ and an evanescent contri-

bution for
∣
∣ω

c

∣
∣ < |kx|. Figure 2(a) shows the abso-

lute value of G̃(kx, y, ω) for y = 1 m. The wedge
∣
∣ω

c

∣
∣ < |kx| containing the traveling wave contribu-

tions can be seen clearly. The evanescent contribu-
tions are only well visible for the low frequencies due
to their rapid decay. Although these contributions
decay rapidly, G̃(kx, y, ω) is not strictly bandlimited
with respect to the spatial frequency kx. This holds
especially for low frequencies and/or short distances
y to the secondary source distribution.
The driving function for the reproduction of a vir-
tual line source is given by (3). For the considered
geometry, the driving function is given by two times
the partial derivative of (4) with respect to the y-
coordinate. Accordingly, its spatial Fourier trans-
form is given by the partial derivative of (7) with
respect to y multiplied with j/2. This results in

D̃(kx, ω) = ejkxxs

{

ej
√

( ω
c
)2−k2

x ys for |kx| <
∣
∣ω

c

∣
∣ ,

e
√

k2
x−( ω

c
)2 ys for

∣
∣ω

c

∣
∣ < |kx| ,

(9)
which is valid for ys < 0. As for the spectrum
of the secondary sources (8), the spectrum of the
driving function (9) consists of a propagating and
an evanescent part. Figure 2(b) shows the abso-
lute value of D̃(kx, ω) for xs = [0 − 1]. Note, that
the absolute value of D̃(kx, ω) is constant within
|kx| <

∣
∣ω

c

∣
∣. As for the spectrum of the secondary

sources, the evanescent contributions for
∣
∣ω

c

∣
∣ < |kx|

decay rapidly. Although these contributions decay
rapidly, D̃(kx, ω) is as G̃(kx, y, ω) not bandlimited
in the strict sense. This holds especially for low
frequencies and/or small distances ys of the virtual
source.
The reproduced wave field for a virtual line source

is given by introducing (8) and (9) into (5)

P̃ (kx, y, ω) = ejkxxs×

×







− j
2

e
−j

√
( ω

c
)2−k2

x (y−ys)√
( ω

c
)2−k2

x

for |kx| <
∣
∣ω

c

∣
∣ ,

1
2

e
−

√
k2

x−( ω
c

)2 (y−ys)√
k2

x−( ω
c
)2

for
∣
∣ω

c

∣
∣ < |kx| ,

(10)

where the restrictions y > 0 and ys < 0 apply. Com-
parison of (10) with (7) reveals that the field of the
desired virtual line source is reproduced perfectly in
the listening area (y > 0).
Practical implementations of WFS will always be
based on spatially discrete secondary sources. Typ-
ically, equidistantly spaced loudspeaker arrays are
used in WFS. This constitutes a spatial sampling
of the continuous secondary source distribution.
The consequences of this sampling will be discussed
in the remainder of this paper. Here, the intro-
duced spatio-temporal frequency domain represen-
tation will play a prominent role.

2.3. Spatial Sampling of Secondary Source Dis-

tribution

Time-domain sampling is commonly modeled by
multiplying a continuous function with a series of
Dirac functions [14]. This principle can be applied
straightforwardly to sound reproduction. The dis-
cretization of the secondary source distribution is
modeled by spatial sampling of the driving function.
The sampling of the driving function D(x, ω) is mod-
eled by multiplication with a series of spatial Dirac
functions at the positions of the loudspeakers. For
an equidistant spacing this reads

DS(x, ω) = D(x, ω) · 1

∆x

∞∑

µ=−∞

δ(x − ∆xµ) , (11)

where DS(x, ω) denotes the sampled driving func-
tion and ∆x the distance (sampling period) between
the sampling positions. These positions are indi-
cated in Fig. 1 by the dots •. Applying a spatial
Fourier transformation to (11) results in

D̃S(kx, ω) = 2π

∞∑

η=−∞

D̃(kx − 2π

∆x
η, ω) . (12)

Equation (12) states that the spectrum D̃S(kx, ω) of
the sampled driving function is given as a superpo-
sition of the shifted continuous spectrums D̃(kx −
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(b) driving function spectrum

Fig. 2: Spectrum (absolute value) of the secondary sources G̃(kx, y, ω) for y = 1 m and driving function
D̃(kx, ω) for a virtual source at position xs = [0 − 1] m.

