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ABSTRACT
In this paper, we propose algorithms that map the low-level motion compensation and transformation functions of MPEG-
1/2, H.263/MPEG-4 ASP and H.264/MPEG-4 AVC video codecs onto common workflows. This way, a single discrete
implementation of luma prediction, chroma prediction and residual transform stages is sufficient for all covered video
coding standards.
The proposed luma prediction is based on 4x4 blocks to cover the H.264 specifications as well as the elder standards. The
design consists of a singular four stage pipeline for two block interpolation and two block averaging stages. Targeted for
hardware implementation, a strictly linear execution is provided, avoiding branch operations. The algorithmic behavior is
entirely dictated by the contents of the parameter ROM.
Since chrominance prediction must cover blocks as small as 2x2 pixels, a distinct operation is proposed for chroma. The
bilinear operation scheme in H.264 is able to carry out the operations for the elder standards with minor changes only.
In H.264, the classic 8x8 DCT transformation was replaced by a simplified 4x4 integer transform, based on a heavily
quantized DCT scheme. By modifications of a well-known multiplier-adder-based scheme, a generalized transformation
stage can be derived.
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1. INTRODUCTION
Current multistandard video decompressor architectures are focused on software-driven handling of higher level manage-
ment functions in order to support the bitstream semantics at the necessary flexibility level. Since the higher level man-
agement functions require only a limited amount of computations, processor-based approaches provide a good trade-off
between chip-area, power consumption, performance and flexibility in this respect.1 Most of the computational complex-
ity in a video decoder can be attributed to the image processing operations.2 Consequently, optimization is focused on
improving the behavior of the motion compensation, residual transform and post processing stages.

In a multistandard capable video decompressor, all operations have to be carried out with the distinct accuracy require-
ments of the respective standard. ISO MPEG-1 / MPEG-2 Video and ITU-T H.263 require an accuracy of 1

2 pel, while for
the later standards MPEG-4 Part 2 Visual and H.264/MPEG-4 Part 10 AVC an accuracy of 1

4 pel is mandatory. Another
improvement in the evolution of the coding standards was the interpolation filter response using multi-tap Wiener filters
in the 1

4 pel motion compensation instead of the simpler bi-linear interpolation scheme. The tradeoff for higher order
interpolation is an increased complexity in the image processing operations.

The lower level motion compensated prediction and residual transform algorithms are preferably implemented in hard-
ware to reduce system clock and power consumption, respectively. One solution in traditional hardware assisted approaches
is to provide specialized functional units for each algorithm. That approach guarantees optimal power consumption and
runtime performance for all individually optimized algorithms. On the other hand, distinct hardware units require an
additional amount of gates for functionality that possibly can be shared among the supported algorithms.
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Another common approach consists of software driven workflows with appropriate instruction set extensions for run-
time acceleration.3–6 The software driven workflows are very attractive in terms of flexibility. Each required algorithm can
be provided as individually optimized software sniplet and extensions for future application areas are easily feasible.

The method proposed in the following sections consists of a generic algorithm set that allows a single hardware imple-
mentation to accurately execute all required algorithms.

2. GENERIC LUMA MOTION INTERPOLATION ALGORITHM
2.1 Brief review of motion interpolation algorithms in current standards
This section describes the discrete operations to be carried out in the respective standards to perform the interpolation
within the fractional pel motion compensation. The basic operation within motion compensation is to fetch a rectangular
block of pels from the active reference frame. The block is addressed by the integer part of the motion vector plus a
number of extra pixels left and above the initial position, depending on the requirements of the following interpolation.
The fractional part of the motion vector (usually in 1

2 or 1
4 pel resolution) dictates the interpolation algorithm leading to the

desired predictor block.

