
CONTENT-ADAPTIVE SEMI-FRAGILE IMAGE AUTHENTICATION
BASED ON JPEG2000 COMPRESSION

Mathias Schlauweg and Erika Müller

Institute of Communications Engineering,

Faculty of Computer Science and Electrical Engineering, University of Rostock,
Richard-Wagner Str. 31, 18119, Rostock, Germany

ABSTRACT

In this paper, a new system is presented for authenticating
image content using digital watermark embedding in the
DWT-domain of JPEG2000. A semi-fragile signature, gen-
erated from the host signal, is embedded into the image for
content verification. Generation as well as embedding of the
signature is adapted to the image content for performance
improvement. The system is tested extensively and perform-
ance results are compared to those of methods proposed by
other authors. We show that our new system outperforms
the methods compared to. Our semi-fragile authentication is
robust against non-malicious modifications, such as lossy
compression, noise, image blurring and sharpening, changes
of luminance and contrast as well as scaling. But in contrast
to other methods, our authentication is secure at the same
time, which we proof by different forgery attacks.

Index Terms — Semi-fragile image authentication, digi-
tal watermarking, JPEG2000, texture-based segmentation

1. INTRODUCTION

The change from classical analogue to digital photography
led to several advantages and new applications, in the last
years. Images and video can be generated easier and with
higher quality than ever before. Distribution and duplication
of digital content is possible without loss of quality. No spe-
cial knowledge or expensive tools are required for post-
processing multimedia data.

But these innovations can also yield unpleasant disad-
vantages. Images can be manipulated very easily. For exam-
ple, every year, there is a spectacular image content manipu-
lation revealed in any famous print media. The repertoire
reaches from correction of small blemish to dramatization of
war reporting or political campaigns. Hence, images and
video are in a credibility crisis.

There are two countermeasures for exposing image
content manipulations. In a first strategy, also known as
digital forensic, experts are consulted looking for traces of
image processing. For example, during image capture every

camera produces its own fingerprints (e.g., inconsistencies
in lightning, chromatic aberration, special noise pattern). If
image objects are deleted or mixed from different images,
these traces can catch expert’s eye.

Another way of content verification is the embedding
of digital watermarks. For embedding, the multimedia sig-
nal is slightly changed. At the verification side, these signal
changes can be detected and thus the embedded information
can be retrieved. By checking the correctness of the ex-
tracted watermark a user can infer easily if the image has
been tampered with. This strategy is advantageous over the
forensic approach, because no experts are needed and im-
ages can be used according to customs.

The aim is to allow admissible manipulations such as
lossy compression or image enhancement, but to reject mali-
cious manipulations that change the visual content.

In this paper, we present a secure authentication system
based on digital watermarking, which is robust against a
wide range of non-malicious image processing operations.
In section 2, we formulate requirements that an authentica-
tion system should fulfil. In sections 3, we describe our new
system in detail. Simulation results and comparisons with
methods by other authors are given in section 4. Finally,
section 5 concludes the work.

2. IMAGE AUTHENTICATION

As mentioned above, an authentication watermark should be
robust against non-malicious image processing but fragile
against image content attacks. This requirement is known as
semi-fragility. For example, the watermark should be robust
against lossy compression, noise addition, change of image-
size, or image enhancement.

At the other hand, operations that must be detected are,
for example, cropping, deleting, or merging (copy/paste) of
image objects and operations that strongly affect perceptual
image quality.

Next to semi-fragility, there are further important re-
quirements for an authentication system. First, the water-
mark has to be generated depending on the content of the
host image. This should avoid an attacker copying a valid

watermark to a manipulated image. Second, the content-de-
pendent watermark should be signed using asymmetric en-
cryption. A forger must be prevented from generating a new
valid, signed watermark for a manipulated image. Third, for
security reasons and for the purpose of easier applicability,
during verification, the original image should not be needed.
This property is known as obliviousness. Hence, everybody
should be able to verify the integrity of an image.

Comparative overviews of different semi-fragile image
authentication methods can be found in [1]-[4].

In this paper, we compare our new system with those
methods given in [1] and results from other methods listed
in there. These comparisons represent the current state-of-
the-art concerning the above-claimed requirements.

3. PROPOSED AUTHENTICATION SYSTEM

The proposed system in this paper combines ideas from ap-
proaches in [9] and [10] extended by further normalizations
and adaptations. The overall framework of our authentica-
tion watermarking system is demonstrated in Fig. 1.