2π
∆x

η, ω) of the driving function. Introducing the
spectrum of the sampled driving function into (5)
results in the spectrum P̃S(kx, y, ω) of the wave field
reproduced by a spatially discrete secondary source
distribution.
In the context of sampling theory, the secondary
sources G(x− x0, ω) can be regarded as an interpo-
lation filter. For time-domain sampling such a filter
is typically chosen to provide perfect reconstruction.
However for sound reproduction, G(x − x0, ω) re-
flects the radiation characteristics and there is only
limited freedom for optimization with respect to spa-
tial sampling artifacts.
The theory presented so far assumed a linear sec-
ondary source distribution of infinite length along
the x-axis. In practice, this distribution will always
be of finite length. This truncation has impact on
the spatial sampling artifacts of WFS.

3. INFINITE SECONDARY SOURCE DISTRI-

BUTION

The sampling of a secondary source distribution
with infinite length will be discussed first, fol-
lowed by the specialization to finite length secondary
source distributions in the next section.

3.1. General Considerations

The reproduced wave field P̃S(kx, y, ω) for an in-
finitely long secondary source distribution is given
by weighting the spectrum of the sampled driving
function D̃S(kx, ω) with the spectrum of the sec-
ondary sources G̃(kx, y, ω). The spectrum of the
sampled driving function is given by a superposition
of the shifted spectra of the continuous driving func-
tion. Qualitatively, artifacts due to the secondary
source sampling can only be avoided when

1. the spectrum of the driving function is band-
limited, and

2. the spectrum of the secondary sources is band-
limited.

Due to sampling, the spectrum of the continu-
ous driving function is repeated with an interval
of 2π/∆x on the kx-axis. The first condition en-
sures that there exists a sampling interval ∆x (loud-
speaker distance) where no spectral overlaps occur in
the sampled driving function, the second condition
ensures that the spectral repetitions in the sampled
driving function will be filtered out by the charac-
teristics of the secondary sources.
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The first type of artifacts is known as spatial alias-
ing, while the second type of artifacts can be inter-
preted as reconstruction errors. We will threat both
as spatial sampling artifacts in the remainder.

3.2. Qualitative Analysis

The driving function for the reproduction of a vir-
tual line source is given by (9) and illustrated in
Fig. 2(b). It was already concluded in Section 2.2
that D̃(kx, ω) is not bandlimited in the strict sense.
However, for a fixed frequency ω, the propagating
part is bandlimited with respect to kx. The evanes-
cent part is not bandlimited but rapidly decaying
with increasing distance ys of the virtual source to
the secondary source contour. Hence, the first con-
dition given above is not strictly fulfilled for the
evanescent contributions in D̃(kx, ω).
The spectrum of the secondary line sources is given
by (8) and illustrated in Fig. 2(a). As for the driv-
ing function, G̃(kx, y, ω) is also not strictly bandlim-
ited. However, the propagating part is bandlimited
and the evanescent part is rapidly decaying over dis-
tance y to the secondary sources. Hence, the second
condition given above is not strictly fulfilled for the
evanescent contributions.
Summarizing, neither the spectrum of the driving
function for a virtual line source nor the spectrum
of the secondary source are strictly bandlimited.
In order to understand the influence of the non-
bandlimited contributions a detailed analysis will be
performed in the following.
Figure 3 illustrates, on a qualitative level, the com-
putation of the spectrum of the reproduced wave
field P̃S(kx, y, ω) for a sampled secondary source dis-
tribution. The dark gray areas denote the propagat-
ing parts of the driving function D̃S(kx, ω) and the
secondary sources G̃(kx, y, ω), respectively, the light
gray areas the evanescent contributions. Four differ-
ent types of overlaps between the spectrum of the
sampled driving function and the secondary source
can be identified. These are discussed in the follow-
ing.

