
CONTENT-ADAPTIVE SEMI-FRAGILE IMAGE AUTHENTICATION  
BASED ON JPEG2000 COMPRESSION 

 
Mathias Schlauweg and Erika Müller 

 
Institute of Communications Engineering,  

Faculty of Computer Science and Electrical Engineering, University of Rostock, 
Richard-Wagner Str. 31, 18119, Rostock, Germany 

 
 

ABSTRACT 
 
In this paper, a new system is presented for authenticating 
image content using digital watermark embedding in the 
DWT-domain of JPEG2000. A semi-fragile signature, gen-
erated from the host signal, is embedded into the image for 
content verification. Generation as well as embedding of the 
signature is adapted to the image content for performance 
improvement. The system is tested extensively and perform-
ance results are compared to those of methods proposed by 
other authors. We show that our new system outperforms 
the methods compared to. Our semi-fragile authentication is 
robust against non-malicious modifications, such as lossy 
compression, noise, image blurring and sharpening, changes 
of luminance and contrast as well as scaling. But in contrast 
to other methods, our authentication is secure at the same 
time, which we proof by different forgery attacks. 
 

Index Terms — Semi-fragile image authentication, digi-
tal watermarking, JPEG2000, texture-based segmentation 
 

1. INTRODUCTION 
 
The change from classical analogue to digital photography 
led to several advantages and new applications, in the last 
years. Images and video can be generated easier and with 
higher quality than ever before. Distribution and duplication 
of digital content is possible without loss of quality. No spe-
cial knowledge or expensive tools are required for post-
processing multimedia data. 

But these innovations can also yield unpleasant disad-
vantages. Images can be manipulated very easily. For exam-
ple, every year, there is a spectacular image content manipu-
lation revealed in any famous print media. The repertoire 
reaches from correction of small blemish to dramatization of 
war reporting or political campaigns. Hence, images and 
video are in a credibility crisis. 

There are two countermeasures for exposing image 
content manipulations. In a first strategy, also known as 
digital forensic, experts are consulted looking for traces of 
image processing. For example, during image capture every 

camera produces its own fingerprints (e.g., inconsistencies 
in lightning, chromatic aberration, special noise pattern). If 
image objects are deleted or mixed from different images, 
these traces can catch expert’s eye. 

Another way of content verification is the embedding 
of digital watermarks. For embedding, the multimedia sig-
nal is slightly changed. At the verification side, these signal 
changes can be detected and thus the embedded information 
can be retrieved. By checking the correctness of the ex-
tracted watermark a user can infer easily if the image has 
been tampered with. This strategy is advantageous over the 
forensic approach, because no experts are needed and im-
ages can be used according to customs. 

The aim is to allow admissible manipulations such as 
lossy compression or image enhancement, but to reject mali-
cious manipulations that change the visual content. 

In this paper, we present a secure authentication system 
based on digital watermarking, which is robust against a 
wide range of non-malicious image processing operations. 
In section 2, we formulate requirements that an authentica-
tion system should fulfil. In sections 3, we describe our new 
system in detail. Simulation results and comparisons with 
methods by other authors are given in section 4. Finally, 
section 5 concludes the work. 
 

2. IMAGE AUTHENTICATION 
 
As mentioned above, an authentication watermark should be 
robust against non-malicious image processing but fragile 
against image content attacks. This requirement is known as 
semi-fragility. For example, the watermark should be robust 
against lossy compression, noise addition, change of image-
size, or image enhancement. 

At the other hand, operations that must be detected are, 
for example, cropping, deleting, or merging (copy/paste) of 
image objects and operations that strongly affect perceptual 
image quality. 

Next to semi-fragility, there are further important re-
quirements for an authentication system. First, the water-
mark has to be generated depending on the content of the 
host image. This should avoid an attacker copying a valid 



watermark to a manipulated image. Second, the content-de-
pendent watermark should be signed using asymmetric en-
cryption. A forger must be prevented from generating a new 
valid, signed watermark for a manipulated image. Third, for 
security reasons and for the purpose of easier applicability, 
during verification, the original image should not be needed. 
This property is known as obliviousness. Hence, everybody 
should be able to verify the integrity of an image. 

Comparative overviews of different semi-fragile image 
authentication methods can be found in [1]-[4]. 

