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Introduction

Wave Field Synthesis (WFS) [1–3] is a well-established
sound field synthesis (SFS) technique that uses a dense
spatial distribution of loudspeakers arranged around an
extended listening area. It has been shown that WFS
based on the Neumann Rayleigh integral constitutes the
high-frequency and/or farfield approximation of the ex-
plicit SFS solution, such as the Spectral Division Method
(SDM) [4] and Nearfield Compensated Higher-Order Am-
bisonics (NFC-HOA) [5,6]. However, for SFS of a virtual
plane wave using a linear loudspeaker array a mismatch
between an SDM and a WFS driving function has been
reported in [7].

In this paper we will derive WFS plane wave driving
functions using a similar stationary phase approximation
as introduced for the virtual non-focused point source,
cf. [2]. This yields WFS driving functions either for a
reference point or for a parallel reference line. It is shown
that the latter is identical to the high-frequency and/or
farfield approximated SDM solution.

Neumann Rayleigh Integral

The paper considers continuous secondary source distri-
butions (SSDs). WFS using spherical monopoles as sec-
ondary sources is based on the Neumann Rayleigh inte-
gral as the forward wavefield propagator

P (x, ω) =

+∞∫
−∞

 +∞∫
−∞

−2
∂P (x′0, ω)

∂n
G(x,x′0, ω) dz0

dy0

(1)

here using x = (x, y, z)T, the SSD in the yz-plane
denoted as x′0 = (0, y0, z0)T, the unit inward normal
n(x′0) = (1, 0, 0)T and the 3D freefield Green’s function

G(x,x′0, ω) =
1

4π

e−j
ω
c |x−x

′
0|

|x− x′0|
. (2)

The directional derivative is defined as

∂P (x′0, ω)

∂n
= 〈grad xP (x, ω)

∣∣
x=x′

0
, n(x′0)〉. (3)

with the dot product notation 〈·, ·〉. The e+jω t time con-
vention for monochromatic waves is deployed. c denotes
the speed of sound and ω the angular frequency. The
considered listening area is the half space in direction of
n, i.e. x > 0 for the chosen geometry.

3D Neumann WFS of a Plane Wave

The directional derivative (3) of a plane wave with prop-
agating direction nPW

PPW(x, ω) = P (ω) e−j
ω
c 〈nPW,x〉 (4)

is calculated to

∂PPW(x′0, ω)

∂n
= −j

ω

c
cosϕ′p PPW(x′0, ω) with (5)

cosϕ′p = 〈nPW,n(x′0)〉 (6)

using the angle ϕ′p between nPW and n(x′0). The 3D
Neumann WFS driving function thus reads

D(x′0, ω) = −2
∂P (x′0, ω)

∂n
= 2j

ω

c
cosϕ′pPPW(x′0, ω) (7)

requiring plane wave propagating directions that fulfill
cosϕ′p > 0.

3D to 2.5D Neumann WFS

2.5D SFS using a linear SSD built from spherical
monopoles is given by the synthesis equation [7, (9)]

P (x, ω) =

+∞∫
−∞

D(x0, ω)G(x,x0, ω) dy0 (8)

using the specific geometry x0 = (0, y0, 0)T, the SSD on
the y-axis x = (x, y, 0)T and n(x0) = (1, 0, 0)T. The
plane wave propagating direction is restricted to the xy-
plane as

nPW = (cosϕPW, sinϕPW, 0)T with (9)

cosϕp = 〈nPW,n(x0)〉 > 0. (10)

The implicit derivation of the plane wave driving func-
tion to be used with (8) is similar to that of a virtual
non-focused point source, cf. [2, Ch. 3.1]. This is shown
as follows.

Stationary Phase Approximation for a Reference
Point

For the virtual plane wave the inner integral of (1) reads,
cf. [8, (5.4-5.6)]

I =

+∞∫
−∞

P (ω) 2 j
ω

c
cosϕPW e−j

ω
c sinϕPW·y0 G(x,x′0, ω) dz0

(11)
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using x = (x, y, 0)T. With the stationary phase approx-
imation (SPA) [2, (3.2-3.4)], [9, Ch. 4.6.1], integrals of
the kind

I =

+∞∫
−∞

f(z0) e+jφ(z0) dz0 (12)

can be approximated as

I ≈

√
2π

|φ′′(z0,s)|
f(z0,s) e+jφ(z0,s) e+j π4 sign[φ′′(z0,s)] (13)

for φ(z0) → ∞. Note the different use of φ and ϕ. z0,s
is the stationary phase point at which φ′(z0,s) = 0 and
φ′′(z0,s) 6= 0 hold (note the derivatives w.r.t. z0). Eq.
(11) can be brought into the form of (12) and for

| − ω

c
|x− x′0| −

ω

c
sinϕPW y0| � 1 (14)

the stationary phase point z0,s = 0 can be derived. Then
the approximation (13) yields the integrand of (8)

I ≈ D(y0, ω)G(x,x0, ω) (15)

and the driving function is given as

D(y0, ω) = P (ω)

√
8πj

ω

c
|x− x0| cosϕPW e−j

ω
c sinϕPW·y0 .