3.3. Propagating Contributions

The propagating contributions of the reproduced
wave field are given by the propagating contribution
of the secondary sources G̃(kx, y, ω) in conjunction
with the propagating and evanescent contributions
of the driving function D̃S(kx, ω). Hence, two prop-
agating contributions are present.

The first propagating contribution is given by the
overlaps between the propagating contributions of
both D̃S(kx, ω) and G̃(kx, y, ω). Both are bandlim-
ited for a given frequency ω of the virtual line source.
However, if the sampling interval ∆x of the sec-
ondary sources gets too small the propagating parts
will overlap in the sampled driving function. For
this situation an anti-aliasing condition can be de-
rived easily from Fig. 3. It is given as

fal ≤
c

2∆x
, (13)

where fal denotes the (maximum) frequency of the
virtual source where no spatial aliasing is present.
Hence, for this propagating contribution aliasing can
be avoided by limiting either the temporal band-
width of the virtual source or decreasing the sam-
pling interval between the secondary sources (loud-
speakers). The reproduced wave field for the first
propagating part is given as

P̃S,pr1(kx, y, ω) = jπ
e−j

√
( ω

c
)2−k2

x y

√
(ω

c
)2 − k2

x

×

×
∑

η′

ej(kx−η 2π
∆x

)xsej
√

( ω
c
)2−(kx−η 2π

∆x
)2 ys , (14)

for |kx| <
∣
∣ω

c

∣
∣ and for those η′ where

∣
∣kx − η′ 2π

∆x

∣
∣ <

∣
∣ω

c

∣
∣ is fulfilled for a given frequency ω.

A second propagating contribution emerges when
the evanescent contributions of the driving function
D̃S(kx, ω) overlap with the propagating contribu-
tions of the secondary sources. It is given as

P̃S,pr2(kx, y, ω) = jπ
e−j

√
( ω

c
)2−k2

x y

√
(ω

c
)2 − k2

x

×

×
∑

η′

ej(kx−η 2π
∆x

)xse
√

(kx−η 2π
∆x

)2−( ω
c
)2 ys , (15)

for |kx| <
∣
∣ω

c

∣
∣ and for those η′ where

∣
∣kx − η 2π

∆x

∣
∣ >

∣
∣ω

c

∣
∣ is fulfilled for a given frequency ω. No

strict anti-aliasing contribution can be given for
P̃S,pr2(kx, y, ω), since the evanescent part of the driv-

ing function D̃S(kx, ω) is not bandlimited. This con-
tribution can be interpreted as side effect of spa-
tial sampling. However, its energy will be quite low
in typical situations due to the rapid decay of the
evanescent contributions.
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Fig. 3: Qualitative illustration of the computation of the spectrum of the reproduced wave field P̃S(kx, y, ω)
for a sampled secondary source distribution. The dark gray areas denote the propagating parts, the light
gray areas the evanescent.

3.4. Evanescent Contributions

As for the propagating parts, two evanescent con-
tributions can be identified in the reproduced wave
field. The first one is given by the overlaps of the
propagating parts of the driving function with the
evanescent parts of the secondary sources. It is given
as

P̃S,ev1(kx, y, ω) = −π
e−

√
k2

x−( ω
c
)2 y

√
k2

x − (ω
c
)2

×

×
∑

η′

ej(kx−η 2π
∆x

)xsej
√

( ω
c
)2−(kx−η 2π

∆x
)2 ys , (16)

for |kx| <
∣
∣ω

c

∣
∣ and for those η′ where

∣
∣kx − η′ 2π

∆x

∣
∣ <

∣
∣ω

c

∣
∣ is fulfilled for a given frequency ω. Equation (16)

describes a traveling wave in x-direction and an
evanescent wave in y-direction.
The second evanescent contribution is given by the
overlaps of the evanescent parts of the driving func-
tion and the secondary sources. It is given as

P̃S,ev2(kx, y, ω) = −π
e−

√
k2

x−( ω
c
)2 y

√
k2

x − (ω
c
)2

×

×
∑

η′

ej(kx−η 2π
∆x

)xse
√

(kx−η 2π
∆x

)2−( ω
c
)2 ys , (17)

for |kx| >
∣
∣ω

c

∣
∣ and for those η′ where

∣
∣kx − η 2π

∆x

∣
∣ >

∣
∣ω

c

∣
∣ is fulfilled for a given frequency ω.