First, the image is hashed to generate a content-depend-
ent watermark. For this hashing not the gray-value pixels
are used but semi-fragile features extracted from image con-
tent. Afterwards, the hash-value is signed and encoded us-
ing forward error correction. The resulting watermark is
embedded within the image. At verification side, the water-
mark can be extracted, decrypted, and compared with the
hash generated from the received image without any extra
information from the embedding site.

All single steps of this framework are described in the
following subsections in detail.

Fig. 1. Digital watermarking system for image authentication

3.1. Watermark generation and embedding

Our new authentication system is based on quantization of
the coefficients of the host image in the discrete wavelet
domain (DWT). It is directly integrated in the process of a
JPEG2000 compression.

3.1.1. Construction of a secure image-dependent hash
If { }: :1jx x j J≤ ≤= ∈ are the coefficients of an image in
DWT-domain and jq is a quantized value using quantizer

()Q • and step-size ∆, then ()1ˆ j jx Q q−= is the reconstructed
value of jq , as in Eq. (1) and Eq. (2).

 () ()sign j
j j j

x
q Q x x

⎢ ⎥
= = ⎢ ⎥

∆⎢ ⎥⎣ ⎦
 (1)

 () ()()
1

0 0
ˆ

sign 0,5 0j

q
x Q q

q q q
−

=⎧⎪= = ⎨ + ∆ ≠⎪⎩
 (2)

In numerous simulations, we found out that if we quantize
and, afterwards, hash all coefficients { }: :1nx x n N≤ ≤= ∈ of
the LL4-subband of the DWT-decomposition a secure and
robust image-dependent hash-value can be constructed.

As long as the quantized coefficients x̂ after changes
due to image processing operations or attacks remain within
the range ()); 1∆ ∆ +⎡⎣ they yield the same hash-value dur-
ing verification. If a forger moves just one single LL4-coef-
ficient out of its quantization interval this manipulation can
be detected and alarm is raised.

A digital signature is generated from the hash-value by
the use of asymmetric encryption (e.g., RSA). We use a key-
length of 512 bits. Additionally to the hash-value also time,
date, etc. can be integrated to make the shot unique.

Afterwards, the signature is encoded using forward er-
ror correction. We apply convolutional coding with a code
rate r = 1/2. Hence, the watermark { }: 1:1n n N= ∈± ≤ ≤w w
to be embedded has a length of 1024 bits.

3.1.2. Signature embedding by quantization
For our semi-fragile authentication approach it is sufficient
not to embed the signature watermark as robust as possible
but as robust as necessary. That means, if an image process-
ing operation or an attack yields a different hash-value dur-
ing verification it doesn’t matter if the signature can be ex-
tracted correctly. Signature and hash-value don’t match, and
hence, verification fails.

For that reason, we embed the data within the same host
signal locations the signature is generated from, using scalar
dither modulation [6]. Hence, the embedding locations are
secured by the hash process in turn.

Since JPEG2000 applies quantization with dead-zone,
our watermark embedding is adapted to this dead-zone as in
Eq. (3), where y is the watermarked host signal.

()

4 4
and 1

sign 4 otherwise

n
n

n

n
n

n n

x
x

y
x

x

−∆ ≤ ≤ ∆⎧
⎪ = +⎪= ⎨ ⎛ ⎞⎢ ⎥⎪∆ ⋅ + ⋅∆⎜ ⎟⎢ ⎥⎜ ⎟⎪ ∆⎣ ⎦⎝ ⎠⎩

w

w

 (3)

Data is embedded by quantizing every LL4-coefficient to a
closest quantization lattice point of one of two subsets of
lattices / 4

n nΛ = ∆ + ∆w w . In Fig. 2, these lattice points are
marked by either or .

watermark
embedding

private key

forward error
correction (FEC)

additional
information

(e.g., time, date)

sign
(e.g., RSA)

feature
extraction

hash
(e.g., MD5)

image marked
image

public
key

additional
information

authentication
result

image
reconstruction

feature
extraction

watermark
extraction

FEC

signature
verification

hash

Fig. 2. Example: quantization for hash interval computation and watermark
embedding using the modified dither modulation with dead-zone

3.1.3. Image size normalization
To tolerate scaling of host image size signature generation
as well as embedding take place at a fixed size of 512x512
pixels. Since tiling is a basic part of JPEG2000 compres-
sion, we separate larger images into sub-regions of this size,
and hence, get a standard conform JPEG2000 file stream.

