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ABSTRACT
Wave Field Synthesis aims at a physically accurate synthesis of a desired sound field inside an extended
listening area. Due to limitation of practical loudspeaker setups, the accuracy of this sound field synthesis
technique over the entire listening area is limited. Local Wave Field Synthesis narrows the spatial extent down
to a local listening area in order to improve the reproduction accuracy inside this limited region. Recently an
method has been published, which utilizes focused sources as a distribution of more densely placed virtual
secondary sources around the local area. Within this paper, an analytical framework is established to analyze
the physical properties of this approach for linear loudspeaker setups.

1. INTRODUCTION
Sound field synthesis (SFS) techniques synthesize

a desired acoustic scenario within an extended listen-
ing area. Wave Field Synthesis (WFS) and Higher-
Order Ambisonics (HOA) are two well known ex-
amples of these reproduction techniques. In theory,
WFS creates a reproduction of a virtual wave field
using a continuous distribution of acoustic sources.
A limited number (up to hundreds) of individu-
ally driven loudspeakers placed at discrete positions
around the listening area realizes this distribution
in practical implementations. The finite spatial res-
olution of this discretization induces spatial alias-
ing artifacts to the reproduced wave field and there-
fore limits the synthesis accuracy. Current setups

for WFS do not allow for an accurate synthesis
within the extended area for the full audible fre-
quency range up to 20 kHz.

For application scenarios, where the listeners’ po-
sition is further restricted to smaller region of in-
terest, local sound field synthesis (LSFS) techniques
are useful. They aim at a more accurate synthesis
within a (local) area which is smaller than the entire
area surrounded by the loudspeaker array. This ac-
curacy improvement comes at the cost of stronger
artifacts outside the local listening area. Among
other approaches [1, 2, 3, 4] for LSFS, a technique [5]
has been proposed which utilizes focused sources as
virtual loudspeakers surrounding the local listening
area. Analogue to conventional SFS these virtual
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Fig. 1: The desired sound field is only reproduced correctly inside the listening area (yellow shade), which is a subset
of V0 for reproduction of focused sources (b). The active (dark shaded) loudspeakers for the scenarios (a) and (b)
are selected via the secondary selection criteria a(x0) and afs(x0 − xfs), respectively.

loudspeakers are driven by a suitable SFS technique
in order to reproduce the desired wave field within
the local listening area. The SFS driven focused
sources are then realized by the real loudspeaker
setup. It has been shown in [5], that Wave Field
Synthesis is a computationally efficient tool for im-
plementing this LSFS technique.

This paper analyzes the mentioned Local Wave
Field Synthesis (LWFS) approach with respect to
physical properties for linear loudspeaker arrays. It
focuses on the artifacts introduced by spatial sam-
pling and truncation of the real and the virtual loud-
speaker distributions. First, a short overview on the
basic theory of WFS and focused sources for arbi-
trary array geometries is given in Sec. 2. An analyt-
ical framework based on this theory is established
for LWFS. Secondly, aliasing criteria for infinitely
long arrays are derived by using spatio-spectral rep-
resentations of the involved functions. Thirdly, the
effects of array truncation in combination with spa-
tial sampling are highlighted.

2. BASIC THEORY

2.1. Wave Field Synthesis
WFS is based on the Helmholtz Integral Equation

(HIE) [6, 7], which states the solution of the homoge-
nous wave equation for a bounded region V0 with
respect to inhomogeneous boundary conditions im-
posed on ∂V0. A loudspeaker setup, which is placed
on the boundary ∂V0, can be regarded as an inho-
mogeneous boundary condition.

For the application of sound field synthesis it is

desired to reproduce the sound field S(x, ω) of a vir-
tual source outside the listening area V0 (see Fig.
1a). The HIE states that a distribution of secondary
monopole and dipole sources on the boundary ∂V0

has to be driven by the directional gradient and pres-
sure of the sound field of the virtual source in order
to achieve the sound field reproduction inside V0. In
this case, the sound field P (x, ω) inside the listening
area coincides with the desired sound field S(x, ω).
While the theory of WFS states the exact solution
of the HIE for infinite planar (3D) secondary source
distributions, it introduces a number of reasonable
approximations to circumvent the necessity of sec-
ondary dipole sources for arbitrarily shaped bound-
aries. The synthesized sound field is given by