No strict anti-aliasing contribution can be derived
for both evanescent contributions P̃S,ev1(kx, y, ω)

and P̃S,ev2(kx, y, ω) since the evanescent part of the

secondary sources G̃(kx, y, ω) is not strictly bandlim-
ited. As for the propagating part P̃S,pr2(kx, y, ω),
these contributions can be interpreted as a side ef-
fect of spatial sampling.
A simulated example is discussed in the next subsec-
tion in order to illustrate the different contributions
to the reproduced wave field derived in this and the
previous subsection.

3.5. Example

The reproduction of a monochromatic virtual line
source with a frequency of fs = 2000 Hz placed at
the position xs = [0 −1]T m is considered. The sam-
pling interval of the secondary sources is chosen to
∆x = 0.20 m, a value that is typical for WFS setups.
Equations (14), (15), (16) and (17) have been evalu-
ated numerically in MATLAB. The resulting spectra
have then been transformed back into the spatial do-
main by applying an inverse Fourier transform. Fig-
ure 4 shows the results (real part of the wave fields).
Note the different color scales used to highlight the
structure of the wave fields.
Figures 4(a) to 4(d) illustrate the two propagating
and the two evanescent contributions. Figure 4(a)
shows the propagating part PS,pr1(x, y, ω) as given
by Eq. (14). The aliasing artifacts, due to the over-
lap of the propagating parts in the driving func-
tion, are clearly visible. The aliasing frequency
for the simulated scenario is fal ≈ 850 Hz. Fig-
ure 4(b) illustrates the second propagating contri-
bution PS,pr2(x, y, ω), as given by Eq. (15). Note
the different color scale used. This part has a rela-
tively low level compared to PS,pr1(x, y, ω). This is
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Fig. 4: Numerical simulation of the four contributions for the reproduction of a virtual line source (xs =
[0 − 1]T m, fs = 2000 Hz, ∆x = 0.20 m) and superposition of all contributions for η = 0 and η 6= 0.
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due to the rapid decay of the evanescent contribu-
tion in Eq. (15). However, the level of PS,pr2(x, y, ω)
will increase for virtual source positions close to the
secondary source distribution.
Figures 4(c) and 4(d) show the two evanescent con-
tributions PS,ev1(x, y, ω) and PS,ev2(x, y, ω) as given
by (16) and (17). Their exponential decay with dis-
tance to the secondary source distribution can be
seen clearly. Note the different color scales used.
The reproduced wave field PS(x, y, ω) for the simu-
lated scenario is a superposition of the wave fields
shown in Fig. 4(a) to 4(d).
Alternatively to the decomposition into the four con-
tributions discussed above, it is also possible to split
the reproduced wave field into two parts. One that
considers only the terms for η = 0, and one that con-
siders only the spectral repetitions by evaluating and
summing up all terms for η 6= 0. The first part can
be interpreted as the desired wave field, while the
second one holds the spatial sampling artifacts. Fig-
ure 4(e) shows the reproduced wave field for η = 0.
The wave field matches the desired field of the vir-
tual line source at the chosen position. Figure 4(f)
shows the aliasing contributions by evaluating only
the terms for η 6= 0. Severe aliasing contributions
can be seen here. The reproduced wave field is again
given by superimposing the wave fields in Fig. 4(e)
and 4(f).

3.6. Summary

The detailed analysis of the wave field reproduced
by a sampled secondary source distribution for the
reproduction of a virtual line source revealed a num-
ber of interesting insights. The reproduced wave
field can be decomposed into four contributions,
from which two are evanescent waves. A strict anti-
aliasing condition can only be derived for the first
propagating part P̃pr1(kx, y, ω). The condition (13)
states that the temporal bandwidth of the virtual
source has to be limited accordingly to the sampling
interval of the secondary sources. No strict anti-
aliasing condition can be derived for the other three
contributions. Interestingly, these contributions are
a side effect of spatial sampling of the secondary
source distribution. They are not present for a con-
tinuous secondary source distribution.
The loudspeaker distances ∆x chosen in practical
implementations results in anti-aliasing frequencies
that are very low (some few kHz) compared to the

typical bandwidth of 20 kHz used in high-quality au-
dio reproduction. It has been shown, that the result-
ing spatial aliasing has less impact on the percep-
tual quality of WFS as one could assume when per-
forming a detailed analysis of the reproduced wave
field [4]. However, spatial aliasing may result in per-
ceivable coloration of the virtual source. The pre-
sented results could help to understand the influence
of spatial aliasing better.