In this way, JPEG2000 decoding with successive scal-
ing, as shown in Fig. 3, doesn’t affect image authenticity.
The image can be verified as long as changes caused by
image scaling don’t effect hash-value computation.

On the other hand, if scaling is a consequence of partial
JPEG2000 file stream decoding (image size transcoding)
the integrity can be verified as long as the marked LL4-
subband is available.

Fig. 3. Progressive image decoding with lower resolution (left); image de-
coding and scaling afterwards (right)

3.1.4. Luminance and contrast normalization
Since we use LL-subband coefficients for signature genera-
tion as well as embedding, the host image has to be normal-
ized prior watermarking to allow luminance and contrast ad-
justment operations.

For that reason, in a first step, the host signal is normal-
ized to the mean pixel luminance (subtraction of gray-value
pixel mean). In a second step, the image is normalized to
contrast. As in Eq. (4), a factor g is computed from the pixel
values of image { }: : 0 255,1j jI I I j J≤ ≤ ≤ ≤= ∈ . Prior to
hashing and signature embedding, all host signal values are
divided by factor g, where the same process takes place
during signature verification.

1/ 2

2

1

1 1
256

J

j
j

g I
J =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ (4)

A contrast change, now, becomes a scaling of factor g, and
hence, can be reversed similar to the normalization pro-
posed by Pérez-González et al. in [7].

Further, we embed g as a second watermark in the HL4-,
LH4-, and HH4-coefficients using the same strategy as
described in subsection 3.1.2. Thereby, g is represented by
32 bits and encoded using repeat-accumulate coding with a
code rate of r = 1/96. The resulting 3072 bits are embedded
using a small step-size, whereby there occur no further per-
ceptual embedding distortions.

3.2. Watermark extraction and image reconstruction

During content integrity verification the embedded signa-
ture has to be compared (i.e., after extraction and decoding)
with the hash-value generated from the received image.

The watermark is extracted by nearest neighbor quanti-
zation to one of the two quantizer subsets.

3.2.1. Hash interval error correction
As a consequence of data embedding at the same locations
used for quantization-based hashing the overall robustness
of hash-value computation is degraded.

As mentioned before, the hash-value remains constant
as long as the quantized LL4-coefficients don’t leave the
interval ()); 1∆ ∆ +⎡⎣ . But, as shown in Fig. 2, due to em-
bedding the coefficients are moved to the lower or upper
half of the quantization interval, respectively. Hence, even
image processing operations changing the LL4-coefficients
more than ∆/4 yield the verification to fail.

To solve this problem we extended the watermark bit
error correction as follows. If []ˆ 1; 1= − +w denotes the water-
mark extracted from the received host signal ŷ∈ and

{ }1, 1= − +w is the corrected watermark after FEC-decoding,
then Eq. (5) can be applied to correct the hash intervals.

 ()
ˆ ˆˆsign

8
n

n n

y
q y

⎢ ⎥−
= ⋅ +⎢ ⎥∆⎣ ⎦

n nw w
 (5)

As demonstrated in Fig. 4, the hash interval is expanded to
the range () ())1/4 ; 3/4∆ − ∆ +⎡⎣ or () ())1/4 ; 5/4∆ + ∆ +⎡⎣ ,
respectively, depending on the watermark bit at the appro-
priate location. Hence, despite data embedding the coeffi-
cients can be changed up to ∆/2 without affecting images
authenticity. That way, the overall robustness is gained by a
factor of two.

correct host signal
value after embedding

disturbed signal value
quantized to wrong

hash interval

corrected hash
interval

∆ example coefficient

false
hash interval

host signal
change

1= −w

correct
hash interval

ˆ 1= +w

1= −w

Fig. 4. Example: reconstruction of hash interval by combining hash-value
quantization and watermark bit error correction

decoding & successive scaling partial decoding

non-quantized
DWT-coefficient

quantization for
hash computation

quantization for
watermark
embedding

0
dead-zone

-3∆ -2∆ -∆ 0 ∆ 2∆ 3∆ 4∆

-3∆ -2∆ -∆ 0 ∆ 2∆ 3∆ 4∆

example coefficient

hash
intervall

3.2.2. Watermark removal for image quality enhancement
A watermark bit is embedded in the lower or the upper half
of the hash interval by moving the host signal coefficient to
the points ()1/ 4∆ + or ()3/ 4∆ + , respectively. Since the
distribution of the coefficients of a DWT-transformed image
in each hash interval can be approximated by a uniform dis-
tribution, this position is not optimal. To reduce this noise,
which is higher than simple ∆-quantization noise, the veri-
fication algorithm can move the quantized LL4-coefficients
back to the centre of the hash intervals, ()1/ 2∆ + , after the
watermark bits are extracted. This removes the embedded
watermark and enhances image quality. Simulations have
shown that the peak-signal-to-noise-ratio (PSNR) can be
raised by approximately 2.5dB due to this removal.

