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ABSTRACT
In this paper, we propose a new second generation water-
marking method for still images that embeds information in
the feature space using rational dither modulation. Embed-
ding at a fixed raster, e.g., the pixel grid, is a big problem in
all first generation watermarking approaches. In contrast,
our approach does not work depending on any raster. We
use a texture-based feature, the so-called gray-level blob in
Gaussian scale-space, which is invariant to scaling, rotation,
and translation. It is associated with the image content and
thus independend of image geometry. Furthermore, we show
that our new method is robust against a variety of attacks,
such as lossy compression, contrast and luminance enhance-
ment, bluring and sharpening as well as noise adding. In
addition, due to embedding at no fixed raster and inser-
tion/deletion error correction even after slight image crop-
ping the watermark can be extracted.

Categories and Subject Descriptors
I.4.9 [Image Processing and Computer Vision]: Appli-
cations; D.2.11 [Software Engineering]: Software Archi-
tectures—Information Hiding

Keywords
Digital watermarking, Gaussian scale-space, texture-based
feature points, RST-invariant, insertion/deletion error cor-
rection

1. INTRODUCTION
As opposed to first watermarking approaches, second gen-

eration watermarking embeds information depending on the
image content. In [7], Kutter et al. describe this idea as us-
ing significant features of the host image for either carrier
signal synchronization (helper scheme) or direct watermark
embedding. These features can be edges or corners of im-
age objects or spatial relations between objects, properties
of object textures or object forms.
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First generation methods consider the host image as a
continuous 2-dimensional function in spatial or transform
domain (e.g., DCT, DWT) and embed information by ad-
dition/multiplication or replacement. The most important
property, and difference to second generation watermarking,
is the fact that a fixed raster is used for embedding and ex-
traction. For example, the pixel grid or a separation of the
image into fixed-size blocks can be such a raster.

One of the big advantages of first generation watermark-
ing is the often guaranteed big capacity, low complexity and
hence low computational effort. But a big disadvantage is
the low robustness against cropping, scaling, rotation, trans-
lation, and geometric attacks. In most cases, this weak-
ness results from embedding at a fixed raster. Due to, for
example, cropping, rotation, or scaling the relation of the
fixed raster is destroyed (see Fig. 1) and synchronization
within the watermark sequence can get lost during extrac-
tion. To improve the robustness against such attacks some
approaches use the original image (not always applicable)
for re-synchronization during extraction. Other approaches
use so-called re-synchronization signals or correlation-based
watermarks additionally embedded in the image, resulting
in further quality degradations. Apart from that a possible
security hole is opened because an attacker easily can find
and delete these template signals.

 

Figure 1: Fixed embedding and extraction raster at
first generation watermarking schemes.



In addition to template-based approaches, there are lots
of other first generation methods that embed information in
a domain which is theoretically invariant to geometric at-
tacks. These methods use, for example, the Fourier-Mellin-
Transform, Zernike-Moments or the Radon-Transform. A
detailed overview can be found in [20]. But still very often,
cropping is a big problem for these so-called RST-invariant
methods [1].

In this work, we describe a new second generation water-
marking method where no fixed raster is used at all. The
positions used for watermarking only depend on the image
content. For direct embedding into content-dependend fea-
tures we use texels or texture elements as the fundamental
unit of texture space, known from computer graphics or bio-
metric identification. We show that this kind of description
of image content is very robust against a wide range of sig-
nal processing operations. At the same time, changing these
texel features for watermark embedding is perceptually in-
visible due to its very high masking effect.

First, in section 2, we count and classify some other sec-
ond generation watermarking approaches for still images to
show which direction our new method follows. Afterwards,
in sections 3 and 4, we propose our texel-based method in
detail and discuss the problem of insertions/deletions that
all second generation watermarking schemes are in trouble
with. The solution presented in this paper can easily be
adapted to other schemes and yields great performance im-
provements as demonstrated in section 5.

2. FEATURE-BASED WATERMARKING
As already stated, second generation watermarking meth-

ods can be classified into two sections, methods using fea-
tures for synchronization and methods that directly embed
the watermark information into features.

Kutter et al. formulated some properties that a feature
used for watermarking should have [7]. In addition to ro-
bustness against compression, multiplicative and additive
noise, a suitable feature should withstand a wide range of
geometrical transformations (rotation, translation, scaling,
etc.). Further, it should be possible to detect the same (re-
maining) feature points at the same positions if the host
image has been cropped.

2.1 Using Features for Synchronization
In [7], a Mexican-Hat wavelet decomposition is applied to

the host image for finding robust feature points. Afterwards,
information is embedded periodically by using a spread spec-
trum approach at the Voronoi regions spanned by these fea-
ture points. Due to periodic embedding, the peaks of the
autocorrelation function can be used to reconstruct simple
geometric attacks. The described feature detection is theo-
retically invariant to rotation, translation and noise. But ro-
bustness against scaling is not given inherently. To make the
system applicable, exhaustive search has to be employed for
the underlying spread spectrum-based first generation wa-
termarking. Other methods using the same idea of features
for synchronization can be found in [2], [3], [9], or [18].

