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Introduction

Wave Field Synthesis (WFS) [1-3] is a well-established
sound field synthesis (SFS) technique that uses a dense
spatial distribution of loudspeakers arranged around an
extended listening area. It has been shown that WFS
based on the Neumann Rayleigh integral constitutes the
high-frequency and/or farfield approximation of the ex-
plicit SF'S solution, such as the Spectral Division Method
(SDM) [4] and Nearfield Compensated Higher-Order Am-
bisonics (NFC-HOA) [5,6]. However, for SF'S of a virtual
plane wave using a linear loudspeaker array a mismatch
between an SDM and a WF'S driving function has been
reported in [7].

In this paper we will derive WFS plane wave driving
functions using a similar stationary phase approximation
as introduced for the virtual non-focused point source,
cf. [2]. This yields WFS driving functions either for a
reference point or for a parallel reference line. It is shown
that the latter is identical to the high-frequency and/or
farfield approximated SDM solution.

Neumann Rayleigh Integral

The paper considers continuous secondary source distri-
butions (SSDs). WFS using spherical monopoles as sec-
ondary sources is based on the Neumann Rayleigh inte-
gral as the forward wavefield propagator
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here using x = (z,y,2)T, the SSD in the yz-plane
denoted as xp = (0,90,20)", the unit inward normal
n(xy) = (1,0,0)T and the 3D freefield Green’s function
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The directional derivative is defined as

P(xp,w
% = <grade(x,w)‘x:x6 ,n(xp)).  (3)
with the dot product notation (-,-). The e« time con-
vention for monochromatic waves is deployed. ¢ denotes
the speed of sound and w the angular frequency. The
considered listening area is the half space in direction of
n, i.e. z > 0 for the chosen geometry.

3D Neumann WFS of a Plane Wave

The directional derivative (3) of a plane wave with prop-
agating direction npw

Prw (x,w) = P(w)e ™ ¢ mpwx) n

is calculated to

8Ppw(X6,w)
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cos % = (npw, n(xg)) (6)
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using the angle ¢, between npw and n(xgp). The 3D

Neumann WFS driving function thus reads

B 28P(x6,w)
on

requiring plane wave propagating directions that fulfill
cos ¢y, > 0.

w
D(xq,w) = = 2]2 cos ¢, Pew (xq,w) (7)

3D to 2.5D Neumann WEFS

2.5D SFS using a linear SSD built from spherical
monopoles is given by the synthesis equation [7, (9)]

+oo
P(x,w) = /D(Xo,w)G(x,Xo,w)dyO (8)

using the specific geometry xg = (0,y0,0)T, the SSD on
the y-axis x = (z,%,0)T and n(xe) = (1,0,0)T. The
plane wave propagating direction is restricted to the xy-
plane as

npw = (cos ppw,sinppw,0)"  with (9)
cos pp = (npw, n(xo)) > 0. (10)

The implicit derivation of the plane wave driving func-
tion to be used with (8) is similar to that of a virtual
non-focused point source, cf. [2, Ch. 3.1]. This is shown
as follows.

Stationary Phase Approximation for a Reference
Point

For the virtual plane wave the inner integral of (1) reads,
cf. [8, (5.4-5.6)]
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using x = (z,y,0)T. With the stationary phase approx-
imation (SPA) [2, (3.2-3.4)], [9, Ch. 4.6.1], integrals of
the kind

+oo
I = /f(zo)e+j¢(zo)d20 (12)

can be approximated as
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for ¢(z9) — 0. Note the different use of ¢ and ¢. zp s
is the stationary phase point at which ¢’(zps) = 0 and
¢"(20,s) # 0 hold (note the derivatives w.r.t. zy). Eq.
(11) can be brought into the form of (12) and for

w w .
| =~ —xo| = — sinwpw yo| > 1 (14)

the stationary phase point zg ¢ = 0 can be derived. Then
the approximation (13) yields the integrand of (8)

I = D(yo,w) G(x,X0,w) (15)

and the driving function is given as

D(yo,w) = P(w) {/87j E|x — Xo| cos ppw e I ¢ Sinerwyo,
c

(16)

This driving function depends on the receiver position
x, for which typically a reference position xger is cho-
sen. In [10] it is shown that correct synthesis is not only
achieved at exactly xgrer but rather along a parametric
curve, which is analytically given for different referenc-
ing schemes in [10], such as the here discussed reference
point and parallel reference line.