3.3. Adaptation of step-size ∆ based on image content

The choice of embedding strength (step-size ∆), and hence,
the robustness of the hash as well as the signature are lim-
ited by the visual perception of embedding induced distor-
tions. As shown in Fig. 5, if the same step-size is used for
all LL4-coefficients watermark embedding is not optimal.

The human visual system is less sensitive to changes in
textured regions than in smooth regions of an image. That
means, the choice of embedding strength is mainly limited
by the visual perception of distortions in homogenous re-
gions such as the cloud-free sky in the example image.

Fig. 5 Example: image distortions caused by signature generation and em-
bedding using the same step-size ∆ = 8 for all LL4-subband coefficients

To improve the performance of our authentication system
we use different step-sizes. We separate the image into ho-
mogenous regions and stronger textured regions. For signa-
ture generation and embedding within the LL4-coefficients
representing the former regions we use step-size ∆1. For all
the rest we use ∆2.

As a consequence of using a larger step-size for tex-
tured regions the overall robustness against non-malicious
image processing can be improved, as we show in section 4.

3.3.1. Texture-based image region separation
Based on the ideas in [8], we developed a new texture-based
image region separation. We separate an image into less and

stronger textured regions using the DWT-coefficients. As
visualized in Fig. 6, except for the LL3-subband, all co-
efficients of the third DWT-decomposition level are com-
pared to a threshold τ. Afterwards, the three matrices are
added and 2x2 block-wise averaged. Finally, the known
morphologic operations closing and erosion are applied to
refine the separation. The resulting matrix F∈ we call fea-
ture mask, in this paper.

Fig. 6 Texture-based feature mask generation

Compared to the original image, homogenous regions yield
negative values, whereas for stronger textured regions fea-
ture F is positive. Hence, during watermark embedding, we
apply ∆1 for all locations where F < 0, otherwise, we apply
∆2, if F ≥ 0.

3.3.2. Errors due to feature mask changes
Because our authentication system is oblivious, the feature
mask has to be calculated in the same way from the received
signal during verification. Slight changes due to image proc-
essing can yield errors. Even if no manipulation has been
applied discrepancies can occur, for example, because the
embedding process itself has influence on the parameter
calculation and the separation feature mask.

As shown in Fig. 7, suppose a coefficient is quantized
to the highlighted point of lattice ′Λ (using ∆1) during em-
bedding. If afterwards the separation feature mask changes
for this location, then ′′Λ would be used during extraction,
where ′Λ and ′′Λ denote the two quantization lattices that
each consist of sub-lattices 1−Λ and 1+Λ marked with and .
Since ′′Λ at this location covers ′Λ with a point , as well,
no error occurs. But if the point right beside it has been
used, it would be falsely decided to a point in lattice ′′Λ .
In this case, a bit substitution error would occur.

Fig. 7. Errors during watermark extraction due to choice of wrong quantiza-
tion lattice Λ2 instead of Λ1

∆1

∆2 = 3⋅∆1

correct
false

′Λ

′′Λ

-5

0

5

10

-10

original image difference imagemarked image

feature
mask F of
size 32x32

– τ

– τ

– τ

HL3

HH3

LH3

x

block-wise
2x2 mean

closing &
erosion

subtraction of
threshold τ

3.4. Soft image separation during FEC-decoding

The most often applied technique to circumvent discrepan-
cies between the separation feature masks during embed-
ding and extraction is to form a gap around the separation
threshold. In other words, the used feature is pre-distorted to
leave a margin. As a consequence, the image quality is de-
graded. Furthermore, there are separation approaches where
it is computational infeasible to project the pre-distortion
back onto the host image.

To solve this problem without applying pre-distortion,
we propose to integrate commonly used hard region separa-
tion into an overall soft processing framework, as in Fig. 8.

Fig. 8 Overall hard processing a), hard region separation with soft bit de-
coding b), overall soft processing c), where F̂ = separation feature during
extraction, ŷ = received host signal, w = corrected watermark

We use the separation feature F̂ computed from the re-
ceived image to weight the extracted watermark signal dur-
ing FEC-decoding. For that, we exploit two properties as
described in the following subsections.

