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Abstract—We present an approach targeting the physical Requirement (1) can obviously be fulfilled. Preliminary mea
reproduction of sound fields by means of spherical distribuibns  surements undertaken at Deutsche Telekom Laboratori@s hav
of non-omnidirectional loudspeakers. The focus of this pagr lies  ghqyn that typical commercially available loudspeakerth wi
on the modal incorporation of the loudspeaker’s spatio-terporal . . A .
transfer function into the loudspeaker driving function. closed cabme_ts |nd_eed eXh'b_'t S|m|Ia_r _to equal spatioptenal

transfer functions in anechoic condition and when only one
. INTRODUCTION model of loudspeakers is considered. This suggests that re-

Traditionally, massive-multichannel sound field reproduguirement (2) can also be fulfilled when the acoustical prop-
tion approaches like wave field synthesis or higher order Arerties of the reproduction room are ignored.
bisonics assume that the involved secondary sourcesaiié- | We emphasize that the presented approach is not a compensa-
speakers) are omnidirectional. For lower frequencies, @ist tion for deviations of the loudspeaker radiation charasties
sumption is indeed approximately fulfilled when convendibn from certain assumptions (e.g. omnidirectionality). Itasher
loudspeakers with closed cabinets are considered. Howewerch that the formulation of the approach allows for an ex-
for higher frequencies above a few thousand Hertz complplicit consideration thereof. For convenience, we use ¢net
radiation patterns evolve. directivity filter to refer to that component of the secondary
A number of approaches based on the theory of multiplseurce driving function which represents the spatio-temaipo
input-multiple-output (MIMO) systems have been proposeghnsfer function of the secondary sources.
in order to compensate for the influence of the reproductidine approach treated in this paper has been presented by the
room and the loudspeaker radiation characteristics, &lg. [authors in [4], [5], whereby formulations were kept general
[2], [3]. Room compensation (which includes compensatibn @he 2.5-dimensional formulation of the problem can be found
loudspeaker radiation properties) requires realtimeyamabf in [6]. In this contribution, we investigate in detail theopr
the reproduced sound field and adaptive algorithms due to #ties of the loudspeaker directivity filters which ariseenh
time-variance of room acoustics (e.g. temperature varig}i spherical secondary source setups are employed for three-
Compensation of the loudspeaker radiation charactesjstidimensional reproduction.
such as directivity and frequency response, is less complex
since it can be assumed that these characteristics are time-
invariant. No adaptation and therefore no real-time anglgs
required. However, in order that the radiation charadiesis
can be compensated for while neglecting the reproduction
room, the radiation characteristics of the entire secondar
source setup have to be measured under anechoic conditions.
When certain physical constraints are accepted, a significa
reduction of complexity can be achieved and a continuous
formulation can be established. Besides time-invariative,
fundamental physical constraints introduced in the preskn
approach are:

(1) The secondary source arrangement is spherical.

(2) The spatio-temporal transfer function of the secondary
sources is shift-invariant with respect to rotation around
the center of the secondary source distribution. In other
words, all individual loudspeakers have to exhibit equ&lg‘é1 1I6C;hceog?;:1d;?§t: Zi’:ﬁfgf Uzzgié; this P[gpoer- P]rTimétggiE::X%elgr;%
radiation characteristics and have to be orientated tuwallslghere indicates the seﬁondary Sgurce d?stribution.m '
the center of the secondary source setup.




[I. NOMENCLATURE AND MATHEMATICAL PRELIMINARIES  whereby P(x,w) denotes the reproduced sound field,

The following notational conventions are used: Vector8(Xo,w) the driving signal of the secondary source IoTcated
are denoted by lower case boldface. The three-dimensiofhn€ Positionky = 1 - [cos ag sin fo sinagsin fy cos fo]
position vector in Cartesian coordinates is givensas= andG(x—xo,w) its spatio-temporal transfer function. Eq. (6)
[z y z]T. The Cartesian coordinates are linked to the spherida|also termedeproduction equation _
coordinates viax = r cosa sin3, y = r sinasing, and A fundamental property of (6) is its inherent non-uniquenes
z =r cos 3. o denotes the azimuthf the zenith angle. Refer and ill-posedness [4]. l.e. in certain situations, the Sofu
also to Fig. 1. is undefined and so-callectitical or forbidden frequencies