For an arbitrarily located linear SSD along x¢ equa-
tion (16) is given as

W
DrRetpoint (X0, w) =Ppw (X0, w) V32X
V8T |XRet — Xo| (Nnpw, n(x0)) (17)

requiring coplanarity of x — Xg, XRef — X0, 1(X0), Npw
and cos ¢, > 0.

This driving function type (SPA I) is identical to the
virtual point source’s type in [2, (3.10&3.11)].

Stationary Phase Approximation for a Reference
Line

Applying a subsequent, second SPA w.r.t. yo on the in-
tegral (8) with the driving function (16) for finding the
stationary phase point yo s at which

¢'(yo = yo,s) =0 (18)
holds, yields the condition [11], cf. [10]

(y — yo.5)* = 22 tan® ppw (19)

when

w .
|—E(|x—x0|+smg0pwyo)\ >1 (20)
holds. Plugging the solution for the stationary phase
point yo = yo,s into |x — xo| of (16) yields

|x — xo| = 2 1/1 + tan? ppw. (21)

Inserting (21) into (16) by considering the allowed plane

wave directions —5 < ppw < +75 yields the driving

function

D(yo,w) = P(w) \/Sﬂj 2 cos ppw x - e 1 ¢ sinerwo
C
(22)

for the synthesis integral (8).

This driving function is dependent on z, i.e. holds for
a line parallel to the linear SSD. Typically a reference
distance xRer is chosen at which SF'S is correct in ampli-
tude and phase.

For an arbitrarily located linear SSD along x¢ and the
distance rger between the SSD and the parallel reference
line, (22) reads

LW
DrRefLine (X0, w) ZPPW(XOM)\/J X
V8T rref v/ (NPW, 0(X0)) (23)

requiring coplanarity of x — xg, n(xg) and npw as well
as cos @, > 0.

This driving function type (SPA II) is identical to the
virtual point source’s type in [2, (3.16&3.17)].

Eq. (23) is precisely the same result as [7, (29)], i.e.
the farfield/high-frequency approximation of the exact
2.5D SDM solution [7, (17)], in detail shown in [11, Ch.
2] and [10].

Comparison of SPA I and II

The reported mismatch [7, Sec. IV-B], [6, Ch. 3.9.4] be-
tween the 2.5D SDM and 2.5D WEF'S solution stems from
the invalid assumption that a 'moving’ receiver/reference
point

T 0
x—=xol=||y | —|w||l== (24)
0 0

in the SPA T solution (16) yields the correct approxima-
tion for referencing to a parallel line [6, Ch. 3.9.3]. Then
the comparison of the two solutions

e (16) as Dspa1(yo,w) with |x —xo| = =
® (22) as Dspani(yo,w)
leads to cf. [7, (28,29)]

Dgspat(yo,w) = Dspar(yo, w)+/cos ppw
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and led to conclusion that WFS differs from the SDM
solution for large ppw.

In fact, both solutions are correct — using a specific
parametric curve referencing according to [10] — either
for a reference point (SPA I, (17)) or for a parallel refer-
ence line (SPA II, (23)). The latter one — WFS w.r.t. a
reference line — is identical to the farfield /high-frequency
approximation of the explicit 2.5D SDM solution, that
inherently involves a referencing to a parallel line. This
also holds for the virtual point source [4,11] as well as
for moving virtual point sources [12,13].

Conclusion

This paper outlined the stationary phase approximations
deriving the 2.5D Neumann Rayleigh integral from its 3D
version for Wave Field Synthesis of a virtual plane wave
with a linear array. It is discussed that this is the same
approach as for the virtual point source and that the
derivations are consistent for the virtual plane and spher-
ical wave. Thus, the first approximation yields driving
functions for a reference point, the second one yields driv-
ing functions for a parallel reference line. The latter are
precisely identical with the farfield/high-frequency ap-
proximated explicit Spectral Division Method solutions.
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