In this paper, we compare our new system with those 
methods given in [1] and results from other methods listed 
in there. These comparisons represent the current state-of-
the-art concerning the above-claimed requirements. 
 

3. PROPOSED AUTHENTICATION SYSTEM 
 
The proposed system in this paper combines ideas from ap-
proaches in [9] and [10] extended by further normalizations 
and adaptations. The overall framework of our authentica-
tion watermarking system is demonstrated in Fig. 1. 

First, the image is hashed to generate a content-depend-
ent watermark. For this hashing not the gray-value pixels 
are used but semi-fragile features extracted from image con-
tent. Afterwards, the hash-value is signed and encoded us-
ing forward error correction. The resulting watermark is 
embedded within the image. At verification side, the water-
mark can be extracted, decrypted, and compared with the 
hash generated from the received image without any extra 
information from the embedding site. 

All single steps of this framework are described in the 
following subsections in detail. 
 

 
Fig. 1.  Digital watermarking system for image authentication 

 
3.1. Watermark generation and embedding 
 
Our new authentication system is based on quantization of 
the coefficients of the host image in the discrete wavelet 
domain (DWT). It is directly integrated in the process of a 
JPEG2000 compression. 
 
3.1.1. Construction of a secure image-dependent hash 
If { }: :1jx x j J≤ ≤= ∈  are the coefficients of an image in 
DWT-domain and jq  is a quantized value using quantizer 

( )Q •  and step-size ∆, then ( )1ˆ j jx Q q−=  is the reconstructed 
value of jq , as in Eq. (1) and Eq. (2). 
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In numerous simulations, we found out that if we quantize 
and, afterwards, hash all coefficients { }: :1nx x n N≤ ≤= ∈  of 
the LL4-subband of the DWT-decomposition a secure and 
robust image-dependent hash-value can be constructed. 

As long as the quantized coefficients x̂ after changes 
due to image processing operations or attacks remain within 
the range ( )); 1∆ ∆ +⎡⎣  they yield the same hash-value dur-
ing verification. If a forger moves just one single LL4-coef-
ficient out of its quantization interval this manipulation can 
be detected and alarm is raised. 

A digital signature is generated from the hash-value by 
the use of asymmetric encryption (e.g., RSA). We use a key-
length of 512 bits. Additionally to the hash-value also time, 
date, etc. can be integrated to make the shot unique. 

Afterwards, the signature is encoded using forward er-
ror correction. We apply convolutional coding with a code 
rate r = 1/2. Hence, the watermark { }: 1:1n n N= ∈± ≤ ≤w w  
to be embedded has a length of 1024 bits. 
 
3.1.2. Signature embedding by quantization 
For our semi-fragile authentication approach it is sufficient 
not to embed the signature watermark as robust as possible 
but as robust as necessary. That means, if an image process-
ing operation or an attack yields a different hash-value dur-
ing verification it doesn’t matter if the signature can be ex-
tracted correctly. Signature and hash-value don’t match, and 
hence, verification fails. 

For that reason, we embed the data within the same host 
signal locations the signature is generated from, using scalar 
dither modulation [6]. Hence, the embedding locations are 
secured by the hash process in turn. 

Since JPEG2000 applies quantization with dead-zone, 
our watermark embedding is adapted to this dead-zone as in 
Eq. (3), where y is the watermarked host signal. 
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Data is embedded by quantizing every LL4-coefficient to a 
closest quantization lattice point of one of two subsets of 
lattices / 4

n nΛ = ∆ + ∆w w . In Fig. 2, these lattice points are 
marked by either  or . 
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Fig. 2.  Example: quantization for hash interval computation and watermark 
embedding using the modified dither modulation with dead-zone 
 
3.1.3. Image size normalization 
To tolerate scaling of host image size signature generation 
as well as embedding take place at a fixed size of 512x512 
pixels. Since tiling is a basic part of JPEG2000 compres-
sion, we separate larger images into sub-regions of this size, 
and hence, get a standard conform JPEG2000 file stream. 

In this way, JPEG2000 decoding with successive scal-
ing, as shown in Fig. 3, doesn’t affect image authenticity. 
The image can be verified as long as changes caused by 
image scaling don’t effect hash-value computation. 