3.4.1. Property I - certainty of separation decision
We use the certainty of how close the texture feature is to
the selected feature threshold τ. If the feature is close to the
decision threshold (F̂ tending to zero), it is uncertain which
quantization lattice has to be used during extraction. In this
case, the certainty tends to zero. If the feature is far from the
threshold and it is sure which lattice was chosen during
embedding, then the certainty is high.

3.4.2. Property II - lattice point coverage
By simulations we found out that it is advantageous to apply
odd ratio (i.e., ∆2/∆1 = 3, 5, 7, …) for the step-sizes during
watermark embedding. In this case, the points of lattices ′Λ
and ′′Λ show more “covers” than for even ratio ∆2/∆1.

Further, we learned that if we choose ratio ∆2/∆1 to be
3, 7, 11, etc., then lattice ′′Λ has to be inverted, resulting in
lattice ′′Λ . That means, all bits to be embedded at locations
where 0F ≥ have to be inverted, first. Likewise, after extrac-
tion, all bits received using lattice ′′Λ have to be inverted.

For attacks, such as lossy compression, noise adding or fil-
tering, the distortion of the quantized signal can be expected
to be Gaussian distributed. Since the variance of this distri-
bution is the same for both lattices ′Λ and ′′Λ , the following
probability density functions ()pdf • can be expected. As
can be seen in Fig. 9, there are spaces at lattice ′′Λ where it
is unlikely that a signal sample 2ŵ is located.

Fig. 9 Probability density function of the disturbed host signal ŷ, superim-
posed for all possible quantization lattice points (schematic representation)

If the feature is close to the decision threshold and the signal
sample is somewhere in the space where ()2ˆpdf w is small,
it is more likely that the sample was originally embedded
using lattice ′Λ .

3.4.3. Host signal weighting using both properties
During decoding, we separate the received host signal into
two sub-signals ()1ˆ ˆQ y′=w and ()2ˆ ˆQ y′′=w , where ()Q′ •
denotes the quantizer used for lattice ′Λ and ()Q′′ • denotes
the quantizer for lattice ′′Λ . Afterwards, 1ŵ and 2ŵ are cou-
pled to the certainty-of-separation-decision as well as lat-
tice-point-coverage-property using the two weighting func-
tions ()1

ˆf F and ()2
ˆf F .

()1

ˆ1 ,
ˆ1ˆ ˆ1 cos ,

2 2

ˆ0 ,

F

Ff F F

F

α

α π α α
α

α

< <

≤ <

≤ <

⎧ −∞ −
⎪

⎛ ⎞⎛ ⎞⎪ +
= + ⋅ − +⎜ ⎟⎜ ⎟⎨ ⎜ ⎟⎝ ⎠⎪ ⎝ ⎠
⎪

+ +∞⎩

(6)

() ()2
2 2

1

ˆ0 ,
ˆ1ˆ ˆ ˆˆ1 cos , ,

2 2

ˆ1 ,

F

Ff F F F

F

α

α π β α α
α

α

< <

≤ <

≤ <

⎧ −∞ −
⎪

⎛ ⎞⎛ ⎞⎪∆ +
= ⋅ − ⋅ ⋅ − +⎜ ⎟⎜ ⎟⎨ ⎜ ⎟∆ ⎝ ⎠⎪ ⎝ ⎠

⎪
+ +∞⎩

w

(7)

 ()2 2

ˆˆ ˆ ˆ, 1 sin cos
2

FF α πβ
α

⎛ ⎞+ ⎛ ⎞= − ⋅ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

w w (8)

By applying Eq. (9), finally, the two sub-signals are joint
resulting in watermark signal w , which is the input to the
soft-decision FEC-decoder (e.g., Viterbi algorithm).

region
separation F̂

FEC-decoding
& bit decision

FEC-
decoding

bit
decision

ŷ

a)

b)

soft region separation,
FEC-decoding & bit decision

c)

w

w
region

separation F̂

ŷ

F̂

ŷ
w

()1ˆpdf w

∆2/2

∆1/2

′Λ

()2ˆpdf w
ŷ

ŷ

′′Λ

Fig. 10. Example: (a) marked image using non-adaptive embedding, where ∆1 = ∆2 = 6, resulting in PSNR = 40.89 dB, (b) marked image using texture-based
step-size adaptation, where ∆1 = 3 and ∆2 = 9, resulting in similar PSNR = 40.98 dB, and (c) contrast-enhanced difference of (b) to original image

