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Introduction

Sound field reproduction methods based on orthogonal
expansions like e.g. higher order Ambisonics always
introduce a limitation of the spatial bandwidth of the
loudspeaker driving signals. As a consequence, the de-
sired component of the reproduced wave field is similarly
bandlimited. This leads to a pronounced sweet spot
around the center of the loudspeaker distribution. This
area is sweet both in terms of spatial aliasing artifacts as
well as in terms of accuracy of the desired component
of the reproduced wave field. The sweet spot gets
significantly smaller with increasing temporal frequency.
This means that outside the center of the loudspeaker
distribution, the point of most accurate reproduction,
frequency dependent artifacts arise. In this paper, we
objectively investigate the resulting artifacts for circular
loudspeaker arrangements with a focus on potential
consequences on human perception.

Theory

We briefly revisit the theory of sound field reproduction
relevant to the presented investigation in this and the
following two sections. Refer to [1, 2] for an extensive
treatment.
The sample scenario under consideration in this paper is
a virtual plane wave reproduced by a circular distribution
of secondary line sources (i.e. purely 2D reproduction).
The choice of a plane wave is justified since arbitrary
propagating wave fields can be described by an appropri-
ate superposition of plane waves [3].
The secondary line sources are positioned perpendicular
to the target plane (the receiver plane). For convenience
we specialize the formulation to this particular case. Our
approach is therefore not directly implementable since
loudspeakers exhibiting the properties of line sources are
commonly not available. Real-world implementations
usually employ loudspeakers with closed cabinets as
secondary sources. The properties of these loudspeakers
are more accurately modeled by point sources.
The main motivation to focus on two dimensions is to
keep the mathematical formulation simple in order to
illustrate the fundamental properties. The extension
both to three-dimensional reproduction (i.e. spherical ar-
rays of secondary point sources) and to two-dimensional
reproduction employing circular arrangements of sec-
ondary point sources (21/2-dimensional reproduction) is
straightforward and a general treatment thereof can be
found e.g. in [2, 4].
It can be shown that either of the established sound
field reproduction methods (i.e. higher order Ambisonics

and wave field synthesis) is capable of reproducing sound
fields with limited spatial bandwidth [1]. However, wave
field synthesis is typically implemented in the time do-
main. This approach is very efficient for certain spatially
unlimited driving functions. Typically, for reproduction
with limited spatial bandwidth, an Ambisonics-related
approach is used. For convenience, we follow this
practice and consider an Ambisonics-like approach in the
remainder of this paper.

The Ambisonics-Like Approach

In this section, we briefly review an approach for spatially
bandlimited reproduction which is typically associated
with near-field compensated higher order Ambisonics.
In the remainder of this paper, we call this approach
Ambisonics-like and not Ambisonics since the term Am-
bisonics (and also near-field compensated higher order
Ambisonics) refers to a specific approach which has
evolved over many years and whose nomenclature is not
perfectly in line with the presented approach (compare
e.g. to [5]). The formulation treated in this section has
been presented by the authors in [1, 2]. Its physical
fundament is the so-called simple source approach. The
simple source approach for interior problems states that
the acoustic field generated by events outside a volume
can also be generated by a continuous distribution
of secondary simple sources enclosing the respective
volume [3].
The reproduction equation for a continuous circular
distribution of secondary line sources and with radius
r0 centered around the origin of the coordinate system is
then given by [1]

P (x, ω) =

∫ 2π

0

D(α0, ω) G2D(x− x0, ω) r0 dα0 , (1)

where x0 = r0 · [cosα0 sin α0]
T . P (x, ω) denotes the

reproduced wave field, D(α0, ω) the driving function for
the secondary source situated at x0, and G2D(x− x0, ω)
its two-dimensional spatio-temporal transfer function.
A fundamental property of (1) is its inherent non-
uniqueness and ill-posedness [6]. I.e. in certain situa-
tions, the solution is undefined and so-called critical or
forbidden frequencies arise. The forbidden frequencies
represent the resonances of the cavity under considera-
tion. However, there are indications that the forbidden
frequencies are only of minor relevance when practical
implementations are considered [3, 2].
Equation (1) constitutes a circular convolution and there-
fore the convolution theorem

P̊ν(r, ω) = 2πr0 D̊ν(ω) G̊ν(r, ω) (2)



applies [7]. P̊ν(r, ω), D̊ν(ω), and G̊ν(r, ω) denote the
Fourier series expansion coefficients of P (x, ω), D(α, ω),
and G2D

(
x− [r0 0]T

)
1.