In the elder standards MPEG-1, MPEG-2, H.263 and MPEG-4 part 2 a bi-linear interpolation in half pel accuracy
takes place.7 To obtain fractional pel motion compensated blocks, a simple averaging between pels adjacent to the desired
position is performed. With H.263, the rounding control bit was introduced in order to reduce the bias of the rounding
operation.8–10

Optionally, MPEG-4 part 2 Advanced Simple Profile (ASP) provides an interpolation method with quarter pel accu-
racy.11, 12 In that quarter pel interpolation mode, the half pel positions are interpolated using a symmetric 8 tap FIR filter
with the coefficients Co1[0, . . . , 7] = [−8, 24,−48, 160, 160,−48, 24,−8] to a total denominator of 256. The interpola-
tion is performed in discrete steps. First, the horizontal quarter pel position is computed and rounded/clipped to 8 bit range.
Afterwards, these horizontally interpolated pels are used for vertical interpolation. In order to maintain the same memory
bandwidth as with the half pel interpolation mode, the extra predictors required for the FIR filter are obtained by block
boundary mirroring. On the left and upper side of the predictor block∗, three pels are mirrored. One the lower and right
block boundary, two pels are extended by mirroring.13

The standard H.264 / MPEG-4 part 10 Advanced Video Coding (AVC) uses a quarter pel interpolation scheme by de-
fault.14 Compared to MPEG-4 ASP the impulse response length of the FIR filter was reduced to 6 taps with the coefficients
Co2[0, . . . , 5] = [1,−5, 20, 20,−5, 1]. Since no block boundary mirroring is performed in H.264, the interpolation re-
quires up to 81 source pels for interpolation of a single 4x4 block. Another difference to MPEG-4 ASP can be attributed to
the interpolation accuracy. In case of bi-directional half pel interpolation, rounding and clipping operations are carried out
after both directions are computed, while maintaining the full accuracy. In the last step, quarter pel positions are obtained
by averaging half pel positions.

2.2 General approach
As outlined in the previous section, the algorithms relevant for the scope of this paper feature a number of different
properties. A generic data flow covering all relevant data paths is depicted in fig. 1. To ensure bit-accurate results, the
rounding and clipping operations have to be carried out in the mandatory order. The direct approach to a generic motion
interpolation scheme as shown in fig. 1 would introduce a lot of conditional execution paths. Since the input blocks are
required in multiple stages within the hypothetical structure, a general pipeline structure with in-place operations is not
feasible using the depicted approach. It is clearly conceivable that this hypothetical structure would not be appropriate for
an efficient implementation.

The algorithm proposed in this paper is tailored to avoid conditional execution. Instead, a pipeline structure approach is
taken which dictates the behavior solely by parameter ROM tables. Most of the table addresses can be set up once for each
decoded frame. Only the current fractional pel position and the MPEG-4 block boundary mirroring condition are used for
the parameterization within the scope of a single block. For this algorithm it is assumed that all motion vectors are being
scaled to quarter pel resolution.

∗either 9x9 or 17x17 pels in 8x8 or 16x16 motion compensation, respectively
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Figure 1. Generic data flow graph of quarter pel interpolation respecting the algorithms of MPEG-1/-2, MPEG-4 ASP und H.264, active
path depends on current algorithm and desired sub-pel

Starting with the requirements of H.264 in terms of minimal allowed block size, the algorithm is tailored for block sizes
of 4x4. In MPEG-4 quarter pel mode, an 8 tap FIR filter needs to be executed. Therefore the input block for interpolating a
4x4 block needs 7 extra pixels in each dimension, hence Xr11,11. The basic components of the bi-directional interpolation
in all considered standards consist of the following building blocks:

• horizontal interpolation FIR filter

• vertical interpolation FIR filter

• clipping and rounding of filter outputs

• position dependent averaging

The proposed strategy for a unified solution to the interpolation workflow is a four stage pipelined structure. The main
property of the proposed algorithm is the calculation of all half pel positions so that the desired full-, half- or quarter pel
positions are available in the final stage. That concept is outlined in fig. 2.
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Figure 2. Outline of proposed generic quarter pel motion interpolation algorithm as a four stage structure for MPEG-1/-2, MPEG-4
ASP und H.264

The input block Xr11,11 is (a) horizontally filtered and optionally clipped to obtain block Xh9,11, consisting of four
filtered columns and five non-filtered columns. After interpolation, an optional averaging of intermediate results (b) takes
place. In stage (c), the vertical interpolation is performed with the resulting block Xv9,9. The final stage (d) averages a pair
of input pixels into the final predicted block X̂4,4. All four stages feature a static operation flow. The desired algorithm
behavior according to the respective compression standard is solely achieved by ROM parameters.