P (x, ω) = −
∮
∂V0

D (x0, ω)G0 (x − x0, ω) dA0 ,

(1)
where a position on the boundary ∂V0 is denoted
by x0 ∈ ∂V0. The free-field Green’s function
G0 (x − x0, ω) characterizes the sound field emitted
by a secondary spherical monopole source located at
x0. D (x0, ω) describes the driving function for the
secondary sources and dA0 a suitably chosen bound-
ary element for integration. The WFS driving func-
tion for the secondary sources is given as

D (x0, ω) = 2 a(x0)
∂

∂n0
S(x, ω) , (2)

where the directional gradient ∂
∂n0

is defined as
scalar product of the boundary’s inward normal
vector n0 and the gradient ∇S(x, ω) evaluated at
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x = x0.
The secondary source selection criterion a(x0) en-

sures that only those secondary sources are active
where the propagation direction of virtual source
S(x, ω) at the position x0 has a positive component
in direction of the normal vector n0.

2.2. Focused Sources
Amongst other sound field synthesis techniques,

WFS allows for the synthesis of so called focused
sources. They aim at creating the impression of a
monopole source, which is placed in front of the
loudspeaker array. This can be achieved by emit-
ting a sound field which converges towards a focus
point xfs ∈ V0 and diverges after (see Fig. 1b). The
underlying principle is termed acoustic focusing by
time reversal/phase conjugation [8, 9, 10].

In order to avoid listener’s confusion caused by
converging contributions, only those emerging from
the desired focused source should be reproduced at
the listener position. The secondary sources emit a
sound field that travels towards the listener. It can
therefore be expected, that the desired sound field
of a focused source is only correct if the focus point
is located between the active secondary sources and
the listening position. This is a well known limi-
tation of WFS in the context of synthesize focused
sources [11].

The driving function for a focused source can be
derived by considering a virtual monopole sink which
is characterized by the time-reversed (complex con-
jugated) free field Green’s function G∗0 (x − xfs, ω).
Additionally, a reasonable selection of the active sec-
ondary sources ensures causality in practice. The
driving function is given as

Dfs (x0 − xfs, ω) =

− 2 afs(x0 − xfs)
∂

∂n0
G∗0 (x − xfs, ω) ,

(3)

where the secondary source selection criteria

afs(x0 − xfs) =

{
1 , if nfs

T (x0 − xfs) < 0

0 , otherwise
(4)

ensures that only secondary sources which con-
tribute to the main propagation direction nfs are ac-
tive. The listening area of a focused source is limited
by a plane through the focus point xfs (see Fig. 1b).
The plane’s normal is defined by the orientation nfs

n0
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(a) General reproduction setup
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(b) Linear loudspeaker array with virtual line source

Fig. 2: In Local Wave Field Synthesis the desired sound
field S(x, ω) is only reproduced correctly inside the lo-
cal listening area Vl (yellow shade) with the virtual sec-
ondary source distribution (dots) on its boundary ∂Vl.
Active (virtual) secondary sources are shaded dark.

of the focused source. Hence, the reproduced sound
field

P (x, ω) =

−
∮
∂V0

Dfs (x0 − xfs, ω)G0 (x − x0, ω) dA0
(5)

approximates the desired sound field S(x, ω) =
G0 (x − xfs, ω) of a focused point source only for lis-
tening positions x ∈ V0 where nTfs(x − xfs) > 0 is
fulfilled.

Although the wave field of a monopole source con-
sists of propagating and evanescent contributions,
time-reversal focusing cannot reproduce its evanes-
cent part correctly [10, 9]. This limitation is due
to the reciprocity theorem of Shewell and Wolf [12,
(4.11-4.14)], which only holds for propagating wave
fields. The correct reproduction of evanescent wave
field components is therefore not considered in this
paper.
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2.3. Local Wave Field Synthesis
The basic concept of LWFS is to utilize a set of fo-

cused sources as a so called virtual secondary source
distribution, which has to be driven like a real loud-
speaker setup. The virtual secondary sources are
distributed on the boundary ∂Vl of the local listen-
ing area Vl ⊂ V0 (see Fig. 2a). The driving signal for
the virtual secondary sources is derived by migrat-
ing the equations (1) and (2) of the WFS approach
(see Sec. 2.1) to the geometry of the local listen-
ing area. This domain denoted by the index ”l” is
referred to the local domain, while the loudspeaker
domain (index 0) describes the physically existing
secondary source geometry. The driving signal then
reads