The acoustic wavenumber is denotediylt is related to the arise. The forbidden frequencies are discrete and reprdsen
temporal frequency by = (g)Q with w denoting the radial resonances of the cavity under consideration. Howeverethe
C

frequency and the speed of sound. Outgoing spherical wave¥® indications that the forbidden frequencies are onlyiobm
are denoted byte="27. i is the imaginary uniti(= v—1). relevance when practical implementations are considéefed [
We employ a number of standard mathematical tools whid¥Pte that we assume(-) to be rotation invariant with respect
are defined below. to rotation around the origin of the coordinate system (wigawr
A sound field can be described by its spherical harmoni€dX — Xo,w) instead ofG(x|xo,w)) [7]. This requires that
expansion coefficientgom(r w) as [7] all secondary sources have to exhibit equal spatio-terhpora
- " n’ characteristics and have to be orientated towards thercehte
2 the secondary source distribution.

F = Er Yy . 1 . . .

(x,w) Z Z w (rw) Y (e, B) @) Equation (6) can be interpreted as a convolution along the
surface of a sphere. In that case, the convolution theorem

n=0m=—n

The spherical harmonicg («, 5) are defined as

o 4 o o
_ P (r,w) = 27r D™(w) -G (r,w) (7)
2 1 | i n 3 0 n n\" 3
Y 8) = w DRI preos ) L (2) 20 +1
T (n+m)! applies [8] which can be reformulated as [4]
with P™(.) denoting them-th order associated Legendre ) 1 m1 pm
polynomial ofn-th degree. D' (w) = 5 1/ n4+ V"O (@) . (8)
Alternatively to the spherical harmonics expansion coieffits o ™ Ghw)

li“,?(r,w), a sound field can be described by the coefficienig,e asymmetry of the convolution theorem (Z™(r,w)

F'(w) as vs. G%(r,w) is a consequence of the definition of (6) as
o no left convolution. An according convolution theorem for htg
Fx,w)=>_ Y FMw)Br(xw), (3) convolutions exists [8]. Note that (7) is the analog to thedeo
n=0m=-n matching which is performed in the traditional Ambisonics

whereby the basiB™ (x, w) is the singular basi§™ (x,w) for approach.
purely diverging wave fields, or the regular bagig (x,w) for Combining (8) with (1) yields the secondary source driving

source-free wave fields. Explicitly, function D(a, 8,w) for the reproduction of a desired sound
w field with expansion coefficient®!”(w) as
S™(x,w) = hP (—r) Y. (e, B) 4
¢ 1
e m =
Rrw) = o (Sr)Ves) . (5)  Pledel =g
c ~ n o
2 1P
K (¢r) denotes the:-th order spherical Hankel function of X Z Z \/ n4+ o (w)Ynm(oz,ﬁ) -9
second kindj, (%r) the n-th order spherical Bessel function n=0m=-n T G (w)
of first kind [7]. . 5 Equation (9) can be verified by inserting it into (8). After
The relation between the coefficients,"(r,w) and F;;"(w) interchanging the order of integration and summation and
can be deduced from (1), (3), (4), and (5). exploitation of the orthogonality of the spherical harnuni
I1l. DERIVATION OF THE DRIVING FUNCTION one arrives at the desired sound field, thus proving perfect

. . . reproduction.
_ The approach 0L_Jt||ned _by the authors in [4] constltutgs th gwever, equation () generally only holds fat < ro due to
smgle-laygr potentlalsolut!on t(? the p_roblem of sound fleldthe fact that the coefficienté’m(w) and G° (w) are typically
reproduction. For a spherical distribution of secondanyrses derived from interior expans?ons 7] "

and with radiusy centered around the origin of the coordinate

system (refer to Fig. 1) the single-layer potential is gilegri4] IV. INCORPORATION OF THE SECONDARY SOURCE
2 DIRECTIVITY COEFFICIENTS
P(x,w) = //D(XO,W) G(x — xp,w) 7o sinBodBodayg , The coefficients7? (w) apparent in the driving function (9)
00 describe the spatio-temporal transfer function of a seapnd

(6) source which is positioned at the north pole of the sphere



(xo = [0 0 7]7) and orientated towards the center of thee-ordering of the sums reveals the general fornt:{(w) as
coordinate system (which coincides with the center of the

secondary source distribution). The expansion center @s th _ i zn: R™
origin of the coordinate origin. This follows directly frothe "
convolution theorem (7).