4. TRUNCATED SECONDARY SOURCE DIS-

TRIBUTION

Up to now, the linear secondary source distribu-
tion was assumed to be of infinite length in the
x-direction. However, practical implementations of
linear loudspeaker arrays will always be of finite
length. The impact of this truncation on the spatial
sampling artifacts is derived in the following subsec-
tions.

4.1. Truncated Driving Function

Truncation can be modeled by multiplying the sec-
ondary source driving function D(x0, ω) with a suit-
able window function w(x0) [7]. Incorporating w(x0)
into Eq. (1) yields the wave field Ptr(x, ω) repro-
duced by a truncated linear array as

Ptr(x, ω) =

−
∫

∞

−∞

w(x0)D(x0, ω)G(x − x0, ω) dx0 . (18)

Spatial Fourier transformation of Ptr(x, ω) yields the
spectrum of the reproduced wave field as

P̃tr(kx, y, ω) =

− 1

2π

(

w̃(kx) ∗kx
D̃(kx, ω)

)

︸ ︷︷ ︸

D̃tr(kx,ω)

G̃(kx, y, ω) , (19)

where ∗kx
denotes convolution with respect to the

spatial frequency kx and w̃(kx) the spatial Fourier
transform of w(x). A secondary source distribution
with finite length L can be modeled by a rectangular
window function. In this case, the window function
w(x) is given by the rect-function [14]

w(x) = rect
( x

L

)

=

{

1 , if |x| ≤ L
2 ,

0 , otherwise ,
(20)
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for L > 0. The spatial Fourier transformation of
w(x) with respect to the x-variable is given as

w̃(kx) = L
sin(kx

2 L)
kx

2 L
= L sinc(

kx

2
L) . (21)

The driving function for a truncated secondary
source distribution is given by convolving w̃(kx) with
the driving function D̃(kx, ω). The driving function
for a virtual line source is given by (9). Although
this driving function does not involve very complex
mathematical expressions, the analytical evaluation
of the convolution integral is quite complex and will
not be performed here.
Figure 5 shows the result of numerical evaluation of
the convolution for two exemplary virtual source po-
sitions. Comparison with Fig. 2(b) reveals that the
energy of the truncated driving function D̃tr(kx, ω)
is concentrated in a smaller region than for the in-
finite length secondary source distribution. This
holds especially for the second position xs2 shown
in Fig. 5(b). Besides these differences on a more
coarse level, also differences in the fine structure can
be observed in Fig. 5 (e. g. ripples). Other window
functions can be applied to limit these effects [7].
The concentration of energy, that can be exhibited
for the truncated driving function D̃tr(kx, ω), has
influence on the occurrence of spatial sampling arti-
facts. This is evident when comparing the finite and
infinite length case as, illustrated in Fig. 5 and 3. In
order to derive the effects of spatial sampling and
approximate anti-aliasing conditions for truncated
secondary source distributions, a geometric approx-
imation will be applied in conjunction with an de-
composition of the driving function into plane waves.
It was derived in Section 3.3, that an anti-aliasing
condition can only be given for the propagating part
P̃pr1(kx, y, ω) of the reproduced wave field. Hence,
we will only consider this part for the derivation of
the anti-aliasing conditions.