2.3 Horizontal interpolation stage (a)
The horizontal filtering uses 121 input pels to interpolate half pel positions from horizontally neighboring raster pels. The
result consists of four half pel positions per line. For each output pel, 8 coefficients are applied from the coefficient matrix.
The coefficient memory Co3 [τ, σh, ξ, k] contains a distinct set of entries for each pixel ξ to cover the border coefficient
mirroring (instead of border pel mirroring) in order to support MPEG-4 ASP in quarter pel mode. This step ensures linear



input data fetching for every supported standard. Besides the position dependency ξ of each filtered pixel and the coefficient
index k, the interpolation operation τ with the special condition σh is included in the definition.

Since MPEG-4 ASP demands rounding of interpolation results directly after the summation, an optional rounding rh

with clipping on parametric limits γhmin and γhmax was integrated into the scheme. The pel Xr[0, 0] is defined as the
position addressed by the integer part of the motion vector within the current reference frame.

Xh[2i + 1, j] = Clip3
(
γhmin, γhmax,

( 7∑
k=0

Co3[τ, σh, i, k] ·Xr[i− 3 + k, j]
)

+ rh[τ ]
)
& Vh[τ ]

with i = 0, 1, 2, 3 ; j = −3,−2, . . . , 7 (1)
Xh[2i, j] = 256 ·Xr[i, j]

with i = 0, 1, 2, 3, 4 ; j = −3,−2, . . . , 7 (2)

After the operation outlined above, the output block contains four half pel positions and five full pel positions per line. The
whole resulting block is 9 columns and 11 lines big. The entries are integer valued with 32 bit resolution. The additional
parameter Vh for bit-wise AND operation allows the removal of lower-valued bits in case of rounding. This way, a rounding
operation can be performed while maintaining the same dynamic range for all output pels.
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Figure 3. Per pixel scheme for the generic horizontal interpolation; half pel positions are gained by an 8 tap FIR filter, full pel positions
are normalized to factor 256; introduction of parameters rh[τ ], γhmin, γhmax, Vh[τ ] and coefficients C0. . . C7 from the current set in
Co3[τ, σh, i, k]

Figure 3 graphically demonstrates the algorithm for a single pixel position. All intermediate values are normalized to
eight binary digits of fractional accuracy. This is accomplished by an 8 bit shift for the full pel values Xh[2i, j] and by
scaled coefficients in Co3 [τ, σh, ξ, k]. The advantage of this normalization is a uniform backward scaling and rounding in
the vertical filtering stage, regardless whether the data was uni- or bi-directionally filtered. That step is especially important
for H.264, where different rounding is applied in uni- and bi-directional cases, normatively.

The parameters τ, Vh[τ ], rh[τ ], γhmin, γhmax are set up globally for each reconstructed frame. The only per-block
local variable besides the reference block address is the coefficient set σh.

2.4 Intermediate averaging stage (b)
The stage b was mainly introduced to cover the requirements of MPEG-4 in quarter pel mode. Since the input values
for the vertical filtering in MPEG-4 are already averaged horizontally filtered pels, this stage ensures correct pixel values.
Dependent on the fractional part of the motion vector dx, four cases of averaging per filter method τ need to be covered. The
paired index field idxb 3,4,2 is per picture statically dependent on the filter method τ . The per block dynamic dependency
is the fractional part dx of the motion vector.



The indices pair from idxb specifies tho horizontal offsets between 0 and 2 to address entries from Xh[n, j] to Xh[n+
2, j] for averaging. The averaging follows the scheme c = (a + b + rb) >> 1. Including all parameters, the averaging of
the horizontal filtered block Xh is as follows:

Xh[i, j] =
((

Xh

[
i + idxb[τ, dx, 0], j

]
+ Xh

[
i + idxb[τ, dx, 1]j

]
+ rb[τ ]

)
>> 1

)
& Vb[τ ]

with i = 0, 1, . . . , 7 ; j = −3,−2, . . . , 7 (3)

The averaging stage can be effectively disabled by setting idxb[τ, dx, 0] = idxb[τ, dx, 1] = 0. This way, the averaging is
performed on the same input pels, so that for every rb[τ ] ≤ 1 the original value in Xh is retained. Another application for
this stage is the half pel interpolation of MPEG-1 and MPEG-2, since two neighboring full pel positions can be addressed
with the offset range 0..2. In analogy to stage a, an accuracy limiter Vb[τ ] is available.