However, typical loudspeaker directivity measurementhsu Z Gm )n+n 2m (S|IR)™ | (ro,w) . (13)

as [9] yield the coefficient{}’: (w) (see below) of an ex- =|m|
pansion of the loudspeaker’s spatio-temporal transfectfon
around the acoustical center of the loudspeaker denoted by
x’9. The acoustical center of a loudspeaker is referred to Mste that we replacedh’ with m in (13) for convenience.

the position of the latter in the remainder. For conveniendérom the driving function (9) we can deduce that we do not
we assume in the following that the loudspeaker under cameed all coefficients?” (w) but only GO (w)

n=0m=-—n

= Gp(w)

sideration is positioned at’s = xo = [0 0 70]7 and is 0o

orientated towards the origin of the global coordinateasyst (30 () = Z éli/ (W) (=1)™" (S|R) , (ro,w) . (14)
We term the coefficienté?’m/ (w) secondary source directivity n'=|ml|

coefficients

We establish a local coordinate system with originkgtand This reveals that only the SUbS@t’ /(w) of the secondary
whose axes are parallel to those of the global origin (refer $ource directivity coefﬂmenté?’n (w) need to be known. The
Fig. 1). Then the spatio-temporal transfer functiGiix’,w) former represent those modes Gf{x’,w) which symmetric
of the considered loudspeaker can be described as with respect to rotation around the vertical axis through th
expansion center.
This fact further facilitates the translation significgntThe
Z Z ’(X/,w) (10) requiredzonaltranslation coefficients can be computed from
combinations of the initial values [10]

(SR o(ro,w) = (~1)"V2n+1 AP (£ro)  (15)
(S|R)8n’(T07w) = Von' +1 h( ( 7“0)(16)

x' =x'(x) =x+Ax =x —rpe; , (11) via the recursion formula

m!/=—n'

with respect to the local coordinate system. Note that

0 0 _
with Ax = [0 0 — rg]. e, denotes the unit vector pointing " _1(S|R)””’*1(TO’ ) = an (SIR)yy 1 (10, w) =

into positive z-direction. an(SIR)S 1 (10, w) — an—1(S|R)S_ . (ro,w) , (L7)

In the remainder of this section we demonstrate how th

coefficientsGY (w) required by the secondary source driving n+1

func,tion (9) can be yielded from the directivity coefficient On = V@t 1)(2n + 3) ‘ (18)

V/m . . A .

G () py applying appropriate trar_13|_at|on operations. It can be shown that the zonal translation coefficients are of
The required translation along theaxis in negative direction the form

can be performed elegantly by 1) flipping theaxis, 2)

following the new axis byry in positive direction, and 3) W

flipping back the new axis to coincide again with the (S| R)p s (ro,w ch’ o (;TO) , (19)

axis [10].

Flipping thez-axis negates all odd harmonics, i¥" (o, m = wherebyc!»" is a real number derived from (17) and (18).
B) = (=1)"T™Y,™(«, B) [11]. The translation of the singular

part S (x',w) of the expansion (10) along the-axis in V. PROPERTIES OF THE DIRECTIVITY FILTER

positive direction results in [10] A. General

As evident from (14) and (19), each mode, m) of the
' m directivity filter is given by a summation over the product of
Sy (x + roez,w) = Z (SR (TO’ ) B (x) - (12) the secondary source directivity coefficient and the titicsh
n=m’| coefficient. The translation coefficients can be implememta
infinite impulse response filter (IIR) design approachedsuc
The notation(S|R) indicates that the translation representas performed in [12]. Alternatively, the digital implematibn
a change from a singular basis expansion to a regular bask® be obtained via an appropriate sampling of the analytica
expansion. mathematical expression (14) which results then in a finite
Inserting (12) in (10), flipping there and back theaxis, and impulse response (FIR) representation.

oo



Due to the fact that the secondary source directivity co- VI. RESULTS

efficients are typically yielded from measurements and aré|n order to illustrate the general properties of the presnt
modeled as FIR filters, e.g. [9], we propose to also apply th@proach we consider in the following a spherical distiout

FIR approach on the translation coefficients. of highly directional secondary sources whose spatio-teaip
In order that the driving function (9) is defined neither modgansfer function is given by

(9 (w) of the directivity filter may exhibit zeros. From (14) it o }
can be seen that each mode of the directivity filter is givea by -, m’ () = { § VDIV (0,0)" Vo' < N' —1

Vi ' N+ ) (N = =D ' n
summation over all directivity coefficients’,, (w) multiplied " 0 elsewhere

by the respective translation coefficigitt| R),, ., (70, w). The (21)
translation coefficients are linear combinations of spi@ri with N’ = 13. The asterisks indicates complex conjugation.
Hankel functions of the same argument but of different ofFhe normalized far-field directivity of7(-) is depicted in
ders (refer to (19)). Spherical Hankel functions of differe Fig. 2.