Dl (xl, ω) = 2 al(xl)
∂

∂nl
S(x, ω) , (6)

while the reproduced local sound field is given as

P (x, ω) = −
∮
∂Vl

Dl (xl, ω)G0 (x − xl, ω) dAl (7)

for x ∈ ∂Vl. The free field Green’s function
G0 (x − xl, ω) is realized by a focused point source.
Its propagating part can be correctly reproduced in-
side Vl by the means of equation (5), assuming a
convex boundary ∂Vl. G0 (x − xl, ω) is therefore re-
placed by the right-hand side of (5) with xfs = xl.
After a rearrangement of the integrals’ order the re-
produced sound field is expressed by

P (x, ω) = −
∮
∂V0

D0(x0, ω)G0 (x − x0, ω) dA0 ,

(8)
while the LWFS driving function for the secondary
sources is given as

D0(x0, ω) = −
∮
∂Vl

Dl (xl, ω)Dfs (x0 − xl, ω) dAl .

(9)

3. INFINITE LINEAR LOUDSPEAKER ARRAY
Typical implementations of WFS systems are re-

stricted to the reproduction in the horizontal plane
only using (piecewise) linear loudspeaker arrays [5].
Modeling each loudspeaker as a monopole point
source is referred to as 2.5D WFS. The following
calculus is however simplified to a two-dimensional
scenario utilizing secondary line sources. The effects
of spatial aliasing and truncation on 2.5D setups can

Spatial Fourier Transform along the x-axis

F̃ (kx, y, ω) =
∫∞
−∞ F (x, ω) ejkxx dx

D̃l (kx, ω) = −ejkxxs

ej
√

(ω
c )

2−k2x (ys−yl)

e

√
k2x−(ω

c )
2

(ys−yl)

D̃fs (kx, ω) =

−ej
√

(ω
c )

2−k2x yl

−e−
√
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c )
2
yl
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
− j

2

e−j
√

(ω
c )

2−k2x y√(
ω
c

)2 − k2
x

1

2

e−
√
k2x−(ω

c )
2
y√

k2
x −

(
ω
c

)2
Table 1: Spatial Fourier spectra of driving signals
Dl (xl, ω) [13, (9)], Dfs (x0 − xl, ω) [14, (10)] and free
field Green’s function G0 (x − x0, ω) [13, (8)] for the re-
production scenario illustrated in Fig. 2b.

be inferred from the 2D case [13, 14]. The theoretical
basis for linear secondary line source distributions is
given by Rayleigh’s first integral equation. The in-
tegral states that a linear distribution of monopole
line sources is capable of reproducing a desired wave
in one of the half planes defined by the linear distri-
bution.

An exemplary situation is illustrated in Fig. 2b:
The linear loudspeaker array is located on the x-axis
(y = 0) while the virtual secondary distribution is
placed parallel to the loudspeakers (y = yl). For the
given geometry of this scenario the normal vectors
n0 = nl = [0 1]T . The reproduced wave field is given
by the Rayleigh I integral

P (x, ω) = −
∫ ∞
−∞

D0(x0, ω)G0 (x − x0, ω) dx0 ,

(10)
where x = [x y]T with y > 0 and x0 = [x0 0]T . The
two-dimensional free-field Green’s function [6]

G0 (x − x0, ω) = − j

4
H

(2)
0

(ω
c
|x − x0|

)
(11)

describes the wave field of the loudspeakers for two-
dimensional reproduction. The Hankel function of

second kind and zeroth-order is denoted by H
(2)
0 (·).
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Fig. 3: Absolute values of spatial spectra shown in Tab. 1. The virtual source position xs = [xs ys]
T = [0 − 1]Tm,

while yl = 1m and y = 2m. The propagating part
(
|kx| <

∣∣ω
c

∣∣) of the respective spectra can be recognized by the red
triangle, while the evanescent contributions rapidly decay towards zero for |kx| >

∣∣ω
c

∣∣.
The secondary sources’ driving function is given by
the spatial convolution integral

D0(x0, ω) = −
∫ ∞
−∞

Dl (xl, ω)Dfs (x0 − xl, ω) dxl ,

(12)
where xl = [xl yl]

T with yl > y0. In this paper
we investigate physical properties of LWFS with re-
spect to a virtual line source as the desired sound
field. This source type poses the two-dimensional
analogon to the monopole point source in a three-
dimensional scenario. The wave field of the vir-
tual source is therefore given by the wave field of
a monopole line source

S(x, ω) = − j

4
H

(2)
0

(ω
c
|x − xs|

)
, (13)

where xs = [xs ys]
T defines the position of the

source with ys < 0.