On the other hand, if scaling is a consequence of partial 
JPEG2000 file stream decoding (image size transcoding) 
the integrity can be verified as long as the marked LL4-
subband is available. 

 

 
Fig. 3.  Progressive image decoding with lower resolution (left); image de-
coding and scaling afterwards (right) 
 
3.1.4. Luminance and contrast normalization 
Since we use LL-subband coefficients for signature genera-
tion as well as embedding, the host image has to be normal-
ized prior watermarking to allow luminance and contrast ad-
justment operations. 

For that reason, in a first step, the host signal is normal-
ized to the mean pixel luminance (subtraction of gray-value 
pixel mean). In a second step, the image is normalized to 
contrast. As in Eq. (4), a factor g is computed from the pixel 
values of image { }: : 0 255,1j jI I I j J≤ ≤ ≤ ≤= ∈ . Prior to 
hashing and signature embedding, all host signal values are 
divided by factor g, where the same process takes place 
during signature verification. 
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A contrast change, now, becomes a scaling of factor g, and 
hence, can be reversed similar to the normalization pro-
posed by Pérez-González et al. in [7]. 

Further, we embed g as a second watermark in the HL4-, 
LH4-, and HH4-coefficients using the same strategy as 
described in subsection 3.1.2. Thereby, g is represented by 
32 bits and encoded using repeat-accumulate coding with a 
code rate of r = 1/96. The resulting 3072 bits are embedded 
using a small step-size, whereby there occur no further per-
ceptual embedding distortions. 
 
3.2. Watermark extraction and image reconstruction 
 
During content integrity verification the embedded signa-
ture has to be compared (i.e., after extraction and decoding) 
with the hash-value generated from the received image. 

The watermark is extracted by nearest neighbor quanti-
zation to one of the two quantizer subsets. 
 
3.2.1. Hash interval error correction 
As a consequence of data embedding at the same locations 
used for quantization-based hashing the overall robustness 
of hash-value computation is degraded.  

As mentioned before, the hash-value remains constant 
as long as the quantized LL4-coefficients don’t leave the 
interval ( )); 1∆ ∆ +⎡⎣ . But, as shown in Fig. 2, due to em-
bedding the coefficients are moved to the lower or upper 
half of the quantization interval, respectively. Hence, even 
image processing operations changing the LL4-coefficients 
more than ∆/4 yield the verification to fail. 

To solve this problem we extended the watermark bit 
error correction as follows. If [ ]ˆ 1; 1= − +w  denotes the water-
mark extracted from the received host signal ŷ∈  and 

{ }1, 1= − +w  is the corrected watermark after FEC-decoding, 
then Eq. (5) can be applied to correct the hash intervals. 
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As demonstrated in Fig. 4, the hash interval is expanded to 
the range ( ) ( ))1/4 ; 3/4∆ − ∆ +⎡⎣  or ( ) ( ))1/4 ; 5/4∆ + ∆ +⎡⎣ , 
respectively, depending on the watermark bit at the appro-
priate location. Hence, despite data embedding the coeffi-
cients can be changed up to ∆/2 without affecting images 
authenticity. That way, the overall robustness is gained by a 
factor of two. 
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3.2.2. Watermark removal for image quality enhancement 
A watermark bit is embedded in the lower or the upper half 
of the hash interval by moving the host signal coefficient to 
the points ( )1/ 4∆ +  or ( )3/ 4∆ + , respectively. Since the 
distribution of the coefficients of a DWT-transformed image 
in each hash interval can be approximated by a uniform dis-
tribution, this position is not optimal. To reduce this noise, 
which is higher than simple ∆-quantization noise, the veri-
fication algorithm can move the quantized LL4-coefficients 
back to the centre of the hash intervals, ( )1/ 2∆ + , after the 
watermark bits are extracted. This removes the embedded 
watermark and enhances image quality. Simulations have 
shown that the peak-signal-to-noise-ratio (PSNR) can be 
raised by approximately 2.5dB due to this removal. 
 
3.3. Adaptation of step-size ∆ based on image content 
 
The choice of embedding strength (step-size ∆), and hence, 
the robustness of the hash as well as the signature are lim-
ited by the visual perception of embedding induced distor-
tions. As shown in Fig. 5, if the same step-size is used for 
all LL4-coefficients watermark embedding is not optimal.  