4.2. Geometric Approximation

The truncation of the secondary source distribution
leads to a limited listening area [7, 5]. The result-
ing listening area, for a given position of the virtual
source, can be approximated quite well by simple
geometric means. This approximation states that
a virtual line source will be reproduced almost cor-
rectly in a wedge in front of the array. The boundary
of this wedge shaped area is given by connecting the

x

y

xs1

xs2

α1α2

L
2−L

2

Fig. 6: Approximation of listening area (shown by
yellow and gray wedge) for reproduction of a virtual
line source with a truncated linear array.

position of the virtual line source with the endings of
the truncated secondary source distribution. This is
illustrated in Fig. 6 for the same virtual source po-
sitions as used in Fig. 5. Outside of this area the
energy of the reproduced wave field will be quite
low. Inside of this area the reproduced wave field
will approximately match the virtual source wave
field when neglecting sampling. The angles α1 and
α2 of the sides of the wedge (see Fig. 6) are given as

tan α1 =
−ys

L
2 − xs

, (22a)

tan(α2 −
π

2
) =

L
2 + xs

−ys

, (22b)

where 0 ≤ α1, α2 < π and α1 ≤ α2. The geometric
approximation of the listening area is now brought
into conjunction with the effect of truncation on the
driving function.
Arbitrary acoustic wave fields can be represented as
a superposition of plane waves [8]. This technique
is also known as plane wave decomposition [15, 16].
The plane wave contributions of the driving func-
tion D̃tr(kx, ω) can be derived by substituting kx

with [17, 16]

kx =
ω

c
cosα , (23)
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Fig. 5: Spectrum (absolute value) of truncated driving function D̃tr(kx, ω) and geometric approximation of
its main contributions for a length of the secondary source distribution of L = 2 m.

where α denotes the incidence angle of the plane
wave. Hence, the spectrum of a plane wave with
given incidence angle α is given by the spectral com-
ponents collected along a tilted line in the kx-ω spec-
trum. Applying this interpretation to Fig. 2(b),
showing the driving function D̃(kx, ω) without trun-
cation, discloses that all plane wave contributions
for 0 < α < π are present with equal level.
The geometric approximation of the listening area,
for a truncated secondary source distribution, states
that the major plane wave contributions of the driv-
ing function D̃tr(kx, ω) will be limited within the an-
gles α1 and α2. These limits are shown, for the two
exemplary source positions, in Fig. 5 by the black
lines. It can be seen clearly that the main energy in
the driving function is within these angles. Hence,
the geometric approximation provides a reasonable
approximation of the effects imposed by the trunca-
tion to the driving function.

4.3. Anti-Aliasing Conditions

The truncated and sampled driving function
D̃tr,S(kx, ω) is given by introducing the truncated

driving function D̃tr(kx, ω) into (12). Hence, spec-
tral repetitions will result due to the sampling. The
reproduced wave field is given by multiplying the
truncated and sampled driving function D̃tr,S(kx, ω)

with the secondary source spectrum G̃(kx, y, ω).
Figure 7 illustrates the calculation of the reproduced
wave field for two different spatial sampling inter-
vals ∆x. The dark gray wedges illustrate the trun-
cated and sampled driving function D̃S,tr(kx, ω), the
light gray wedges the secondary source spectrum
G̃(kx, y, ω). The geometric approximation of the
propagating part of the driving function, as dis-
cussed in the previous subsection, has been applied.
It can be concluded from Fig. 7 that two different
types of overlaps between the spectra of the driving
function and the secondary sources can be identified.
These are

1. the spectral repetitions of the driving function
overlap with the secondary source spectrum,
and

2. the repetitions of the driving function overlap.

Both types of sampling artifacts will result in ad-
ditional contributions beside the desired virtual
source. The first type of artifacts will result in plane
wave contributions with different incidence angles
than the virtual source, the second type in plane
wave contributions that interfere with the plane
wave contributions of the virtual source. Hence,
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Fig. 7: Qualitative illustration of the computation of the spectrum of the reproduced wave field for a
sampled and truncated secondary source distribution. The light gray areas illustrate the secondary source
spectrum G̃(kx, y, ω), while the dark gray areas illustrate the spectrum D̃S,tr(kx, ω) of the driving function.
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when considering the limited listening area for a
truncated secondary source distribution, the first
type of sampling artifacts will not be present within
the listening area for listener positions far away from
the secondary source distribution. Consequently,
the occurrence of the first type of sampling artifacts
will depend on the listener position.
The spectral repetitions of the driving function
D̃tr,S(kx, ω) will overlap with the secondary source

spectrum G̃(kx, y, ω) when one of the following two
conditions is satisfied

f1 ≤ c

∆x(1 − cosα2)
, (24a)

f2 ≤ c

∆x(1 + cosα1)
. (24b)