3.1. Spatio-temporal Frequency Representation
The reproduced sound field is given, accordingly

to eq. (10) and (12), as two convolutions along the x-
axis. This is illustrated by a block diagram (Fig. 4).
Applying a spatial Fourier transformation to both
equations with respect to the x-coordinate yields

P̃ (kx, y, ω) = D̃l (kx, ω) D̃fs (kx, ω)︸ ︷︷ ︸
−D̃0(kx,ω)

G̃0 (kx, y, ω) .

(14)
The three spectra on the equation’s right-hand side
are shown in Tab. 1 and their absolute values are

plotted in Fig. 3. The secondary sources’ driving
signal is given by combining the spatial spectra of
the two driving signals of eq. (14) to

D̃0(kx, ω) = −ejkx xs

×

ej
√

(ω
c )

2−k2x ys for |kx| <
∣∣ω
c

∣∣ ,
e

√
k2x−(ω

c )
2

(ys−2yl) for
∣∣ω
c

∣∣ < |kx| .
(15)

Interestingly, the propagating contribution of the
driving signal equals the traditional WFS driving
signal [13, (9)] for a virtual line source reproduced
by a linear secondary source distribution. This can
be explained by comparing the Rayleigh I integral
(10) with regard to both secondary source distribu-
tions at ∂Vl and ∂V0: As long the virtual source is
located outside V0 (ys < 0) the propagating part
of the virtual source’s wave field will be reproduced
correctly for x ∈ Vl using either of the distributions
driven by the respective WFS driving signals. As
already mentioned in Sec. 2.2, the evanescent part
is not reproduced correctly.

3.2. Spatial Sampling
It has already been outlined by Start [15, p. 73-

79] that the discretization of the (virtual) secondary
source distribution can be interpreted as a spatial
sampling and interpolation process. As illustrated in
Fig. 4, this process is divided into two sub-steps for
the local and the loudspeaker domain, both applying
sampling and interpolation. The spatial sampling is
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Fig. 4: The upper part of the block diagram illustrates the eqs. (10) and (12). The effects of spatial sampling
(∆xl,∆x0) are highlighted in Sec. 3.2. The spatial window functions wl (x) and w0 (x) cover the truncation effects
explained in Sec. 4. The spatial Fourier transform of each system component with respect to the x-coordinate is
depicted in the lower part of the figure.

modeled by multiplying the respective driving signal
with a Dirac comb

X{0,l}(x) =
1

∆x{0,l}

∞∑
µ=−∞

δ(x− µ∆x{0,l}) (16)

with the sampling distance ∆x{0,l}. The wildcard
symbol {0, l} is replaced by either 0 or l for the re-
spective domain. The spatial kx-spectra of the dis-
cretized driving signals

D̃S
{0,l}(kx, ω) = 2π

∞∑
µ=−∞

D̃{0,l}

(
kx − µ

2π

∆x{0,l}
, ω

)
(17)

are given as a superposition of the shifted continuous

spectra D̃{0,l}

(
kx − µ 2π

∆x{0,l}
, ω
)

