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ABSTRACT

We present a system identification method for dynamic acoustic sys-
tems. The system is excited by a periodic sequence the autocorre-
lation function of which is an impulse train. The circularly shifted
versions of such sequence form an orthogonal basis for the corre-
sponding vector space. As each orthogonal component of the system
is sequentially excited, the output sample is the expansion coefficient
of the instantaneous impulse response. Unfortunately, the expansion
coefficients obtained from the output signal are undersampled, and
thus, the time-varying impulse response cannot be fully determined.
In this study, we estimate the missing expansion coefficients by inter-
polation. As a result, a full set of impulse responses is obtained that
describes the history of the dynamic system. The performance of the
proposed method is demonstrated by simulations and real measure-
ments.

1. INTRODUCTION

Various system identification methods are employed to measure
acoustic impulse responses, such as room impulse responses, head-
related impulse responses (HRIRs), and binaural room impulse
responses (BRIRs) [1]. Such measurements are used to simulate
virtual acoustic scenes by filtering dry signals with the impulse re-
sponses. Although many acoustic scenes are time-dependent, exist-
ing system identification methods are more or less focused on static
cases. The objective of this study is to continuously measure the
impulse response, thereby fully identify the history of time-varying
systems.

A series of research has been conducted with the same moti-
vation [2, 3]. In [2], a massive number of head-related impulse re-
sponses were adaptively measured in a continuously changing setup.
A so-called perfect sequence, which has the ideal correlation prop-
erty, was used to excite the system [4]. Thanks to the relatively low
changing rate and the anechoic environment, the system could be as-
sumed to be piecewise time-invariant. In general, however, this is
not the case in dynamic scenes.

In this study, we also use the perfect sequence as the excita-
tion signal, but the impulse responses are computed in a different
way. By exploiting the correlation property of perfect sequences, it
is shown that the orthogonal components of the system are sequen-
tially excited and its responses are temporally separated. Our focus
is on estimating the orthogonal expansion coefficients. In this per-
spective, the relation between the correlation method and the least
mean square algorithm is derived, and finally, an improved system
identification method is presented.

2. LINEAR TIME-VARIANT SYSTEMS

2.1. System model

A linear time-varying system is represented by a finite impulse re-
sponse (FIR) filter model,

y[n] =

N−1∑
k=0

hk[n]x[n− k] = h[n]Tx[n], (1)

where

h[n] = (h0[n], h1[n], · · · , hN−1[n])T (2)

x[n] = (x[n], x[n− 1], · · · , x[n−N + 1])T . (3)

The discrete-time sequence y[n] is the output signal, hk[n] the time-
dependent impulse response, x[n] the input signal, and N the max-
imum length of the response of the system. It is assumed that the
system is causal and noiseless.

2.2. Orthogonal expansion

If we choose a set of orthonormal basis vectors for RN

S = {s0, s1, · · · , sN−1} (4)

with sTi sj = δij (i, j = 0, · · · , N − 1), (5)

where δij denotes the Kronecker delta, the vectors in (2) and (3) can
be represented as the weighted sum of basis vectors

h[n] =

N−1∑
η=0

aη[n]sη = Sa[n] (6)

x[n] =

N−1∑
η=0

bη[n]sη = Sb[n], (7)

where

S =
(
s0, s1, · · · , sN−1

)
(8)

a[n] = (a0[n], a1[n], · · · , aN−1[n])T (9)

b[n] = (b0[n], b1[n], · · · , bN−1[n])T . (10)

Due to (5), the transformation matrix S is an orthogonal matrix, i.e.,
STS = SST = I. Thus, the expansion coefficients are

a[n] = STh[n] (11)

b[n] = STx[n]. (12)



Substituting (6) and (7) into (1) gives

y[n] =
(
Sa[n]

)T (
Sb[n]

)
= a[n]T STS︸︷︷︸

=I

b[n] (13)

= a[n]Tb[n], (14)

meaning that the output value of the system is the scalar product of
the instantaneous expansion coefficients of h[n] and those of x[n].
In the following section, a specific type of input signals and basis
vectors are considered that simplifies (14).