(16)

This driving function depends on the receiver position
x, for which typically a reference position xRef is cho-
sen. In [10] it is shown that correct synthesis is not only
achieved at exactly xRef but rather along a parametric
curve, which is analytically given for different referenc-
ing schemes in [10], such as the here discussed reference
point and parallel reference line.

For an arbitrarily located linear SSD along x0 equa-
tion (16) is given as

DRefPoint(x0, ω) =PPW(x0, ω)

√
j
ω

c
×√

8π |xRef − x0| 〈nPW,n(x0)〉 (17)

requiring coplanarity of x− x0, xRef − x0, n(x0), nPW

and cosϕp > 0.
This driving function type (SPA I) is identical to the

virtual point source’s type in [2, (3.10&3.11)].

Stationary Phase Approximation for a Reference
Line

Applying a subsequent, second SPA w.r.t. y0 on the in-
tegral (8) with the driving function (16) for finding the
stationary phase point y0,s at which

φ′(y0 = y0,s) = 0 (18)

holds, yields the condition [11], cf. [10]

(y − y0,s)2 = x2 tan2 ϕPW (19)

when

| − ω

c
(|x− x0|+ sinϕPW y0)| � 1 (20)

holds. Plugging the solution for the stationary phase
point y0 = y0,s into |x− x0| of (16) yields

|x− x0| = x

√
1 + tan2 ϕPW. (21)

Inserting (21) into (16) by considering the allowed plane
wave directions −π2 < ϕPW < +π

2 yields the driving
function

D(y0, ω) = P (ω)

√
8π j

ω

c
cosϕPW x · e−j ωc sinϕPW·y0

(22)

for the synthesis integral (8).
This driving function is dependent on x, i.e. holds for

a line parallel to the linear SSD. Typically a reference
distance xRef is chosen at which SFS is correct in ampli-
tude and phase.

For an arbitrarily located linear SSD along x0 and the
distance rRef between the SSD and the parallel reference
line, (22) reads

DRefLine(x0, ω) =PPW(x0, ω)

√
j
ω

c
×

√
8π rRef

√
〈nPW,n(x0)〉 (23)

requiring coplanarity of x− x0, n(x0) and nPW as well
as cosϕp > 0.

This driving function type (SPA II) is identical to the
virtual point source’s type in [2, (3.16&3.17)].

Eq. (23) is precisely the same result as [7, (29)], i.e.
the farfield/high-frequency approximation of the exact
2.5D SDM solution [7, (17)], in detail shown in [11, Ch.
2] and [10].

Comparison of SPA I and II

The reported mismatch [7, Sec. IV-B], [6, Ch. 3.9.4] be-
tween the 2.5D SDM and 2.5D WFS solution stems from
the invalid assumption that a ’moving’ receiver/reference
point

|x− x0| = |

 x
y0
0

−
 0
y0
0

 | = x (24)

in the SPA I solution (16) yields the correct approxima-
tion for referencing to a parallel line [6, Ch. 3.9.3]. Then
the comparison of the two solutions

• (16) as DSPAI(y0, ω) with |x− x0| = x

• (22) as DSPAII(y0, ω)

leads to cf. [7, (28,29)]

DSPAI(y0, ω) = DSPAII(y0, ω)
√

cosϕPW
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and led to conclusion that WFS differs from the SDM
solution for large ϕPW.

In fact, both solutions are correct – using a specific
parametric curve referencing according to [10] – either
for a reference point (SPA I, (17)) or for a parallel refer-
ence line (SPA II, (23)). The latter one – WFS w.r.t. a
reference line – is identical to the farfield/high-frequency
approximation of the explicit 2.5D SDM solution, that
inherently involves a referencing to a parallel line. This
also holds for the virtual point source [4, 11] as well as
for moving virtual point sources [12,13].

Conclusion

This paper outlined the stationary phase approximations
deriving the 2.5D Neumann Rayleigh integral from its 3D
version for Wave Field Synthesis of a virtual plane wave
with a linear array. It is discussed that this is the same
approach as for the virtual point source and that the
derivations are consistent for the virtual plane and spher-
ical wave. Thus, the first approximation yields driving
functions for a reference point, the second one yields driv-
ing functions for a parallel reference line. The latter are
precisely identical with the farfield/high-frequency ap-
proximated explicit Spectral Division Method solutions.
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