The spatial aliasing frequency ftr,al1 for the repro-
duction of a virtual line source by a finite length
secondary source distribution is given by the smaller
value of f1 and f2.
A higher aliasing frequency can be derived for lis-
tener positions within the listening area of the vir-
tual source which are far away from the secondary
source positions. By analyzing the geometry in
Fig. 7(b) this frequency can be derived as

ftr,al2 ≤ c

∆x(cos α1 − cosα2)
, (25)

for α1 6= α2. The spatial aliasing frequency for ar-
bitrary listener positions within the listening area
will lie between the two limits ftr,al1 and ftr,al2 de-
pending on the actual position. It can be concluded
furthermore that fal ≤ ftr,al1 ≤ ftr,al2.
The spatial aliasing frequency will be infinite, ac-
cording to (25), for virtual source and listener posi-
tions far away from the secondary source distribu-
tion (ys → −∞, y → ∞). This is equivalent to the
reproduction of a plane wave with a truncated sec-
ondary source distribution, as discussed in [3].
For a secondary source distribution with infinite
length, both conditions (24) and (25) become equal
to (13).

4.4. Example

An example for the application of the anti-aliasing
conditions for a truncated and sampled secondary
source contour is given in the following. The repro-
duction of a monochromatic line source placed at
xs = [0 −1]T m on a loudspeaker array with a spac-
ing of ∆x = 0.20 m consisting of 16 line sources is

x −> [m]
y 

−
>

 [m
]

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

Fig. 8: Wave field reproduced for a virtual point
source (xs = [0 − 1]T m, fs = 1000 Hz by a loud-
speaker array (∆x = 0.20 m) with 16 loudspeakers.

considered. The total length is L = 3 m. The an-
gles limiting the reproduction area can be derived
from (22) as α1 ≈ 33.7o and α2 ≈ 146.3o. The
anti-aliasing limits are f1 = f2 = ftr,al1 ≈ 936.1 Hz
and ftr,al2 ≈ 1030.6 Hz. In order to show the posi-
tion dependency of the aliasing contributions a fre-
quency in between the two anti-aliasing conditions
of fs = 1000 Hz has been chosen for the virtual line
source. Figure 8 shows the reproduced wave field
for the considered scenario. It can be seen clearly,
besides the truncation artifacts [7], that the aliasing
artifacts are quite dominant for positions close to
the loudspeakers. For listener positions with some
distance to the loudspeakers these artifacts are not
present.

5. CONCLUSION

This paper presents a detailed analysis of the spatial
sampling artifacts of two-dimensional WFS for the
reproduction of virtual line sources. The rigid for-
mulation of the sampling process revealed a number
of interesting insights. One of these is, that spatial
sampling results in evanescent contributions that are
not present without spatial sampling. The authors
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are not aware of work considering the perception of
evanescent waves by humans. Hence, the perceptual
relevance of these contributions is not clear to the
authors at the current stage.
Anti-aliasing conditions have been derived for in-
finitely long and truncated secondary source distri-
butions. These state that the temporal bandwidth
of the virtual source has to be limited in order to
avoid sampling artifacts. It was further shown, that
for secondary source distributions with finite length,
the spatial sampling artifacts depend on the listener
position. Note, that the transition between no spa-
tial aliasing and spatial aliasing will not be hard with
increasing frequency of the virtual source due to the
evanescent contributions and truncation artifacts.
The derived anti-aliasing conditions will also hold for
the more practical case of 2.5D reproduction using
secondary point sources. However, the exact for-
mulation of the different contributions to the repro-
duced wave field might be different. A detailed anal-
ysis will be performed in the future.
The results derived in this paper may help to un-
derstand the perception of spatial aliasing artifacts
and near-field effects. Subjective experiments are
planned in the future. The analytic expressions de-
rived for the anti-aliasing conditions are also useful
in designing improved pre-equalization filters [7, 6]
for WFS. The energy added to the high-frequency
regions by the spatial overlaps has to be considered
in the filter design.
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