The human visual system is less sensitive to changes in 
textured regions than in smooth regions of an image. That 
means, the choice of embedding strength is mainly limited 
by the visual perception of distortions in homogenous re-
gions such as the cloud-free sky in the example image. 
 

 
Fig. 5  Example: image distortions caused by signature generation and em-
bedding using the same step-size ∆ = 8 for all LL4-subband coefficients 
 
To improve the performance of our authentication system 
we use different step-sizes. We separate the image into ho-
mogenous regions and stronger textured regions. For signa-
ture generation and embedding within the LL4-coefficients 
representing the former regions we use step-size ∆1. For all 
the rest we use ∆2. 

As a consequence of using a larger step-size for tex-
tured regions the overall robustness against non-malicious 
image processing can be improved, as we show in section 4. 
 
3.3.1. Texture-based image region separation 
Based on the ideas in [8], we developed a new texture-based 
image region separation. We separate an image into less and 

stronger textured regions using the DWT-coefficients. As 
visualized in Fig. 6, except for the LL3-subband, all co-
efficients of the third DWT-decomposition level are com-
pared to a threshold τ. Afterwards, the three matrices are 
added and 2x2 block-wise averaged. Finally, the known 
morphologic operations closing and erosion are applied to 
refine the separation. The resulting matrix F∈  we call fea-
ture mask, in this paper. 
 

 
Fig. 6  Texture-based feature mask generation 

 
Compared to the original image, homogenous regions yield 
negative values, whereas for stronger textured regions fea-
ture F is positive. Hence, during watermark embedding, we 
apply ∆1 for all locations where F < 0, otherwise, we apply 
∆2, if F ≥ 0. 
 
3.3.2. Errors due to feature mask changes 
Because our authentication system is oblivious, the feature 
mask has to be calculated in the same way from the received 
signal during verification. Slight changes due to image proc-
essing can yield errors. Even if no manipulation has been 
applied discrepancies can occur, for example, because the 
embedding process itself has influence on the parameter 
calculation and the separation feature mask. 

As shown in Fig. 7, suppose a coefficient is quantized 
to the highlighted point  of lattice ′Λ  (using ∆1) during em-
bedding. If afterwards the separation feature mask changes 
for this location, then ′′Λ  would be used during extraction, 
where ′Λ  and ′′Λ  denote the two quantization lattices that 
each consist of sub-lattices 1−Λ  and 1+Λ  marked with  and . 
Since ′′Λ  at this location covers ′Λ  with a point , as well, 
no error occurs. But if the point  right beside it has been 
used, it would be falsely decided to a point  in lattice ′′Λ . 
In this case, a bit substitution error would occur. 
 

 
Fig. 7. Errors during watermark extraction due to choice of wrong quantiza-
tion lattice Λ2 instead of Λ1 
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3.4. Soft image separation during FEC-decoding 
 
The most often applied technique to circumvent discrepan-
cies between the separation feature masks during embed-
ding and extraction is to form a gap around the separation 
threshold. In other words, the used feature is pre-distorted to 
leave a margin. As a consequence, the image quality is de-
graded. Furthermore, there are separation approaches where 
it is computational infeasible to project the pre-distortion 
back onto the host image. 

To solve this problem without applying pre-distortion, 
we propose to integrate commonly used hard region separa-
tion into an overall soft processing framework, as in Fig. 8. 
 

 
Fig. 8  Overall hard processing a), hard region separation with soft bit de-
coding b), overall soft processing c), where F̂  = separation feature during 
extraction, ŷ = received host signal, w = corrected watermark 
 
We use the separation feature F̂  computed from the re-
ceived image to weight the extracted watermark signal dur-
ing FEC-decoding. For that, we exploit two properties as 
described in the following subsections. 
 
3.4.1. Property I - certainty of separation decision 
We use the certainty of how close the texture feature is to 
the selected feature threshold τ. If the feature is close to the 
decision threshold (F̂  tending to zero), it is uncertain which 
quantization lattice has to be used during extraction. In this 
case, the certainty tends to zero. If the feature is far from the 
threshold and it is sure which lattice was chosen during 
embedding, then the certainty is high. 
 