2.5 Vertical interpolation stage (c)
The vertical interpolation is performed in analogy to stage a using an 8 tap FIR filter. The inputs to the vertical stage are the
contents of the block Xh. All nine columns of the input matrix serve as input to an individual filter run. After summation,
the final data word size of unsigned 8 bit is obtained by appropriate downscaling. Since every standard covered by our
proposal uses a downscaling to 8 bit after the vertical stage and the data ranges in Co3[τ, σv, i, k] are matched to the
multiplier 256, special clipping constants are not required in stage c. The rounding control, mandatory to H.263 and
MPEG-4 ASP is applied to the rounding parameter rv[τ ]. The coefficient buffer Co3 [τ, σv, ξ, k] is the same as for the
horizontal stage. Only the special case σv can differ. The filtering algorithm can be expressed as follows:

Xv[i, 2j + 1] = Clip
(( 7∑

k=0

Co3[τ, σv, j, k] ·Xh[i, j − 3 + k]
)

+ rv[τ ]
)

>> 16

mit i = 0, 1, . . . , 8 ; j = 0, 1, 2, 3 (4)
Xv[i, 2j] = Clip

(
(Xh[i, j] + 128) >> 8

)
mit i = 0, 1, . . . 8 ; j = 0, 1, 2, 3, 4 (5)

By normalizing all entries in Xh to the factor 256, all four half pel variants† can be downscaled by the same factor without
negative impact of the rounding constants 128 and rv[τ ], respectively. For all non filtered values with a data range extension
by factor 256, a rounding constant of < 256 vanishes by the integer shift operation.

The same principle applies for rounding of exclusively vertically filtered signal parts. By scaling the original raster
pels by factor 256, the rounding parameter rv[τ ] and the down scaling range of 16 is the same for uni- and bi-directional
filtered pels (fig. 4). Additional parameters are not needed. The result of the vertical filtering stage is the matrix Xv with
9x9 entries in unsigned 8 bit resolution.

2.6 Final averaging stage (d)
Starting with the requirements of H.264, the last step in the processing chain is the averaging of two half-pel resolution
predictors. These predictors can consist of interpolated sub-pels, raster pels or a combination of both. In H.264, there
are a number of sub-pel positions with diagonal averaging. Hence, the index selector in stage d uses two-dimensional
coordinates within the source block Xv. In similar fashion to stage b, the offset pair from the coordinate table is applicable
to all 16 output pels of the motion interpolated block. The coordinate index field idxd[τ, dx, dy, ρ] depends on both
fractional components dx, dy of the motion vector on a per-block base and is dimensioned as idxd 3,4,4,4 . For each
motion interpolation algorithm τ with a motion vector resolution of 1

4 pel there are sixteen distinct cases with 2 two-
dimensional indices ρ on the input matrix Xv have to be covered. In analogy to stage b, the averaging rule is of the type
c = (a + b + rd) >> 1, executed on all 16 output pels.

ŝ[i, j] =
((

Xv

[
i + idxd[τ, dx, dy, 0], j + idxd[τ, dx, dy, 1]

]
+ Xv

[
i + idxd[τ, dx, dy, 2], j + idxd[τ, dx, dy, 3]

]
+ rd[τ ]

)
>> 1

)
mit i = 0, 1, 2, 3 ; j = 0, 1, 2, 3 (6)

†raster pel, horizontal, vertical, diagonal
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Figure 4. Per pixel scheme for the generic vertical interpolation; half pel positions Xv[i,2j] are gained by an 8 tap FIR filter, scaled
back to 8 bit range by 16 bit and clipped to range [0 . . . 255]; full and uni-directional filtered pels Xv[i,2j + 1] are obtained by scaling
8 bit back and clipping; introduction of parameters rv[τ ] and coefficients C0. . . C7 from the current set in Co3[τ, σv, j, k]

The result ŝ[i, j] of stage d is the final motion compensated block Ŝ. In order to support the H.263 and MPEG-4 rounding
control, the constant rd[τ ] was specified which is 1 for usual cases and 0 for active rounding control, respectively.