Equation (2) can be solved for D̊ν(ω). The secondary
source driving function D(α0, ω) for a secondary source
situated at position x0 reproducing a desired wave field
with expansion coefficients P̆ν(ω) can then be determined
as [1]

D(α, ω) =
1

2πr0

∞∑
ν=−∞

P̆ν(ω)

Ğν(ω)
ejνα , (3)

whereby we omitted the index 0 in α0 for convenience.
Note that D(α, ω) is independent from the receiver
position. The coefficients F̆ν(ω) of a function F (x, ω)
are defined via

F (x, ω) =

∞∑
ν=−∞

F̆ν(ω)Jν

(ω

c
r
)

︸ ︷︷ ︸
F̊ν(ω,r)

ejνα , (4)

whereby Jν(·) denotes the ν-th order Bessel function [3].
Refer to [1] for the explicit driving function for the
considered scenario of a virtual plane wave reproduced
by a circular distribution of secondary line sources.
The driving function (3) is not per se spatially bandlim-
ited (ν can take any integer value). However, (3) straight-
forwardly allows to apply a spatial bandlimitation (refer
also to the following section). In the latter case, the
summation over ν is only performed between the limits
−N and N . One then speaks of a spatial bandwidth of
N respectively of N -th order reproduction.

Spatial discretization

For the theoretic continuous secondary source distri-
bution, any wave field which is source-free inside the
secondary source distribution can be accurately repro-
duced apart from the forbidden frequencies. Real-world
implementations of audio reproduction systems always
employ a finite number of discrete secondary sources.
This spatial discretization can result in spatial aliasing.
In this section, we briefly review the consequences of
spatial discretization. A thorough treatment can be
found in [1, 2].
It can be shown that the angular sampling of the driving
function results in repetitions of the angular spectrum
(i.e. in the present case the Fourier expansion coefficients
D̊ν(ω)) of the continuous driving function D(α, ω)

D̊ν,S(ω) =

∞∑
η=−∞

D̊ν+ηL(ω) , (5)

when L equiangular sampling points (i.e. loudspeakers)
are taken. Equation (2) states that the angular spectrum
of the reproduced wave field P̊ν(r, ω) is equal to the angu-
lar spectrum of the driving function D̊ν(ω) weighted by
the angular spectrum of the secondary sources G̊ν(r, ω).
Note that all angular spectra are taken with respect to

1Note that the coefficients G̊ν(r, ω) as used throughout this
paper assume that the secondary source is situated at the position
(r = r0, α = 0) and is orientated towards the coordinate origin.

the expansion around the origin of the global coordinate
system.
In order to yield the angular spectrum P̊ν,S(r, ω) of the
wave field reproduced by a discrete secondary source
distribution, the spectral repetitions given by (5) have to
be introduced into (2). The case of η = 0 then describes
the desired component of the reproduced wave field. In
other words: Despite sampling the desired component of
the reproduced wave field is always present. The cases of
η �= 0 describe additional components due to sampling.
These additional components can not be avoided.
As stated in the previous section, the driving function (3)
is not per se bandlimited with respect to the angular
frequency ν. Thus, when the angular bandwidth of the
driving function is not artificially limited, the angular
repetitions overlap and interfere.
In order to avoid such overlapping and interference
of the spectral repetitions, the angular bandwidth of
the continuous driving function of the Ambisonics-like
approach (3) can be limited as

DN (α, ω) =
1

2πr0

N∑
ν=−N

P̆ν(ω)

Ğν(ω)
ejνα , (6)

whereby N = L−1
2 when a discrete distribution of

an odd number L of secondary sources is considered
and accordingly for even L. Strictly spoken, when (6)
is applied spatial aliasing is prevented in the driving
function since no spectral overlaps occur. However, since
the spatial spectrum G̊ν(r, ω) of the secondary sources
is not bandlimited, spatial repetitions of the driving
function are always reproduced. Although this is rather
a reconstruction error [1] it is commonly also referred to
as spatial aliasing. We do so as well in the remainder
for convenience. Note that it is actually impossible
to implement the Ambisonics-like approach (3) with
infinite bandwidth since this would require an infinite
summation.

Continuous Secondary Source Ar-

rays

At a first stage, we consider the reproduction via con-
tinuous secondary source distributions. These provide
reproduction which is perfectly free of spatial discretiza-
tion artifacts. They therefore allow to independently
investigate the properties of the desired component of
the reproduced wave field. For convenience, we consider a
virtual plane wave as desired wave field to be reproduced.
It can be shown that continuous secondary source dis-
tributions reproduce a wave field with exactly the same
spatial bandwidth like the driving function [1, 2]. Refer
to figure 1 for an illustration of the general properties.
The most important of which are summarized in the
following list:

• For low frequencies, the reproduction is almost
perfect (refer to figure 1(a)).

• For higher frequencies, the energy of the reproduced
wave field concentrates around the center of the



secondary source distribution (refer to figure 1(b)).
This is a direct consequence of the spatial bandwidth
limitation and is reflected by the properties of
the involved Bessel functions. This concentration
of the energy around the center of the secondary
source distribution is more pronounced the higher
the temporal frequency. In other words, for receiver
positions outside the center, high frequencies are
significantly attenuated (by several dB). Therefore,
timbral coloration might occur.
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(b) f = 2000 Hz.

Figure 1: �{P (x, ω)} of a continuous secondary source
distribution with r0 = 1.5 m reproducing a plane wave
of different temporal frequencies. A spatial bandwidth
limitation of N = 27 is applied.