3. EXCITATION SIGNALS WITH PERFECT
AUTOCORRELATION

In system identification, sequences with rapidly decaying autocorre-
lation functions have gained great attention, and considerable efforts
have been devoted to find such sequences [5]. In this context, a se-
quence with period M

x̃[n] = xν where ν ≡ n mod M (15)

is referred to as a perfect sequence if its autocorrelation function is
an impulse train, i.e.,

ϕx̃x̃[m] =

M−1∑
m=0

x̃[n]x̃[n+m] = E

∞∑
µ=−∞

δ[m+ µM ] (16)

where δ[m] is the unit impulse function, and E is the energy of
the sequence in one period, E =

∑M−1
m=0 |x̃[m]|2. Without loss

of generality, it is assumed that the sequence has normalized energy,
E = 1. The period of the sequence is set equal to the maximum
length of the impulse response, M = N , so that the impulse re-
sponse can be measured without temporal aliasing [2].

If a system is excited with a perfect sequence, x[n] = x̃[n], each
entry of the input vector defined in (3) is also periodic,

x[n] = (xν , xν−1, · · · , x0, xN−1, · · · , xν+1)T (17)
= x[ν] ≡ xν . (18)

Equation (16) can be rewritten as xTi xj = δij(i, j = 0, · · · , N−1),
and thus, N consecutive input vectors form an orthonormal basis set
for RN ,

s0 = x0 = (x0, xN−1, · · · , x1)T (19)

s1 = x1 = (x1, x0, · · · , x2)T (20)
... (21)

sN−1 = xN−1 = (xN−1, xN−2, · · · , x0)T . (22)

Thus,

S =


x0 x1 x2 · · · xN−1

xN−1 x0 x1 · · · xN−2

xN−2 xN−1 x0 · · · xN−3

...
...

...
. . .

...
x1 x2 x3 · · · x0

 . (23)

Note that each column of S has circularly shifted entries of the pre-
vious column. Such matrices are called circulant matrices. Multi-
plication of a circulant matrix and a column vector is the circular
convolution of the vector and the first column of the circulant ma-
trix, s0 in this case , whereas the multiplication of the transpose of a

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

6

7

n →

k
→

Fig. 1: An example showing the relation of the output samples (filled
circles) and the orthogonal expansion coefficients. If a linear time-
varying system is excited by a perfect sequence with the period of
N = 8, then y[12] = a4[12]. The other orthogonal components
(grid points on the dashed line) are not excited.

circulant matrix and a column vector is the circular cross-correlation
of the vector and the first column [6].

Substituting (18) and (23) into (12) shows that the input vector
has only one nonzero expansion coefficient, b[n] = ST sν = eν+1,
where ei is the standard orthonormal basis vector that has only one
nonzero entry,

{
ei
}
j

= δij(i, j = 1, · · · , N). Thus, from (14), the
output sample of the system is

y[n] = a[n]T eν+1 = aν [n]. (24)

In words, if a linear system is excited by a perfect sequence, the or-
thogonal components are sequentially excited, and thus, the output
sequences are the expansion coefficients of the instantaneous im-
pulse responses. An example is illustrated in Fig. 1, with N = 8
and n = 12. The filled circles indicate the output samples that are
the exact values of the expansion coefficients. To fully identify h[n],
N coefficients are required, that are the grid points on the dashed
line. The available information is not sufficient as only one coeffi-
cient per sample is accessible. This problem is tackled in the next
section where the missing expansion coefficients are estimated.

4. SYSTEM IDENTIFICATION

In this section, the problem of system identification is addressed with
the focus on the estimation of the orthogonal expansion coefficients.
We begin with the linear time-invariant case, and show that the so-
lution coincides with the correlation method. The same approach is
then applied to linear time-varying systems, and its limitations are
discussed, which will be followed by our proposed method.