(a) (b) (c)

 () ()1 1 2 2
ˆ ˆˆ ˆ

2

f F f F⋅ + ⋅
=
w w

w (9)

3.5. Perceptual image quality after signature embedding

The choice of embedding strength (step-size ∆), and hence,
the robustness of the hash as well as the signature are lim-
ited by the visual perception of embedding induced distor-
tions. To demonstrate these distortions, in Fig. 10, marked
images are shown using non-adaptive as well as adaptive
embedding. As can be seen by smaller visual distortions at
the difference of the middle image to the original, for ho-
mogenous regions we use a smaller step-size than for
stronger textured regions. Although the PSNR-values are
similar for the left and middle image, distortions cannot be
seen for the adaptively marked image in the middle.

By the use of subjective tests and simulations, we found
out that choosing ∆1 = 3 and ∆2/∆1 = 3 yield the best com-
promise between perceptual image quality and robustness.

4. EXPERIMENTAL RESULTS

4.1. Robustness against non-malicious manipulations

For all simulations we used a set of 52 different gray-scale
images of size 512x512 pixels. For LL4-coefficient hashing
we applied the known message-digest algorithm 5 (MD5)
yielding a hash-value of length 128 bits. Further, we used
RSA for signing the hash (512 bits key length). Finally, the
signature was FEC-encoded using convolutional coding and
a code-rate r = 1/2. Hence, 1024 bits were embedded within
the LL4-subband (32x32 coefficients) of every host image.

4.1.1. Comparison of performance
To compare the performance of our system with those of
methods by other authors we use the results collected by
Ekici et al. in their image authentication overview paper [1].

Results of robustness simulation are given for seven image
authentication methods, where the watermark embedding in-
duced image distortion was fixed to PSNR = 41 dB.

The authors tested the robustness (false positive ratio)
against a set of following signal processing attacks:
• Smooth - low pass filtering using a 3x3 filter mask
• Sharpen - edge enhancement using 3x3 unsharp masking
• S and P - salt-pepper-noise (1%)
• Histogram equalization
• AWGN - Gaussian noise (σ = 4,5 PSNR ~ 35 dB)
• JPEG 70 - lossy JPEG compression (QF = 70)
• Random file stream bit errors (0.1%)
• No attack - verification of marked, undisturbed image

Further, Ekici et al. simulated the false negative ratio (Pmiss)
by verifying the non-marked original images.

Table 1. False alarm and miss probabilities for comparison of performance
of our approach with results of other authentication methods as given in [1],
where embedding induced PSNR = 41dB

The results in Table 1 show that our authentication system
(Schlauweg et al.) performs better in most cases. We reach
better false positive ratios except for histogram equalization
and salt-pepper-noise. However, since 1%-salt-pepper-noise
yields visual image degradations, we rate this operation to
the group of malicious manipulations, anyhow. Histogram

Signal-processing attacks Pf

Semi-fragile
method

Forgery
attack
Pmiss

No
attack Smooth

Histog.
equal.

S and P
1%

AWGN
35 dB JPEG 70 Sharpen

Random
errors

Chang et al. 0,0 % 0,0 % 100 % 99,0 % 100 % 32,3 % 0,0 % 100 % 0,0 %

Delp et al. 0,1 % 2,3 % 54,5 % 3,4 % 6,5 % 2,7 % 2,4 % 0,3 % 14,1 %

Eggers et al. 0,0 % 0,0 % 41,4 % 91,0 % 2,6 % 0,0 % 0,0 % 65,6 % 2,5 %

Fridrich 1,0 % 1,6 % 62,0 % 5,5 % 19,5 % 2,5 % 25,8 % 21,0 % 2,5 %

Kundur et al. 0,1 % 0,0 % 77,7 % 99,5 % 51,9 % 10,0 % 2,9 % 98,1 % 0,1 %

Queluz 0,01 % 0,01 % 27,8 % 94,3 % 42,7 % 0,01 % 0,01 % 100 % 1,1 %

Liao et al. 8,7 % 3,0 % 34,3 % 80,7 % 43,3 % 1,7 % 1,5 % 79,9 % 4,2 %

Schlauweg et al. 0,0 % 0,0 % 0,0 % 100 % 100 % 0,0 % 0,0 % 43,7 % 0,0 %

5 25 45 65 85
10-6

10-5

10-4

10-3

10-2

10-1

100

JPEG Quality Factor

B
ER

∆1 = 2 (non-adaptive)