3.4.2. Property II - lattice point coverage 
By simulations we found out that it is advantageous to apply 
odd ratio (i.e., ∆2/∆1 = 3, 5, 7, …) for the step-sizes during 
watermark embedding. In this case, the points of lattices ′Λ  
and ′′Λ  show more “covers” than for even ratio ∆2/∆1. 

Further, we learned that if we choose ratio ∆2/∆1 to be 
3, 7, 11, etc., then lattice ′′Λ  has to be inverted, resulting in 
lattice ′′Λ . That means, all bits to be embedded at locations 
where 0F ≥  have to be inverted, first. Likewise, after extrac-
tion, all bits received using lattice ′′Λ  have to be inverted. 

For attacks, such as lossy compression, noise adding or fil-
tering, the distortion of the quantized signal can be expected 
to be Gaussian distributed. Since the variance of this distri-
bution is the same for both lattices ′Λ  and ′′Λ , the following 
probability density functions ( )pdf •  can be expected. As 
can be seen in Fig. 9, there are spaces at lattice ′′Λ  where it 
is unlikely that a signal sample 2ŵ  is located. 
 

 
Fig. 9  Probability density function of the disturbed host signal ŷ, superim-
posed for all possible quantization lattice points (schematic representation) 
 
If the feature is close to the decision threshold and the signal 
sample is somewhere in the space where ( )2ˆpdf w  is small, 
it is more likely that the sample was originally embedded 
using lattice ′Λ . 
 
3.4.3. Host signal weighting using both properties 
During decoding, we separate the received host signal into 
two sub-signals ( )1ˆ ˆQ y′=w  and ( )2ˆ ˆQ y′′=w , where ( )Q′ •  
denotes the quantizer used for lattice ′Λ  and ( )Q′′ •  denotes 
the quantizer for lattice ′′Λ . Afterwards, 1ŵ  and 2ŵ  are cou-
pled to the certainty-of-separation-decision as well as lat-
tice-point-coverage-property using the two weighting func-
tions ( )1

ˆf F  and ( )2
ˆf F . 
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By applying Eq. (9), finally, the two sub-signals are joint 
resulting in watermark signal w , which is the input to the 
soft-decision FEC-decoder (e.g., Viterbi algorithm). 
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Fig. 10.  Example: (a) marked image using non-adaptive embedding, where ∆1 = ∆2 = 6, resulting in PSNR = 40.89 dB, (b) marked image using texture-based 
step-size adaptation, where ∆1 = 3 and ∆2 = 9, resulting in similar PSNR = 40.98 dB, and (c) contrast-enhanced difference of (b) to original image

(a)                  (b)                 (c) 
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3.5. Perceptual image quality after signature embedding 
 
The choice of embedding strength (step-size ∆), and hence, 
the robustness of the hash as well as the signature are lim-
ited by the visual perception of embedding induced distor-
tions. To demonstrate these distortions, in Fig. 10, marked 
images are shown using non-adaptive as well as adaptive 
embedding. As can be seen by smaller visual distortions at 
the difference of the middle image to the original, for ho-
mogenous regions we use a smaller step-size than for 
stronger textured regions. Although the PSNR-values are 
similar for the left and middle image, distortions cannot be 
seen for the adaptively marked image in the middle. 

By the use of subjective tests and simulations, we found 
out that choosing ∆1 = 3 and ∆2/∆1 = 3 yield the best com-
promise between perceptual image quality and robustness. 
 

4. EXPERIMENTAL RESULTS 
 
4.1. Robustness against non-malicious manipulations 
 
For all simulations we used a set of 52 different gray-scale 
images of size 512x512 pixels. For LL4-coefficient hashing 
we applied the known message-digest algorithm 5 (MD5) 
yielding a hash-value of length 128 bits. Further, we used 
RSA for signing the hash (512 bits key length). Finally, the 
signature was FEC-encoded using convolutional coding and 
a code-rate r = 1/2. Hence, 1024 bits were embedded within 
the LL4-subband (32x32 coefficients) of every host image. 
 
4.1.1. Comparison of performance 
To compare the performance of our system with those of 
methods by other authors we use the results collected by 
Ekici et al. in their image authentication overview paper [1]. 

Results of robustness simulation are given for seven image 
authentication methods, where the watermark embedding in-
duced image distortion was fixed to PSNR = 41 dB. 

