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Introduction

The impulse response of a time-varying acoustic system
can be measured by a continuous measurement tech-
nique. In such a measurement, a system is continuously
excited by a periodic signal while the system changes
over time, e.g. movement of source or receiver. The re-
sponse of the system is captured by a microphone and
the instantaneous impulse responses are computed from
the microphone signal. Due to its time efficiency, con-
tinuous measurement methods are used for (i) the mea-
surement of a large number of acoustic impulse responses
e.g. spatial room impulse responses [1, 2] or head-related
impulse responses [3]. During the measurement, the re-
ceiver (microphone or dummy head) moves on a prede-
termined trajectory. Depending on the required spatial
resolution, an arbitrary number of impulse responses can
be extracted and further used for sound field analysis
or binaural synthesis [4, 5]. The second application of
a continuous measurement technique is (ii) the aural-
ization of dynamic auditory scenes [6]. For data-based
binaural synthesis, for instance, binaural room impulse
responses (BRIRs) are measured, and the ear signals are
generated by filtering a dry source signal with the time-
varying BRIRs. In this case, not only the accuracy of
the individual impulse responses, but also the transient
properties of the synthesized result have to be taken into
account.

Several continuous measurement techniques have been
proposed in earlier studies [1, 7, 8, 9]. Among oth-
ers, adaptive system identification using the Normalized
Least Mean Square (NLMS) algorithm is preferred due to
its low computational complexity [10] and fast tracking
ability when used in combination with a specific type
of signal, called perfect sequence [8]. NLMS was of-
ten used for the measurement of HRIRs [3]. In data-
based binaural synthesis of dynamic scenarios, however,
the ear signals suffer from artifacts that are presumably
attributed to system identification errors [6, 9]. It is un-
clear, though, why such errors occur, what kind of prop-
erties these errors have, and how they affect the perfor-
mance of the auralization.

In this paper, it is shown that the output of a time-
varying system carries limited information on the impulse
response history. Therefore, system identification meth-
ods implicitly estimate the missing information by inter-
polation. The inherent interpolation filter of the NLMS
algorithm is derived and its properties are discussed. It
is proved that the transient properties of the identified

system are responsible for the artifacts occurring in au-
ralization.

System Model

In this paper, a finite impulse response (FIR) model is
assumed,

y(n) =

N−1∑
k=0

hk(n)x(n− k) (1)

where x(n) denotes the input, y(n) the output, hk(n)
the k-th filter coefficient at time n, and N the maximum
length of hk(n).

For continuous measurement, the system is excited by
a periodic perfect sequence ψ(n) = ψ(n + N) [8]. The
periodic autocorrelation of a perfect sequence yields,

ϕψψ(n) =

N−1∑
n′=0

ψ(n+ n′)ψ(n) = E · δn̄0 (2)

where n̄ ≡ n mod N , and δmn denotes the Kronecker
delta. Without loss of generality it is assumed that E =∑N−1

n=0 |ψ(n)|2 = 1. Note that the period is longer than
any impulse response of the system and thereby temporal
aliasing is avoided [11].

According to (2), two different circular shifts of a given
perfect sequence are orthogonal unless the shift difference
is an integer multiple of N . Thus, an orthogonal basis
set for RN can be formed with N different circular shifts
of ψ(n). Here, the circular shifts of the time-reversal
ψ(−n) (which are also perfect sequences) are considered

S =
{
ψ(−n), ψ(1 − n), . . . , ψ(N − 1− n)

}
. (3)

By using these basis functions, an impulse response can
be expanded into orthogonal components as

hk(n) =

N−1∑
m=0

am(n)ψ(m− k), (4)

for k = 0, . . . , N − 1, where am(n) denotes the expansion
coefficient corresponding to the m-th orthogonal compo-
nent ψ(m − k). The expansion coefficients can be com-
puted from hk(n) by

am(n) =

N−1∑
k=0

hk(n)ψ(m− k) (5)

for m = 0, . . . , N − 1.
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Figure 1: The relation of the captured signal y(n) and the
orthogonal expansion coefficients am(n) for N = 4. See (6).

If the system is excited by ψ(n), the output reads

y(n) =
N−1∑
m=0

am(n)
N−1∑
k=0

ψ(m− k)ψ(n− k)

=

N−1∑
m=0

am(n)δmn̄

= an̄(n) (6)

where (2) and (4) are exploited. Equation (6) states
that the captured signal at time n corresponds to the
n̄-th orthogonal expansion coefficient of hk(n). This is
illustrated in Fig. 1. For time-invariant systems, i.e.
hk(n) = hk and thus y(n) = an̄, (4) constitutes the cir-
cular cross-correlation of ψ(n) and y(n),

hk =

N−1∑
m=0

amψ(m− k) =

N−1∑
m=0

y(m+ νN)ψ(m− k) (7)

which holds for ∀ν ∈ Z. If the system is piece-wise time-
invariant for at least N consecutive samples, the instan-
taneous impulse response can be computed by (7). In
general, however, the exact impulse responses cannot be
obtained since only one orthogonal coefficient is observed
for each hk(n). As shown in Fig. 1, the original coeffi-
cient am(n) is decimated by a factor of N . Therefore,
am(n) can be recovered only if the bandwidth of am(n)
is less than fs

N
with fs denoting the sampling rate. In

order to compute hk(n) for any n, the missing values of
am(n) have to be interpolated properly.