∆1 = 3 (non-adaptive)

∆1 = 2 (adaptive)

∆1 = 3 (adaptive)

0.1 0.22 0.34 0.46 0.58 0.7
10-6

10-5

10-4

10-3

10-2

10-1

100

JPEG2000 Target Rate
B

ER

∆1 = 2 (non-adaptive)

∆1 = 3 (non-adaptive)

∆1 = 2 (adaptive)

∆1 = 3 (adaptive)

0.5 2.5 4.5 6.5 8.5
10-6

10-5

10-4

10-3

10-2

10-1

100

Standard Deviation σ

B
ER

∆
1 = 2 (non-adaptive)

∆1 = 3 (non-adaptive)

∆1 = 2 (adaptive)

∆1 = 3 (adaptive)

-45 -30 -15 0 15 30 45

10-4

10-3

10-2

10-1

100

Luminance Change

B
ER

∆1 = 2 (non-adaptive)

∆1 = 3 (non-adaptive)

∆1 = 2 (adaptive)

∆1 = 3 (adaptive)

0.45 0.7 0.85 1 1.15 1.3 1.45

10-4

10-3

10-2

10-1

100

Contrast Change

B
ER

∆1 = 2 (non-adaptive)

∆1 = 3 (non-adaptive)

∆
1 = 2 (adaptive)

∆
1 = 3 (adaptive)

0.25 0.4 0.55 0.7 0.85
10-6

10-5

10-4

10-3

10-2

10-1

100

Scaling Factor
FP

R
 (F

al
se

 P
os

iti
ve

 R
at

io
)

∆1 = 2 (non-adaptive)

∆1 = 3 (non-adaptive)

∆1 = 2 (adaptive)

∆1 = 3 (adaptive)

Fig. 11. Results of simulations for the overall enhanced, adaptive image authentication system - robustness against: (a) JPEG compression, (b) JPEG2000
compression, (c) additive Gaussian noise, (d) luminance change, (e) contrast change, and (f) scaling of image size. Parameters: for non-adaptive embedding
∆2/∆1 = 1, for adaptive embedding ∆2/∆1 = 3, τ = 1.5, α = 5.

(a) (b) (c)

(d) (e) (f)

FP
R

 (F
al

se
 P

os
iti

ve
 R

at
io

)

FP
R

 (F
al

se
 P

os
iti

ve
 R

at
io

)

FP
R

 (F
al

se
 P

os
iti

ve
 R

at
io

)

FP
R

 (F
al

se
 P

os
iti

ve
 R

at
io

)

FP
R

 (F
al

se
 P

os
iti

ve
 R

at
io

)

FP
R

 (F
al

se
 P

os
iti

ve
 R

at
io

)

equalization, on the other hand, is a known image enhance-
ment operation. But, although our system is able to handle
luminance or chrominance changes, it fails for the complex
non-linear equalization of image histogram.

We think that for applicability of an authentication sys-
tem it is important that the system is secure. Hence, we
highlight that Pmiss (forgery attack) is zero for our system.

4.1.2. Comparison of non-adaptive and adaptive embedding
To demonstrate how our new authentication system benefits
from texture-based adaptive hashing/embedding, in Fig. 11,
we show results of further robustness tests. It can be seen
that for similar visual perception of embedding induced dis-
tortions the robustness against non-malicious image proc-
essing could be improved.

4.2. Security of the proposed authentication system

In addition to high robustness against non-malicious image
processing, it is important that alarm is raised during verifi-
cation if fraudulent attacks are applied to the marked image.

For example, to simulate a copy/paste-attack for a large
number of marked images, we randomly exchanged two

pixel blocks within each image. Afterwards, these images
were verified. The aim is to reach a false negative ratio
tending to one. The results of this test are shown in Fig. 12.

Fig. 12 Results of simulations of pixel block-exchanging attack, where the
difference between both exchanged pixel blocks is PSNR < 15 dB (left) and
PSNR < 25 dB (right)

Since some pixel blocks exchanged against each other can
be similar resulting in the same hash-value during veri-
fication, the determined false negative ratio is not always
one. So, we separated the blocks exchanged during this test
into two groups. All pairs of blocks yielding a strong differ-

1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

 (F
al

se
 N

eg
at

iv
e

R
at

io
)

Blockgröße = 4x4
Blockgröße = 8x8
Blockgröße = 16x16

Step-Size ∆1

Block-size
Block-size
Block-size

1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FN
R

 (F
al

se
 N

eg
at

iv
e

R
at

io
)