orders are linearly independent [7]. Thus, since spherigagure 3(a) depicts a continuous spherical distribution of
Hankel functions do not exhibit zeros, a linear combinatén
spherical Hankel functions and therefore also the traioslat

coefficients do not exhibit zeros either. The fact whether

the directivity filters (14) are defined or not is essentially 1
dependent on the properties of the secondary source ditgcti =
coefficients(¥", (w). o5l T
Secondary source directivity coefficients yielded from mea
surements of real loudspeakers do not per se result in a well- o 0 U
behaved driving function. Therefore (preferably frequenc )
dependent) regularization has to be applied in order talyiel 0.5

a realizable solution. Contrary to conventional multiahain

regularization, the presented approach allows for indépen 1
regularization of each modeof the directivity filter. Thereby, 1

stable modes need not be regularized while the regulasizati
of individual unstable modes can be assumed to be favorable
compared to conventional regularization of the entirerfilte

B. Causality
Spherical Hankel functions of second kind are explicitlyig. 2. Normalized far-field directivity of the secondaryuszes employed
given by [10] in Fig. 3(a).

w o eT e il n' + f)! 1 r
hf,) (Zro) — '+l e Z f(’(n’ ff),), (2i£r ) . secondary sources with a directivity given by (21) reprauigic
c'0 =0 TN (20) a virtual plane wave offpy = 1000 Hz. For comparison,

. ) o Fig. 3(b) depicts the same virtual sound field reproduced
The exponential term in (20) is independent of the ordef, 5 continuous distribution of secondary monopoles which

. : .
n’ and can be factored out in (19). The exponential tergyqtitytes the classical scenario. It can be seen that, as
represents a delay in time domain whose duration equilgoretically predicted, the virtual sound field is perfigct
the propagation duration from a secondary source 10 the, oqyced inside the secondary source distribution,ideits

center of the secondary source contour. Since the expaherfie secondary source distribution the reproduced sourdsfiel
term appears in the numerator of the driving function (9) Hifrer considerably.

turns into an anticipation. In order that the driving fuocti

stays causal, this anticipation has to be compensated by an VIl. CONCLUSIONS

appropriate pre-delay. An approach for sound field reproduction employing spher-
Furthermore, the secondary source directivity coeffisiental arrangements of secondary sources was presenteds It wa
&', (w) are generally not minimum phase. The inversion thefocused on the general properties of the resulting secgndar
leads to a filter of infinite length which can not be implementesource driving function when non-omnidirectional secagda
with an FIR approach. A lack of the minimum phase propersources are used. In order that the presented approach is
can also result in acausal components of the inverse filtapplicable the spatio-temporal characteristics of theleyeol
These have to be compensated for vimadeling delaySuch secondary sources have to be invariant with respect taeotat

a modeling delay is simply an additional delay imposed on tla@ound the center of the secondary source arrangement. In
driving function in order to make acausal components causather words, all secondary sources have to exhibit equal
Alternatively, the secondary source directivity coeffiteecan radiation characteristics and have to be orientated tosvéimel

be approximated by minimum phase filters. center of the secondary source arrangement.




2 2 array (refer to Sec. I). Furthermore, the fact that onlytioteal
15 15 symmetric modes of the directivity need to measured previde
A potential to further reduce complexity.
1 / \ ! It is also advisable that the radius of the microphone array
T 0.5 - - 05 which is employed in the measurement is not too differ-
~ 0 0 ent from the radius of the secondary source contour under
; - 4 consideration. The presented approach implicitly inctuda
05 05 extrapolation of the microphone array measurements to the
-1 — = -1 secondary source contour. The restrictions of extraymyiatf
-15 e 15 such spatially discrete data when spatial aliasing is agpar
. ” . .
| ——————— is not known.
‘?2 -1 0 1 2 -2 It has to be noted that the calculation of spherical Hanketfu
x — [m] tions of high orders and large arguments (i.e. high freqigsnc
(@) Secondary sources exhibiting a transfer function given  OF large radii of the secondary source contour) requires hig
by (21). numerical precision. The fact that the modes of the dirégtiv
filter can be pre-computed facilitates the task. Howeves, th
2 2 measurement of high modes and high frequencies of the
15 = 15 loudspeakers’ spatio-temporal transfer function is gesi
1 L towards measurement noise and limitations arise [9] which
have not been investigated in detail.
= 0.5 05 Future work includes error analysis as described above.
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