Normalized Least Mean Squre Algorithm

In this section, it is shown how the orthogonal expan-
sion coefficients are interpolated by the NLMS algorithm.
Here, the filter coefficients are adaptively updated as [10,
Sec. 6.1.]

ĥk(n) = ĥk(n− 1) +
μ ε(n)∑N−1

k=0 |ψ(n− k)|2
ψ(n− k), (8)

for k = 0, . . . , N−1, where ĥk(n) denotes the estimate of
hk(n) and μ > 0 the step size (or adaptation constant).

The estimation error ε(n) is the difference between the
desired output y(n) and its estimate ŷ(n),

ε(n) = y(n)− ŷ(n) (9)

where

ŷ(n) =

N−1∑
k=0

ĥk(n− 1)ψ(n− k). (10)

As in the previous section,
∑N−1

k=0 |ψ(n − k)|2 = 1 is as-
sumed, and thus (8) is simplified as

ĥk(n) = ĥk(n− 1) + μ ε(n)ψ(n− k). (11)

Since hk(n) is estimated by using the current output
y(n), (11) constitutes an off-line processing which is dif-
ferent from the traditional NLMS [10, Eq. (7,10)]. In
the context of this paper, the entire output y(n) is

first recorded and ĥk(n) is computed by post process-
ing. Real-time processing is thus not a requirement, and
the above modification is acceptable.

The first thing to note from (11) is that only one orthog-
onal component is updated at a time. Therefore

ĥk(n) =

N−1∑
m=0

âm(n− 1)ψ(m− k)

︸ ︷︷ ︸
ĥk(n−1)

+ μ (an̄(n)− ân̄(n− 1))︸ ︷︷ ︸
ε(n)

ψ(n− k)︸ ︷︷ ︸
ψ(n̄−k)

(12)

where âm(n) denotes the estimate of am(n). At time n,
only the n̄-th coefficient is updated,

ân̄(n) = ân̄(n− 1) + μ
(
an̄(n)− ân̄(n− 1)

)
= μan̄(n) + (1 − μ)ân̄(n− 1). (13)

Once an orthogonal coefficient is updated, the value re-
mains unchanged for the subsequent N − 1 samples,

ân̄(n+ l) = ân̄(n), l = 0, . . . , N − 1. (14)

The estimate ân̄(n) is thus a weighted sum of the deci-
mated sequence of am(n),

ân̄(n+ l) = μ

�
n
N

�−1∑
ν=0

(1− μ)νan̄(n− νN) (15)

for l = 0, . . . , N − 1, where �·� denotes the floor opera-
tion. The initial estimate is assumed to ân̄(0) = 0, for
convenience. Equation (15) constitutes an interpolator
where its FIR coefficients are given as

gν = μ(1− μ)ν , ν = 0, . . . , � n
N
� − 1. (16)

The filter coefficients are shown in Fig. 2 for different val-
ues of μ. The step-like behavior is attributed to the fact
that âm(n) is updated at every N -th sample. Although
not shown here, this is also the case if a time-varying step
size μ(n) is used.
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Figure 2: Equivalent interpolation filters for NLMS with
different μ (see (15)). The abscissa is normalized by N .

The step size of μ = 1 is a special case where the equiva-
lent interpolation filter is a rectangular window, as shown
in Fig. 2. In this case, the estimation error (9) reads

ε(n) = an̄(n)− an̄(n−N). (17)

It corresponds to the n̄-th orthogonal component of the
accumulated system changes between n−N and n. The
resulting filter ĥk(n) is identical to the circular convolu-
tion of y(n) and ψ(n) [12, 9]. As discussed in the previous
section, this is useful only if the system is time-invariant.

Note that the filters in Fig. 2 exhibit discontinuities which
results in abrupt changes of am(n). Moreover, since
NLMS exploits only the values from y(0) to y(n), the
interpolation filter is asymmetric. The influence of these
properties on time-varying system identification is exam-
ined in the following section.