Discrete Secondary Source Arrays

In this section, we move further to discrete secondary
source distributions. This is what we find in real-world
implementations. Again, we consider a virtual plane
wave as desired wave field to be reproduced.
Below a certain critical frequency which we term spatial
aliasing frequency the ratio of the energy of spatial
discretization artifacts and the energy of the desired
component of the reproduced wave field is very low and
the reproduction is considered aliasing-free. Above the
spatial aliasing frequency, the above described energy
ratio rises quickly and reproduction is considered being
corrupted by spatial aliasing [1].
The artifacts which arise due to the spatial discretization
are superposed to those artifacts due to spatial band-
width limitation. The properties of the discretization
artifacts are strongly related to the spatial bandwidth
of the driving function and can therefore not be treated
independently.
The general properties of discrete secondary source dis-
tributions driven with finite spatial bandwidth signals
can be deduced from figure 2 and are summarized in the
following list:

• The center of the secondary source distribution stays
essentially free of aliasing artifacts. The higher is the
frequency, the smaller is this sweet area.

• Outside the sweet area, strong aliasing artifacts
arise.

• The energy of the aliasing artifacts is not equally
distributed over the receiver area. I.e., the energy of
the artifacts is strongly dependent on the position.
This indicates that also the perception is strongly

dependent on the listener position.

• The spatial structure of the aliasing artifacts is
quite regular. The latter can locally be interpreted
as plane wave fronts originating from that point
on the secondary source contour where the desired
virtual plane wave arrives. This could result in a
localization bias and impair the localization quality
of the virtual source. Refer to section Localization
for a further discussion.
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(c) f = 5000 Hz.
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(d) f = 10000 Hz.

Figure 2: �{P (x, ω)} of a discrete secondary source
distribution with r0 = 1.5 m reproducing a plane wave
of different temporal frequencies. A spatial bandwidth
limitation of N = 27 is applied.

Transfer Function of Discrete Sec-

ondary Source Distributions

In order to get more insight into the consequences of
the different energy distributions in the receiver area, we
present the transfer function of the discrete secondary
source distribution under consideration. As in the
previous sections, the desired wave field to be reproduced
is a plane wave.
Figures 3(a) and 3(b) illustrate the global variation
of the absolute value of the transfer function between
the secondary source distribution and selected receiver
positions, i.e. we investigate a selection of receiver points
which are distributed over the entire receiver area.
Figures 3(c) and 3(d) illustrate the local variation of the
absolute value of the transfer function, i.e. we investigate
a selection of receiver points which are located within the
vicinity of each other.

• A sweet spot with perfectly flat frequency response
is apparent in the center of the secondary source
distribution (refer to the black line in figures 3(a)
and 3(b)).

• Obvious variations of the absolute value of the
transfer function arise above the aliasing frequency
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(a) Global variation. Positions
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in steps of 40 cm.
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(c) Local variation. Positions
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in steps of 1 cm.
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Figure 3: Variations of the absolute value of the temporal
transfer function of a discrete secondary source distribution
with r0 = 1.5 m to selected receiver positions. Spatial
bandwidth limitation applied (N = 27).

for positions along the x-axis (refer to figure 3(a)).

• For positions along the y-axis strong variations arise
(refer to figure 3(b)).

• Only minor variation is apparent when moving
around a selected position on the x-axis (refer to
figure 3(c)). The general properties of the transfer
function stay similar.

• The same holds true for the vicinity of a position
on the y-axis (refer to figure 3(d)). In this case the
deviation from the desired flat frequency response is
significantly stronger than for lateral positions.

• Below the aliasing frequency (which varies strongly
with the receiver position), the transfer function is
perfectly flat.

Localization

As can be seen from figures 2(c) and 2(d), the spatial
aliasing artifacts have a regular spatial structure. Lo-
cally, the spatial aliasing artifacts can be interpreted as
plane wave fronts originating from that point on the
secondary source contour where the virtual plane wave
front first hits the secondary source contour. As a conse-
quence, listeners positioned outside the sweet area (the
latter being almost aliasing-free) might localize the high-
frequency content above the spatial aliasing frequency at
the above mentioned position on the secondary source
contour. The low-frequency content below the spatial

aliasing frequency is localized in the direction where the
plane wave comes from. Note that there is no smooth
transition between the two perceived source locations.
Informal listening suggests that it might also happen that
two individual virtual sources are perceived.

Conclusions

We have presented simulations of wave fields reproduced
by a circular array of loudspeakers. We focused on an
investigation of the artifacts arising in the reproduction
of finite spatial bandwidth. We chose an Ambisonics-like
approach to represent this type of reproduction.
The major findings are: (1) A pronounced sweet spot
arises in the center of the secondary source distribution.
(2) The energy of spatial aliasing artifacts is heavily
dependent on the position with only very little local
variation.
Our simulations suggest that the properties of the alias-
ing artifacts are audible as timbral coloration and possi-
bly also impairment of the localization quality of a virtual
source. However, reliable conclusions can not be drawn
from such simulations. A listening test to verify the
results is in preparation.
An investigation of the properties of infinite spatial
bandwidth sound field reproduction as it typically occurs
in wave field synthesis can be found in [8].
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