4.1. Linear time-invariant systems

The impulse response of a time-invariant system has constant im-
pulse response coefficients, h[n] = h and thus, a[n] = a. The true
values of the latter can be directly obtained from N consecutive out-
put values, a = (y[n− ν], · · · , y[n], y[n−N + 1], · · · , y[n− ν −
1])T . We define two vectors that have these values as its entries,

y[n] = (y[n], y[n− 1], · · · , y[n−N + 1])T (25)

y̆[n] = (y[n], y[n−N + 1], · · · , y[n− 1])T . (26)

The exact expansion coefficient vector is then

â = a = Pν y̆[n] (27)



where P is the cyclic permutation matrix

P =


0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

 (28)

that circularly shifts the entries of a column vector by 1. Substituting
(27) into (6) gives

h = S
(
Pν y̆[n]

)
=
(
SPν)y̆[n]. (29)

The matrix SPν is a circulant matrix where the first column is sν =
x[n]. Therefore, h in (29) is the circular convolution of x[n] and
y̆[n], which is equivalent to the circular cross-correlation of x[n]
and y[n]. Although we began the derivation with the focus on the
expansion coefficients, we ended up with the well-known correlation
method [7].

4.2. Linear time-varying systems

Under the assumption that the system is piecewise time-invariant,
the correlation method is often used for time-varying systems. The
estimated instantaneous impulse response ĥ[n] is then ĥ[n] =(
SPν

)(
y̆[n]

)
. Once an output sample y[n] is captured, the vector

y̆[n − 1] is replaced by y̆[n], meaning that only âν [n] is updated
and the other N − 1 orthogonal components remain unchanged,

ĥ[n] = ĥ[n− 1] +
(
âν [n]− âν [n− 1]

)
sν . (30)

Recall that y[n] = aν [n]. Prior to the update, the corresponding
expansion coefficient âν [n− 1] can be interpreted as the estimate of
the output ŷ[n]. Thus,

ĥ[n] = ĥ[n− 1] + e[n]x[n] (31)

where e[n] = y[n] − ŷ[n] is the estimation error. We have used the
fact that sν = x[n]. Interestingly, (31) coincides with the least mean
square (LMS) algorithm with unit step size [8]. This agrees with
the observation in [9], where the impulse responses are measured
with the normalized LMS algorithm in combination with a perfect
sequence. It is reported that the step size of 1 shows the best perfor-
mance for noiseless systems.

Note that this approach updates each orthogonal expansion co-
efficient once per N samples. Once an orthogonal component is
updated, the value remains for N − 1 samples until the next update.
This results in an abrupt change of each coefficient. This is a well-
known property of LMS-based algorithms used in combination with
perfect sequences [10].

4.3. Interpolation of the expansion coefficient

As pointed out in Sec. 3, only one true value out of N expansion
coefficients can be observed. The remaining parts of the impulse re-
sponse are unknown, and thus, have to be estimated. In this study,
each coefficient is estimated from the sequence of the same coeffi-
cient,

âν [n] = f(Yν), (32)

where f(·) is an interpolation function and Yν = {y[ν+mN ],m ∈
Z}. In this context, the correlation method corresponds to a piece-
wise constant interpolator, the simplest but poorest one. It is ex-
pected that the system identification performance can be improved
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Fig. 2: Simulation results. The impulse response of the dynamic
system is shown in (a). The performances of the employed methods
are shown in (b) in terms of system distance, 20 log10

‖h[n]−ĥ[n]‖
‖h[n]‖ .

The filter coefficient errors |hk[n]− ĥk[n]| are in (c)-(f) for different
methods. Results in (d) is not included in (b).

when using higher order interpolation methods, e.g., linear inter-
polation or spline interpolation. The interpolator has to be chosen
depending on the requirements, constraints, and time-varying prop-
erties of the system of interest.

Each expansion coefficient is updated with a frequency of fs
N

,
where fs is the sampling frequency of the discrete-time system. For
perfect reconstruction, the bandwidth of each expansion coefficient
has to be less than fs

N
[11]. Otherwise, the estimated expansion co-

efficients suffer from aliasing artifacts. It can be deduced that the
accuracy of the estimated impulse response depends on the length of
the system’s response and on the changing rate of the system. The
effect of aliasing artifacts on the estimated impulse responses and its
perception is not clear so far.

Finally, it is worth noting that the interpolation of expansion co-
efficients is by no means equivalent to the interpolation of impulse
response coefficients. The latter ignores (24) which states that the
expansion coefficients belong to different impulse responses.