Blockgröße = 4x4
Blockgröße = 8x8
Blockgröße = 16x16

Step-Size ∆1

Block-size
Block-size
Block-size

Fa
ls

e
N

eg
at

iv
e

R
at

io

Fa
ls

e
N

eg
at

iv
e

R
at

io

Fig. 13. Example for an always detectable manipulation using the proposed authentication system: (a) watermarked image with ∆1 = 3 and ∆2/∆1 = 3; (b) ma-
nipulated image - object of size 6x9 pixel removed; (c) contrast-enhanced difference image

(a) (b) (c)

object (sailboot) removed

ence (PSNR < 15 dB) were assigned to the first group. Pairs
yielding a higher PSNR were assigned to the second group.

As can be seen, the usage of ∆1 = 3 and ∆2/∆1 = 3 yields
a secure authentication system in terms of copying and past-
ing or deleting image objects of big and small size. For ex-
ample, the filigree 6x9 pixel-sized attack shown in Fig. 13 is
always securely detectable using our image authentication.
Hence, our system is not only robust against a range of
allowed image processing operations but secure against ma-
nipulating attacks at the same time.

5. CONCLUSION

In this paper, we described the embedding of a digital wa-
termark for image authentication. During JPEG2000 com-
pression, a semi-fragile signature was generated from image
content and embedded by quantization of the coefficients in
the DWT-domain. Generation as well as embedding of the
signature is adapted to the image content for performance
improvement. For that, we presented a soft-decoding tex-
ture-based image region separation and used different step-
sizes for less and stronger textured image regions to exploit
the texture masking properties of the human visual system.
Our image authentication is tested extensively and perform-
ance results are compared to those of methods proposed by
other authors. We showed that our new system outperforms
these methods. Our semi-fragile authentication is robust
against non-malicious modifications, such as lossy compres-
sion, noise, image blurring and sharpening, changes of
luminance or contrast as well as scaling. But in contrast to
other methods, our authentication is secure at the same time,
which we proofed by different forgery attacks.

6. REFERENCES

[1] Ö. Ekici, B. Sankur, B, Coşkun, U. Naci, and M. Akcay,
“Comparative evaluation of semifragile watermarking algorithms,”
Journal of Electronic Imaging, vol.13 (1), pp. 209-216, Jan. 2004.

[2] B. B. Zhu, M. D. Swanson, and A. H. Tewfik, “When seeing
isn’t believing,” IEEE Transaction on Signal Processing, vol.21,
pp. 40-49, March 2004.

[3] C. Rey and J.-L- Dugelay, “A survey of watermarking
algorithms for image authentication,” EURASIP Journal of Ap-
plied Signal Processing, vol.6, pp. 613-621, March 2002.

[4] Q. Sun and S. F. Chang, “A secure and robust digital signature
scheme for JPEG2000 image authentication,” IEEE Transactions
on Multimedia, vol.7 (3), pp. 480-494, June 2005.

[5] Z. Zhang, G. Qui, Q. Sun, X. Lin, Z. Ni, and Y. Q. Shi, “A
unified authentication framework for JPEG2000,” In Proc. of
IEEE International Conference on Multimedia and Expo, vol.2,
pp. 915-918, June 2004.

[6] B. Chen and G. Wornell, “Quantization index modulation: a
class of provably good methods for digital watermarking and
information embedding,” IEEE Transactions on Information The-
ory, vol.47 (4), pp. 1423-1443, May 2001.

[7] F. Pérez-González, C. Mosquera, M. Barni, and A. Abrardo,
“Rational Dither Modulation: A novel data hiding method robust
to value-metric scaling attacks,” In Proc. of IEEE Workshop on
Multimedia Signal Processing, pp. 139-142, Sept. 2004.

[8] D. Huang, L. Jiufen, H. Jiwu, and L. Hongmei, “A DWT-
based image watermarking algorithm,” In Proc. of IEEE Interna-
tional Conference on Multimedia and EXPO, pp. 313-316, Aug.
2001.

[9] M. Schlauweg, D. Pröfrock, and E. Müller, “JPEG2000-based
secure image authentication,” In Proc. of ACM Multimedia and
Security Workshop, Geneva, Switzerland, pp. 62-67, Sept. 2006.

[10] M. Schlauweg, D. Pröfrock, and E. Müller, “Avoiding hard
decisions in adaptive watermarking,” In Proc. IEEE International
Conference on Image Processing, Dallas, USA, pp. 453-456, Sept.
2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