Evaluation

A dynamic system was simulated where the impulse re-
sponse is a time-varying delay

h(t, τ) =

⎧⎪⎨
⎪⎩
δ(τ + τ0), t < −T

δ
(
τ − τ0 sin(

π
2

τ
T
)
)
, −T ≤ t ≤ T

δ(τ − τ0), t > T,

(18)

where δ(t) denotes the Dirac delta function. For t < −T ,
the system is in a static state for a long time so that
ĥk(n) has converged to hk(n). Between −T ≤ t ≤ T , the
time-of-arrival changes continuously from −τ0 to τ0. For
t > T , the system reaches a static state. The discrete-
time impulse responses corresponding to (18) were sim-
ulated for T = 1 s, τ0 = 1 ms, and fs = 44.1 kHz. The
non-integer delays were implemented by using fractional
delay filters of order 23 [13]. A perfect sequence with a
period of N = 256 was used to excite the system. The
instantaneous impulse responses were computed by the
NLMS algorithm where the step size was set to μ = 1
unless otherwise specified.

The orthogonal expansion coefficients âm(n) were com-

puted from ĥk(n) by using (5). Three selected coefficients
are shown in Fig. 3 along with the true values indicated

t / ms
-60 -40 -20 0 20 40 60

a
m
(n
)

a100(n)

a150(n)

a200(n)

Figure 3: Estimates of the orthogonal expansion coefficients
(m = 100, 150, 200) by using NLMS for μ = 1 and N = 256.
âm(n) is indicated by blue lines whereas the true value am(n)
is indicated by gray lines.

by gray lines. As anticipated, âm(n) suffers from discon-
tinuities appearing at n = m+νN, ν ∈ Z. This is the case
even for slowly changing coefficients like â150(n). Due to
the asymmetric interpolation, the tracking of am(n) is
lagged, which is observable for â100(n) and â200(n).

This behavior clearly influences the technical perfor-
mance of system identification. The time-varying filter
coefficients hk(n) and ĥk(n) are shown in Fig. 4(a) and

4(b), respectively. For t < −T and t > T , ĥk(n) con-
verges to hk(n). However, the performance is strongly
degraded in the time-varying phase, −T ≤ t ≤ T . This
is also evident in Fig. 5 where the normalized system
distances,

D(n) =

∑N−1
k=0 |hk(n)− ĥk(n)|

2

∑N−1
k=0 |hk(n)|2

, (19)

are plotted for different μ. As is well known, NLMS with
larger step size shows faster convergence but suffers from
misalignment [10]. Around t = 0 where the changing rate
of the system is at maximum, the performance does not
differ significantly.

If the individual impulse responses are used to filter a
source signal s(n), which simulates a time-invariant sys-

tem, the difference between hk(n) and ĥk(n) is barely
perceptible. However, if a dynamic scenario is simulated
by time-varying filtering,

ys(n) =

N−1∑
k=0

ĥk(n)s(n− k) (20)

strong artifacts are audible for ĥk(n). The transient re-
sponse seems to be important from a perceptual point of
view. The transient signal is defined as the additional
component caused by the update of ĥk(n),

ytr(n) =
N−1∑
k=0

Δĥk(n)s(n− k) (21)

where Δĥk(n) = ĥk(n) − ĥk(n − 1). The spectrograms
of ytr(n) and ŷtr(n) are shown in Fig. 4(c) and 4(d),
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Figure 4: The original and estimated impulse responses are
shown in (a) and (b), respectively. The spectrograms of the
resulting transient signals (see (21)) are shown in (d) and (e)
for speech signal.
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Figure 5: Normalized system distances (19) for different μ.

respectively. For the ideal case (Fig. 4(c)), the tran-
sient signal resembles the time-frequency structure of
the source signal (speech in this case). For ĥk(n), on
the other hand, the transient signal has a much larger
amplitude and the time-frequency structure is quite dif-
ferent from the source signal. In informal listening, it
rather sounds like the perfect sequence ψ(n) used in the
measurement. This can be explained by the fact that
Δĥk(n) = μ ε(n)ψ(n− k) and thus

ŷtr(n) = μ ε(n)

N−1∑
k=0

ψ(n− k)s(n− k). (22)

The summation on the right-hand side corresponds to
the N -tap cross-correlation of s(n) and ψ(n). It is mod-
ulated by ε(n) which characterizes the changing rate of
the system.

Discussion and Conclusion

The NLMS algorithm was investigated in the context of
off-line time-varying system identification. It was shown
that the output of a system excited by a perfect sequence
can be interpreted as a decimated version of the orthogo-
nal expansion coefficients of the time-varying impulse re-
sponse. NLMS turned out to inherently perform a coarse
interpolation where the equivalent interpolation filter has
asymmetric and step-like coefficients, as shown in Fig 2.
NLMS should be used only if piece-wise time-invariance
can be assured. Otherwise, it is suggested to employ lin-
ear or higher-order interpolation filters [9]. This is par-
ticularly the case if the impulse responses are intended to
be used for the auralization of dynamic auditory scenes.
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