5. RESULTS

To demonstrate improvement by interpolating the expansion coeffi-
cients, the identification of a dynamic virtual system and a real sys-
tem is considered. The systems are excited by perfect sweeps [12],
a type of perfect sequence that was reported to be more immune to
nonlinearity of the system [13]. The sampling frequency is fs =
44.1kHz.

5.1. Simulation

The output of a virtual system is simulated where the impulse re-
sponse is a time-varying delay. The desired impulse response is
shown in Fig. 2a, where each vertical slice of the plot show the im-
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(b) linear interpolation

Fig. 3: BRIRs (left ear) of a moving sound source, obtained by (a)
the correlation method and (b) interpolated expansion coefficients.

pulse response coefficients. In the beginning, n ≤ 4096, the delay
remains constant. Then it begins to vary sinusoidally with increas-
ing frequency, thus, the changing rate of the system increases with
time. The fractional part of the delay is implemented by a 4th-order
Largrangian interpolator [14]. The period of the perfect sweep was
32 samples. As proposed in Sec. 4.3, the expansion coefficients
were interpolated and used to compute ĥ[n] using (6). Two well-
known methods, linear interpolation and cubic spline interpolation
were used. For comparison, results using the correlation method and
interpolated impulse response coefficients are also shown.

The estimation errors of impulse response coefficients are shown
in Fig. 2c–2f. All methods work very well in the static phase. As
soon as the system varies with time, the performance of all are de-
graded. The errors are somewhat concentrated on the nonzero co-
efficients. As can be seen in Fig. 2c, the correlation method is very
vulnerable to system variance. Figure 2d show that using interpo-
lated filter coefficients is not so helpful. On the contrary, the benefits
of using the interpolated expansion coefficients are clearly visible
in Fig. 2e and 2f. The system distance of the employed methods is
shown in Fig. 2b. Although spline interpolation is superior to lin-
ear interpolation, both methods become similar when the system is
extremely time-variant. Even though, both methods still outperform
the correlation method.

Each set of impulse responses was used to filter a speech signal
to generate a simulated output signal. In informal listening, chirp-
like artifacts were audible when the correlation method was used,
whereas the signals using the proposed methods are indistinguish-
able from the desired signal. Interestingly, despite its poor system
distance shown in Fig. 2d, the signal using interpolated impulse re-
sponse coefficients has comparable quality with the proposed meth-
ods. The underlying perceptual mechanism is not clear at this stage.

5.2. Dynamic BRIRs

The same experiment was performed for a real acoustic system. A
loudspeaker was placed on a rolling table and was moved in a room
in the Institute of Communications Engineering, University of Ros-
tock. The period of the perfect sweep was N = 213.The reproduced
sound was captured with a dummy head.

The extracted BRIRs for the left ear are shown in Fig. 3. Only
the direct sound and a couple of early reflections are shown. In
Fig. 3a, where the correlation method was used, the impulse re-
sponse is contaminated by artifacts that are widely spread over all
coefficients. It is attributed to the fact that each orthogonal compo-
nent is updated only once per N samples which causes an abrupt
change in the FIR coefficients. It is likely that such artifacts cause
pre-echo when used for syntheses. Apparently, this problem is re-
solved when the expansion coefficients are linearly interpolated (See

Fig. 3b). In this case, all orthogonal components are updated in a
sample-by-sample fashion. Informal listening to the synthesized au-
dio signal also confirms the improvement.

6. CONCLUSION

The problem of dynamic system identification is addressed in which
the systems are excited with perfect sequences. By exploiting the
specific autocorrelation property of the excitation signal, it was
shown that the output of the system is the orthogonal expansion
coefficient of the instantaneous impulse responses. With the aid
of this interpretation, the proposed method estimates the expansion
coefficients by interpolation and computes the impulse responses in
a sample-by-sample fashion. Only the general framework is pre-
sented in this paper, and thus, the interpolation function in 32 can be
chosen that is best suited for the application. The proposed method
is compared with the correlation method in simulations and real
measurements. It was shown that a considerable improvement can
be achieved even with linear interpolation. The results suggest that
the presented method can be used for the data-based auralization of
dynamic acoustic scenes.

It is yet not clear how to quantify the time-dependent variabil-
ity of a dynamic system. The physical and perceptual effects of
the aliased expansion coefficients on the reconstructed impulse re-
sponses need to be examined.
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