The authors tested the robustness (false positive ratio) 
against a set of following signal processing attacks: 
• Smooth - low pass filtering using a 3x3 filter mask 
• Sharpen - edge enhancement using 3x3 unsharp masking 
• S and P - salt-pepper-noise (1%) 
• Histogram equalization 
• AWGN - Gaussian noise (σ = 4,5  PSNR ~ 35 dB) 
• JPEG 70 - lossy JPEG compression (QF = 70) 
• Random file stream bit errors (0.1%) 
• No attack - verification of marked, undisturbed image 
 
Further, Ekici et al. simulated the false negative ratio (Pmiss) 
by verifying the non-marked original images. 
 
Table 1.  False alarm and miss probabilities for comparison of performance 
of our approach with results of other authentication methods as given in [1], 
where embedding induced PSNR = 41dB 

 
 
The results in Table 1 show that our authentication system 
(Schlauweg et al.) performs better in most cases. We reach 
better false positive ratios except for histogram equalization 
and salt-pepper-noise. However, since 1%-salt-pepper-noise 
yields visual image degradations, we rate this operation to 
the group of malicious manipulations, anyhow. Histogram 

Signal-processing attacks Pf 

Semi-fragile 
method 

Forgery 
attack 
Pmiss 

No  
attack Smooth

Histog. 
equal. 

S and P 
1% 

AWGN 
35 dB JPEG 70 Sharpen

Random 
errors 

Chang et al. 0,0 % 0,0 % 100 % 99,0 % 100 % 32,3 % 0,0 % 100 % 0,0 % 

Delp et al. 0,1 % 2,3 % 54,5 % 3,4 % 6,5 % 2,7 % 2,4 % 0,3 % 14,1 % 

Eggers et al. 0,0 % 0,0 % 41,4 % 91,0 % 2,6 % 0,0 % 0,0 % 65,6 % 2,5 % 

Fridrich 1,0 % 1,6 % 62,0 % 5,5 % 19,5 % 2,5 % 25,8 % 21,0 % 2,5 % 

Kundur et al. 0,1 % 0,0 % 77,7 % 99,5 % 51,9 % 10,0 % 2,9 % 98,1 % 0,1 % 

Queluz 0,01 % 0,01 % 27,8 % 94,3 % 42,7 % 0,01 % 0,01 % 100 % 1,1 % 

Liao et al. 8,7 % 3,0 % 34,3 % 80,7 % 43,3 % 1,7 % 1,5 % 79,9 % 4,2 % 

Schlauweg et al. 0,0 % 0,0 % 0,0 % 100 % 100 % 0,0 % 0,0 % 43,7 % 0,0 % 



5 25 45 65 85
10-6

10-5

10-4

10-3

10-2

10-1

100

JPEG Quality Factor

B
ER

 

 

∆1 = 2 (non-adaptive)

∆1 = 3 (non-adaptive)

∆1 = 2 (adaptive)

∆1 = 3 (adaptive)

0.1 0.22 0.34 0.46 0.58 0.7
10-6

10-5

10-4

10-3

10-2

10-1

100

JPEG2000 Target Rate
B

ER

 

 

∆1 = 2 (non-adaptive)

∆1 = 3 (non-adaptive)

∆1 = 2 (adaptive)

∆1 = 3 (adaptive)

0.5 2.5 4.5 6.5 8.5
10-6

10-5

10-4

10-3

10-2

10-1

100

Standard Deviation σ

B
ER

 

 

∆
1 = 2 (non-adaptive)

∆1 = 3 (non-adaptive)

∆1 = 2 (adaptive)

∆1 = 3 (adaptive)

-45 -30 -15 0 15 30 45

10-4

10-3

10-2

10-1

100

Luminance Change

B
ER

 

 

∆1 = 2 (non-adaptive)

∆1 = 3 (non-adaptive)

∆1 = 2 (adaptive)

∆1 = 3 (adaptive)

0.45 0.7 0.85 1 1.15 1.3 1.45

10-4

10-3

10-2

10-1

100

Contrast Change

B
ER

 

 

∆1 = 2 (non-adaptive)

∆1 = 3 (non-adaptive)

∆
1 = 2 (adaptive)