. After each sam-

pling step the spatial interpolation filters D̃fs (kx, ω)
and G̃0 (kx, y, ω) are applied, respectively. Intro-
ducing the sampled driving functions D̃S

l (kx, ω) and

D̃S
0 (kx, ω) into eq. (14) results in the spectrum

P̃ S(kx, y, ω) of the wave field reproduced by a spa-
tially discrete (virtual) secondary source distribu-
tion. It is worth noting, that this equation (14)
is not commutative due to the spatial sampling.
Figure 5 illustrates the calculation for each domain
on a qualitative level. The gray triangles symbol-
ize the propagating part of the involved continuous
spectra. The spectral repetitions of the discretized
driving functions are shaded red and blue, respec-
tively. Aliasing contributions can be recognized by

the overlapping parts of the continuous spectra and
the spectral repetitions. Due to the concatenation
of both calculation steps (Fig. 5a and 5b), the re-
sulting wave field P̃ S(kx, y, ω) might contain aliasing
contributions from both steps. For the reproduced
sound field the anti-aliasing condition of [13, 14, 16]
is therefore extended to

fal ≤ min

(
c

2∆xl
,

c

2∆x0

)
, (18)

where c denotes the speed of sound. The anti-
aliasing frequency fal can not be increased by ad-
ditional virtual secondary sources (smaller ∆xl),
since the distance between the loudspeakers (∆x0)
remains as the limiting factor in practical setups.
For an infinite linear loudspeaker distribution LWFS
does not lead to a benefit in terms of aliasing com-
pared to the traditional WFS method in [13, (13)].

4. FINITE LINEAR LOUDSPEAKER ARRAY
For practical reproduction setups linear loud-

speaker arrays are of finite length. Also the num-
ber of virtual secondary sources has to be finite
due to limited computational resources. Both trun-
cations are modelled by multiplying the respective
driving function D̃{0,l}(x{0,l}, ω) with a suitable win-

dow w{0,l}
(
x{0,l}

)
(see Fig. 4). Again, the wildcard

character {0, l} denotes either 0 or l for the respec-
tive domain. In this paper, the rectangular window
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function

w{0,l}
(
x{0,l}

)
= rect

(
x{0,l} −X{0,l}

L{0,l}

)
(19)

is chosen to model distributions of finite length L{0,l}
centered around X{0,l}. The shifted rect-function
[17, p. 201-204] equals unity for |x{0,l} − X{0,l}| ≤
L{0,l}/2 and zero otherwise. The spatial spectra of
the driving function

D̃tr
{0,l}(kx, ω) =

1

2π
w̃{0,l}(kx) ∗ D̃{0,l}(kx, ω) (20)

is derived using the multiplication theorem of the
Fourier transform. The spatial Fourier transform of
w{0,l}

(
x{0,l}

)
is given as

w̃{0,l}(kx) = L{0,l} sinc

(
kx
2
L{0,l}

)
ejkxX{0,l} , (21)

while sinc(x) := sin(x)/x. It is worth noting, that
the truncated driving function D̃tr

0 (x0, ω) depends
on both window functions due to the concatenation
of the local and loudspeaker domain (see Fig. 4).

Figure 6a shows the effects of a truncated vir-
tual secondary source distribution on Dl(kx, ω): As
already discussed in [13], the energy of the trun-
cated driving function D̃tr

l (kx, ω) is concentrated in
a smaller region compared to the infinite length dis-
tribution (see Fig. 3a). This energy concentration
has influence on the spatial aliasing properties of the
spectra. The same effect can be observed for the
loudspeaker’s driving function D̃tr

0 (kx, ω) (see Fig.
6b and 6c). Note that in Fig. 6b no truncation in
the local domain is applied because of the infinite
length Ll. In order to investigate the connection
between these three spectra a geometric approxima-
tion is applied. It is furthermore used to derive an
anti-aliasing criterion for local wave field synthesis
with finite linear loudspeaker arrays.

4.1. Geometric Approximation
The limited listening area as a result of the trun-

cation can be approximated by geometric means for
a given position of the virtual line source [13]. This
approach is further extended to analyze the trun-
cation effects of the local and loudspeaker domain.
For each domain a wedge shaped area is spanned by
the virtual position and the endings of the respective
secondary source distribution (see Fig. 7a). The an-
gles α{0,l} and β{0,l} between the sides of each wedge

π
∆xl

−π
∆xl

ω
c

D̃l D̃fs

ω
c

2π
∆xl

−2π
∆xl

kx kx

ω c
=
k x×

(a) Calculation of D̃0 = D̃S
l · D̃fs

π
∆x0

−π
∆x0

ω
c

D̃0

2π
∆x0

−2π
∆x0

kx kx

G̃0

ω
c

ω c
=
k x×

(b) Calculation of P̃S = D̃S
0 · G̃0

Fig. 5: Qualitative illustration of the two sampling
and interpolation processes involved in the computa-
tion of the propagating parts of reproduced wave field
P̃ S(kx, y, ω) for a sampled (virtual) secondary source dis-
tribution.