For sub-pels where averaging in stage d is not necessary, that step can be disabled by appropriate addressing. By setting
idxd[τ, dx, dy, 0] = idxd[τ, dx, dy, 2] and idxd[τ, dx, dy, 1] = idxd[τ, dx, dy, 3] onto the same indices on matrix Xv,
the original contents are retained after the averaging operation as long as rd[τ ] ≤ 1.

2.7 Discussion
The generic motion interpolation algorithm requires a considerable amount of input pixel data. For interpolating to a 4x4
pel output block, a 11x11 input block is used. Most practical cases of sub-pel positions actually require only a fraction of
that data. In a system concept, where the pixel data from the reference frame buffer is directly passed to the interpolation
stage, that overhead is undesirable. However, modern architectures include internal cache memory to efficiently utilize
the characteristics of DRAM in terms of burst transfers. Data transfers between the internal cache and the interpolation
stage confine the overhead of our proposed algorithm to the internal bus while the DRAM accesses can be limited to the
minimum required bandwidth. Hence, there is no additional load on off-chip circuitry.

The exemplary workflow mentioned the use of 32 bit integer variables. The actual dynamic range in stage ais 17 bit
plus sign. Stage bincreases the dynamic range by an additional bit to 18 bit plus sign. In stage c, the intermediate dynamic
range before downscaling and clipping is 26 bit plus sign. Multiplier coefficients in Co3 [τ, σ, ξ, k] are discrete 8 bit values
plus sign. Since only a limited number of significant bits in the multiplier coefficients are present, the multipliers in stages
a and c can be implemented as 5 bit units.

The appropriate parameters and sample testbed source code are available in.15

3. GENERIC CHROMA MOTION INTERPOLATION ALGORITHM
Traditionally, the chroma interpolation scheme is carried out with lower complexity than the luma counterpart. Since in
H.264, the smallest block size in interpolation is 2x2 chroma pels, a distinct implementation is desirable. All standards
covered in this paper use a bi-linear interpolation scheme for chroma. In H.264, the accuracy of the bi-linear interpolation
is 1

8 pel, while the elder standards use 1
2 pel accuracy. Assuming that the chroma motion vector adjustment was carried out

according to the respective standards, the interpolation algorithm in H.264 is able to carry out the operations for MPEG-1,
MPEG-2, MPEG-4 ASP and H.263 based streams. The only additional conditions to be respected are the rounding control
bit and the scaling of the half-pel motion vectors to 1

8 pel.
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Figure 5. Chroma interpolation with 1
8

pel accuracy: estimate the sub-pel j from four surrounding raster pels

The bi-linear interpolation with 1
8 pel accuracy is illustrated in fig. 5. The pel A is addressed by the integer part of the

motion vector. A weight factor w is calculated for each raster pel surrounding the desired sub pel j. These weights are
constant across the predicted block Ŝ:

wA = (8− dx) · (8− dy)
wB = dx · (8− dy)
wC = (8− dx) · dy

wD = dx · dy

(7)

The sub-pel j within the predicted block Ŝ is obtained by position dependent weighting of the raster pels A, B, C and D as
follows:

ŝ [x, y ] = (wA · A + wB · B + wC · C + wD · D + rc[τ ]) >> 6 (8)

For H.264, the usual rounding constant of rc[0] = 32 is applied. Since all weights are calculated to a total sum of 64
instead of providing distinct algorithms for uni- and bi-directional interpolation, the rounding control bit from H.263 and
MPEG-4 ASP can be applied as a constant to rc. Hence, the rounding constant in presence of the RC bit can be calculated
as rc[1] = rc[2] = 16 · (2−RC) in H.263 and MPEG-4 ASP quarter pel modes, respectively.

4. UNIFIED 8X8 DCT AND 4X4 H.264 TRANSFORM
The default de-correlation method in the classic image and video compression standards like JPEG and MPEG is based on
variants of the discrete cosine transform. In the standards up to MPEG-4 part 2 it is carried out by a 8x8 point 2D DCT.