∆
1 = 3 (adaptive)

0.25 0.4 0.55 0.7 0.85
10-6

10-5

10-4

10-3

10-2

10-1

100

Scaling Factor
FP

R
 (F

al
se

 P
os

iti
ve

 R
at

io
)

 

 

∆1 = 2 (non-adaptive)

∆1 = 3 (non-adaptive)

∆1 = 2 (adaptive)

∆1 = 3 (adaptive)

Fig. 11.  Results of simulations for the overall enhanced, adaptive image authentication system - robustness against: (a) JPEG compression, (b) JPEG2000 
compression, (c) additive Gaussian noise, (d) luminance change, (e) contrast change, and (f) scaling of image size. Parameters: for non-adaptive embedding 
∆2/∆1 = 1, for adaptive embedding ∆2/∆1 = 3, τ = 1.5, α = 5. 
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equalization, on the other hand, is a known image enhance-
ment operation. But, although our system is able to handle 
luminance or chrominance changes, it fails for the complex 
non-linear equalization of image histogram. 

We think that for applicability of an authentication sys-
tem it is important that the system is secure. Hence, we 
highlight that Pmiss (forgery attack) is zero for our system. 
 
4.1.2. Comparison of non-adaptive and adaptive embedding 
To demonstrate how our new authentication system benefits 
from texture-based adaptive hashing/embedding, in Fig. 11, 
we show results of further robustness tests. It can be seen 
that for similar visual perception of embedding induced dis-
tortions the robustness against non-malicious image proc-
essing could be improved. 
 
4.2. Security of the proposed authentication system 
 
In addition to high robustness against non-malicious image 
processing, it is important that alarm is raised during verifi-
cation if fraudulent attacks are applied to the marked image. 

For example, to simulate a copy/paste-attack for a large 
number of marked images, we randomly exchanged two 

pixel blocks within each image. Afterwards, these images 
were verified. The aim is to reach a false negative ratio 
tending to one. The results of this test are shown in Fig. 12. 
 

 
Fig. 12  Results of simulations of pixel block-exchanging attack, where the 
difference between both exchanged pixel blocks is PSNR < 15 dB (left) and 
PSNR < 25 dB (right) 
 
Since some pixel blocks exchanged against each other can 
be similar resulting in the same hash-value during veri-
fication, the determined false negative ratio is not always 
one. So, we separated the blocks exchanged during this test 
into two groups. All pairs of blocks yielding a strong differ-
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Fig. 13.  Example for an always detectable manipulation using the proposed authentication system: (a) watermarked image with ∆1 = 3 and ∆2/∆1 = 3; (b) ma-
nipulated image - object of size 6x9 pixel removed; (c) contrast-enhanced difference image

(a)                  (b)                 (c) 

object (sailboot) removed 

ence (PSNR < 15 dB) were assigned to the first group. Pairs 
yielding a higher PSNR were assigned to the second group. 

As can be seen, the usage of ∆1 = 3 and ∆2/∆1 = 3 yields 
a secure authentication system in terms of copying and past-
ing or deleting image objects of big and small size. For ex-
ample, the filigree 6x9 pixel-sized attack shown in Fig. 13 is 
always securely detectable using our image authentication. 
Hence, our system is not only robust against a range of 
allowed image processing operations but secure against ma-
nipulating attacks at the same time. 
 

5. CONCLUSION 
 
In this paper, we described the embedding of a digital wa-
termark for image authentication. During JPEG2000 com-
pression, a semi-fragile signature was generated from image 
content and embedded by quantization of the coefficients in 
the DWT-domain. Generation as well as embedding of the 
signature is adapted to the image content for performance 
improvement. For that, we presented a soft-decoding tex-
ture-based image region separation and used different step-
sizes for less and stronger textured image regions to exploit 
the texture masking properties of the human visual system. 
Our image authentication is tested extensively and perform-
ance results are compared to those of methods proposed by 
other authors. We showed that our new system outperforms 
these methods. Our semi-fragile authentication is robust 
against non-malicious modifications, such as lossy compres-
sion, noise, image blurring and sharpening, changes of 
luminance or contrast as well as scaling. But in contrast to 
other methods, our authentication is secure at the same time, 
which we proofed by different forgery attacks. 
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