to the x-axis are given as

tanα{0,l} =
y{0,l} − ys

X{0,l} +
L{0,l}

2 − xs
, (22a)

tanβ{0,l} =
y{0,l} − ys

X{0,l} −
L{0,l}

2 − xs
, (22b)

where 0 ≤ α{0,l}, β{0,l} ≤ π and α{0,l} ≤ β{0,l}.
The length L0 and the center position X0 of the
secondary source distribution are fixed because a
pratical loudspeaker setup remains static. There-
fore, the angles α0 and β0 define a fixed outer bound
of the listening area for a given virtual source posi-
tion xs. The listening area is further constrained by
the parameters Xl and Ll, which may be set with
respect to the listerners’ position and the position
of the virtual line source. Since both domains are
concatenated the intersection of the wedge shaped
areas yields the final listening area. Its boundary is
defined by the angles

αB = max (α0, αl) and (23a)

βB = min (β0, βl) , (23b)

where α0 ≤ βl and αl ≤ β0 holds. If this condition is
not fullfilled the wedges are disjoint and no listening
area is established. Hence the virtual line source is
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Fig. 6: Magnitude spectra of truncated driving functions. The virtual source position xs = [xs ys]
T = [−1,−3]Tm,

while the center of the virtual secondary source distribution is located at [Xl, yl]
T = [1, 2]Tm. The loudspeaker array

is centered around [X0, y0]T = 0.

not reproduced for any listener position. Vice versa
the set of possible virtual source positions is limited
for a given array geometry by the angles γ1 ≤ αB
and γ2 ≥ βB (see Fig. 7b) given as

tan γ1 =
yl − y0(

Xl + Ll

2

)
−
(
X0 − L0

2

) , (24a)

tan γ2 =
yl − y0(

Xl − Ll

2

)
−
(
X0 + L0

2

) . (24b)

In order to bring the geometric approximation in
conjunction with the effect of truncation on the
driving functions, their spatial spectra Dtr

{0,l}(kx, ω)
are re-interpreted as a superposition of plane wave
contributions (termed as plane wave decomposition)
[13]. These contributions are derived by substituting
kx with

kx =
ω

c
cosφ (25)

where φ denotes the plane wave’s incidence angle.
For a more detailed description the reader is referred
to [13]. The geometric approximation essentially
states that the major plane wave contributions will
be limited within the incidence angles αB and βB .
These limits are shown in Fig. 6c by the black lines.
αl, βl and α0, β0 are respectively depicted in Fig.
6a and Fig. 6b in order to show the impact of both
truncations on the spectra. For all three spectra the
geometric approximation states a reasonable instru-
ment to describe the energy concentration imposed

by the truncation of the driving functions.
The angles γ1 and γ2 were specified in eq. (24) as

limits for the reproducible virtual source position.
They also state outer bounds for plane wave contri-
butions which can be reproduced by a given array
geometry. This is of interest when defining anti-
aliasing criteria for discrete secondary source distri-
butions.

4.2. Anti-Aliasing Conditions
In the following anti-aliasing conditions for dis-

crete and truncated (virtual) secondary source dis-
tribution are derived using the geometric approxi-
mation for truncated driving functions.

First, the effects of a discrete virtual secondary
source distribution with a sampling distance of ∆xl
are investigated. Analogue to Sec. 3.2, spatial sam-
pling induces spectral repetitions of the continuous,
truncated spectra Dtr

l (kx, ω). The geometrically ap-
proximated spectra and its repetitions are depicted
in Fig. 8a. It was mentioned at the end of section
4.1 that the reproducible plane wave contributions
are limited within the angles γ1 and γ2 (green trian-
gle) due to the concatenation of the two truncated
arrays. Hence, only parts of the spectral repetitions
overlapping with the reproducible spectra will con-
tribute to aliasing. This happens if the temporal
frequency f ≥ min(fal

l,1, f
al
l,2) with the two aliasing
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Fig. 7: The geometric approximation of listening area
(yellow) in LWFS for a given virtual line source position
is depicted in (a). The set of possible virtual line source
positions (green) for a given array geometry is shown in
(b).

frequencies

fal
l,1 =

c

∆xl(cosαl − cos γ2)
, (26a)

fal
l,2 =

c

∆xl(cos γ1 − cosβl)
. (26b)

Since the virtual secondary source distribution of the
local domain consists of synthesized focused sources,
the sampling distance ∆xl is not constrained by the
practical loudspeaker setup. The anti-aliasing fre-
quencies can therefore be raised by realizing more
focused sources, which is a matter of computational
effort.