Fast algorithms For the computation of inverse cosine transform at a block size 8x8, 64 multiplications and additions
are required when applying the direct method. In real-time applications this complexity is undesirable. As consequence, a
number of fast methods have been proposed. These fast methods can be categorized as direct and indirect approaches.

The indirect methods are based on integration of the DCT in existing algorithms of computing the Fast Fourier Trans-
form (FFT) or Hartley Transform.16–23 Direct methods include the factorization of the DCT24–28 or recursive work-
flows.29–32 Most of the well-known algorithms rely on the separable nature of the DCT and consequently perform the
row and column transform steps in distinct computation passes.

Duhamel33 predicted the minimal number of multiplications for computing a 8 point inverse DCT with 11. The fastest
known algorithm by Loeffler et al.34 requires 11 multiplications and 29 additions.

In analogy to the graphic interpretation of the classic FFT35, 36 , most of the optimized DCT algorithms are visualized
in form of butterfly diagrams. It is notable that in contrast to the regular structure of the classic FFT, fast DCT variants
often utilize irregular data paths. In hardware applications, these introduce additional complexity in computation units and
data paths.37

Chen et al.24 proposed a factorization of an N point DCT into two N/2 transformation matrices with an attached butter-
fly. By application of the first factorization step, the Chen algorithm reduces the complexity of a single dimension 8 point
DCT to N2/2=32 operations. Consecutive decompositions of the 4 point DCTs allow the reduction to 16 multiplications
using the Chen algorithm. In fig. 6, a single decomposition is shown.
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Figure 6. Factorization of the inverse 8 point DCT after Chen into two 4 point transformations plus a butterfly operation in the output
stage38

Extension of the Chen algorithm for H.264 A major advantage of the Chen algorithm24 is its regular structure. In
matrix-vector notation the algorithm can be expressed as follows:39, 40

x0

x1

x2

x3

 =
1
2


A B A C
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A −C −A B
A −B A −C



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X4

X6

 +
1
2


D E F G
E −G −D −F
F −D G E
G −F E −D
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1
2


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X7
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with A = cos

π

4
, B = cos

π

8
, C = sin

π

8
, D = cos

π

16
,

E = cos
3π

16
, F = sin

3π

16
, G = sin

π

16
, (9)

The core operation of this scheme consists of four parallel or successive multiplications per path, followed by an accumu-
lation of the results. The compact operation logic of the Chen algorithm is very attractive for hardware applications,37, 40–42

even up to HDTV resolution.43
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Figure 7. Multiplier-adder structure of the inverse DCT core operation by using the Chen algorithm41



By visualizing the inverse DCT in form of a multiplier-adder structure (fig. 7), it is plausible that a linear workflow can
be applied on the input data‡.

This property of the multiplier-adder scheme is very useful for the integration of the H.264 transform in existing inverse
DCT designs. Since the integer transform in H.264 is a highly quantized form of a DCT-III,44 the pattern of an inverse
H.264 transform already matches the form of the left side in eq. 9. Respecting the scaling factor 1

2 in front of the matrix,
the four point inverse H.264 transformation can be expressed as follows:

x0

x1

x2

x3

 =
1
2


A0 B0 A0 C0

A0 C0 −A0 −B0

A0 −C0 −A0 B0

A0 −B0 A0 −C0




X0

X1

X2

X3


with A0 = 2, B0 = 2, C0 = 1 (10)

Based on the initial condition of a linear access to the coefficients in conjunction with the Chen DCT algorithm, the
second matrix can be modified as well. One modification is the doubling of the coefficient memory to cover the demands of
H.264. The other modification consists of a conditional butterfly stage. By introducing the factor ητ , the butterfly operation
can be applied for the DCT with η1 = 1

2 . In the case of H.264, η0 = 0 disables the butterfly in order to process two 4x4
blocks in one run.