The discrete loudspeaker setup with a loudspeaker
distance of ∆x0 analogously causes spectral repeti-
tions of the continuous, truncated driving function

Dtr
0 (kx, ω). The sampled spectra is shown in Fig.

8b. The illustration assumes that no aliasing con-
tributions from the local domain occur within the
considered temporal frequency range (∆xl � ∆x0).
For listener’s positions within the listening area de-
fined by αB and βB (see Fig. 7a) aliasing effects for
frequencies higher than

fal
0 =

c

∆x0(cosαB − cosβB)
. (27)

In comparison to eq. (26), this criterion is the more
restrictive anti-aliasing condition since the sampling
distance ∆x0 is connected to the physical reproduc-
tion setup, while ∆xl is only limited due to compu-
tational complexity.

4.3. Example
In the following an application example for the de-

rived anti-aliasing conditions for truncated and sam-
pled (virtual) secondary source distribution is given.
A monochromatic (f = 3000Hz) line source place at
xs = [0 −1]Tm is reproduced by a loudspeaker array
consisting of 16 line sources with a spacing ∆x0 =
0.20m. The resulting array length is L0 = 3m. The
array is centered around [X0 y0]T = 0m. The virtual
secondary source distribution is defined by Ll = 1m
and [X0 y0]T = [0 1.5]Tm. The angles limiting the
local listening area can be derived from (22) and (23)
as αB ≈ 78.7◦ and βB ≈ 101.3◦. Inserting these an-
gles and the sampling distance ∆x0 into (27) yields
the aliasing frequency of fal

0 ≈ 4372Hz. The speed
of sound c is set to 343ms for this purpose.

Figure 9 shows the reproduction of the desired
sound field with a traditional WFS and two LWFS
setups. The latter differ in their sampling distance
∆xl of the virtual secondary source distribution.
The second anti-aliasing frequency fal

l = fal
l,1 = fal

l,2

is derived from (24) and (26) for the two LWFS se-
tups respectively yielding fal

l ≈ 2066Hz and fal
l ≈

5509Hz. Dominant aliasing artifacts can be observed
for the first two reproduction setups (Fig. 9a and
Fig. 9b). The more densely sampled virtual sec-
ondary source distribution depicted in Fig. 9c leads
to more accurate reproduction of the desired sound
field inside the local listening area. However, trunca-
tion artifacts (white stripes) are clearly visible near
the edges of the local listening area. This is due to
the fact, that the geometric derivation of the listen-
ing area’s limits is a high frequency approximation.
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Fig. 8: Qualitative illustration of the aliasing contributions introduced in the local and in the loudspeaker domain
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Fig. 9: The diagrams show the real part of the reproduced sound field for three different setups. The sound fields
have been normalized to their respective absolute value at [0 2]Tm. While each loudspeaker is indicated by a symbol
at the bottom of each plot, black dots represent the virtual secondary sources. The plots have been generated with
the Sound Field Synthesis Toolbox [18].

5. CONCLUSION
This paper presented a detailed analysis of the

physical properties of two-dimensional Local Wave
Field Synthesis using focused line sources as virtual
secondary sources. Anti-aliasing conditions have
been derived for infinitely long and truncated lin-
ear secondary line source distributions. These state
a trade-off between an artifact-free reproduction up
to a certain temporal frequency and the size of the
listening area for which the reproduction can be
achieved. In principle, the derived anti-aliasing con-
ditions will also hold for the more practical case of

2.5D reproduction using secondary point sources.
Listening experiments [19] have indicated that

timbral perception of WFS is connected to spatial
aliasing caused by the limited number of loudspeak-
ers. Although the results of this paper might allow
for the conclusion that the LWFS approach has bet-
ter coloration properties than traditional WFS, sub-
jective experiments have to made in order to give a
well-grounded judgment for this.
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