To keep the output order of results x4 . . . x7 for DCT-based transformation steps intact, the order of coefficients in the
right matrix is sorted accordingly for the H.264 transform. Therefore the H.264 coefficients are vertically mirrored. The
whole computation algorithm with substituted generic coefficients Hτ , . . . ,Wτ in the right matrix was derived as follows:

x0

x1

x2

x3

 =
1
2


Aτ Bτ Aτ Cτ

Aτ Cτ −Aτ −Bτ

Aτ −Cτ −Aτ Bτ

Aτ −Bτ Aτ −Cτ




X0

X2

X4

X6

 + ητ


Hτ Iτ Jτ Kτ

Lτ Mτ Nτ Oτ

Pτ Qτ Rτ Sτ

Tτ Uτ Vτ Wτ




X1

X3

X5

X7




x7

x6

x5

x4

 = ητ


Aτ Bτ Aτ Cτ

Aτ Cτ −Aτ −Bτ

Aτ −Cτ −Aτ Bτ

Aτ −Bτ Aτ −Cτ




X0

X2

X4

X6

− 1
2


Hτ Iτ Jτ Kτ

Lτ Mτ Nτ Oτ

Pτ Qτ Rτ Sτ

Tτ Uτ Vτ Wτ




X1

X3

X5

X7


(11)

The substitution of variables D, . . . , G in eq. 9 for the 4 point DCT-IV results in the following coefficients:

H1 = cos π
16 , I1 = cos 3π

16 , J1 = sin 3π
16 , K1 = sin π

16 ,
L1 = cos 3π

16 , M1 = −sin π
16 , N1 = −cos π

16 , O1 = −sin 3π
16 ,

P1 = sin 3π
16 , Q1 = −cos π

16 , R1 = sin π
16 , S1 = cos 3π

16 ,
T1 = sin π

16 , U1 = −sin 3π
16 , V1 = cos 3π

16 , W1 = −cos π
16 ,

(12)

In analogy, the H.264 coefficients are given by mapping of the variables A0, B0, C0 to the substituted coefficients:

H0 = 2, I0 = −2, J0 = 2, K0 = −1,
L0 = 2, M0 = −1, N0 = −2, O0 = 2,
P0 = 2, Q0 = 1, R0 = −2, S0 = −2,
T0 = 2, U0 = 2, V0 = 2, W0 = 1,

(13)

This way, the 8 point inverse DCT transformation can be re-used for transforming two blocks of four coefficients. In
order to comply with the rules in IEEE1180, pure integer arithmetic requires 12 bit plus sign for the coefficients. Conse-
quently, the multiplier of integer valued coefficients A1, . . . ,W1 is 4096. The intermediate values in the first transformation

‡after properly dividing between pair and impair indices of xn



step require 3 bit fractional accuracy. Therefore the input values Xn in the vertical transformation step require 15 bit total
accuracy. After accumulation, the rounding, back scaling and clipping operations are applied. As scaling constant, a 9 bit
shift operation is used.

In H.264, no fractional accuracy is required. Taking the 9 bit shift operation into account, a factor of 2048 for the
coefficients A0, . . . ,W0 is appropriate. By this factor, all multiplicators stay in the 12 bit plus sign range used for the DCT.
The complete structure of the proposed system for generic inverse transform is depicted in fig. 7. Sample test code and
IEEE1180 verification results are available in.15

Xn

xn

Multiply

Coeff
ROM

15

12 (13)

Adder
20

Accumulator Butterfly

τ

1

Rounding/
ClippingMUX

Figure 8. Operation core of combined inverse DCT and inverse H.264 transform by extending the addressing of transform coefficient
by one bit and type dependent deactivation of butterfly stage

5. CONCLUSION
In this paper, algorithms were presented that map motion compensation and residual transform on common work-flows. It
has been shown that – despite a significant number of differences – luma motion compensation can be unified on a generic
processing model. Algorithm-specific branching was avoided. The algorithmic behavior of the common processing core
is modified only by selecting the contents of fixed coefficient, clipping and addressing tables. Furthermore it has been
shown that for chroma motion compensation, the H.264 algorithm can be slightly modified to accompany the needs of
elder standards.

In system designs where the chip area of individual components plays a significant role, the proposed inverse transform
structure might be a viable choice. The additional complexity of the generic transform compared to a single DCT stage
can be kept minimal.
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