In another approach, Dittman et al. use self-spanning-
patterns in [5] where a canny edge detector and afterwards
a Harris-Corner-detector are applied to find corners within
the edges of the host image. These corners are combined and
different templates are embedded that help to re-synchronize
the image in case of geometric attacks.

In other approaches, the SIFT detector based on scale-
space theory or a modified circular Hough transform or Har-
ris-Affine detector [15] are applied to get rotation-invariant
circular regions for embedding a spread spectrum-based wa-
termark for re-synchronization. Weinheimer et al. in [19]
use a modified Harris-Corner detector for determination of
the circle centres.

2.2 Using Features for Direct Embedding
Whereas there are lots of suggestions for the idea of using

features only for synchronization, Kutter’s second idea of
direct embedding into the image features has attracted just
minor attention in literature.

In [16], Solachidis et al. suggest to embed information
in vector graphics by using Fourier descriptors, which are a
compact description of closed object contours. The result-
ing amplitude spectrum is invariant to rotation, and after
normalization it is also invariant to translation and scaling
of the objects.

Another idea given by Maes and van Overveld in [10] is
the embedding of a watermark by warping feature points
determined from the host image in pixel domain as close as
possible to fix points of a grid pattern. Their scheme is able
to only hide one single bit, in contrast to the method pre-
sented by Pröfrock et al. in [12], which uses so called gravity
centers of pixel blocks with different size but same amount
of image content. But both papers do not demonstrate ro-
bustness against geometric attacks.

3. DIRECT EMBEDDING USING TEXELS
Our new method follows the idea of direct embedding in-

formation into image features. We continue the approach
of Kutter et al. using a Mexican-Hat decomposition of the
host image. But we extend the decomposition in a way that
it is a description of the image in texture space.

The major problem when we want to use texture as feature
for embedding is its scale. For example, a raw texture viewed

 

(a)                                     (b) 
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Figure 2: Example for the effect of a changed size
of viewport. (a) near and (b) far view of a checker-
board, (c) near and (d) far view of a wallpaper.



from very close has completely other characteristics than the
same texture viewed from far away, as can be seen in Fig.
2. That means to use texture as a feature for watermarking
the texture description (detector) has to be scale-invariant.

3.1 Blobs - Features in Gaussian Scale-Space
The gray-level blob is a texture element that can be found

in most images. It is a raise or decrease of gray pixel values
similar to a 2D-Gaussian curve, detectable in the Gaussian
scale-space by the scale-invariant detector proposed in [8].
Due to this scale-space approach the detector is theoretically
scale-invariant.

To find gray-level blobs the image Iorig is filtered in Gaus-
sian scale-space using so-called LOG-filter masks, where the
scale is parameterized by the value σr = {σr ∈ R : σmin ≤
σr ≤ σmax, r ∈ N : r ≤ R,R ∈ N} as in Eq. (1). The abbre-
viation LOG stands for Laplacian of the Gaussian, where
the filter kernel is created by applying the Laplace operator
to Gaussian functions, normalized to zero mean. Because
the final kernel structure is similar to a Mexican sombrero,
this filter is also known as Mexican-Hat. The resulting, e.g.,
R = 16, matrices are normalized using Eq. (3) to get scale
invariance for the magnitudes of the filtering result. The
search space for σr has to be limited to σmin and σmax
to get a trade-off between embedding capacity, robustness
and computational effort. During extraction, the scales will
be normalized depending on the image size, as described in
sub-section 3.3, to find the same blobs in a scaled image.

LOG (x, y, σr) =

(
x2 + y2

2 · π · σ6
r

− 1

π · σ4
r

)
· exp

(x2+y2)
2·σ2

r (1)

ILOG (σr) = LOG (σr) ∗ Iorig (2)

I∗LOG (σr) = σr · ILOG (σr) (3)
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Figure 3: Image filtered using LOG-filter masks with
different scales.

Afterwards, from all R results at every pixel position (x, y)
the optimal scale σopt (x, y) is selected that yields the biggest
magnitude value ILOGopt (x, y):

σopt (x, y) = arg max
σr
|I∗LOG (x, y, σr)| (4)

The corresponding magnitude ILOGopt (x, y) is stored for
this position, too. Fig. 4 shows the result for an exam-
ple image.

 (a)              (b)                      (c)

Figure 4: Final selection result for the filtered image:
(a) Magnitude of ILOGopt , (b) sign of ILOGopt , and (c)
the scale σopt.

This blob detection is theoretically invariant to scaling, ro-
tation, translation, and horizontal/vertical mirroring of the
image. Further, except for (gray-value pixel range [0...255])
clipping, also changes of luminance should be accepted.

To further reach robustness against contrast enhancement
we employ the rational dither modulation (RDM), proposed
by Pérez-González et al. in [11], to embed the watermark
information as explained below.

3.2 Embedding by Texel Quantization
First, we choose the value ILOGopt (x, y) with the biggest

magnitude, which we call reference blob B0. The position
of this reference point is necessary for the determination of
the watermark embedding order.

After the position of the reference point has been spec-
ified, in a successive selection process the algorithm looks
for M more (largest) blobs, smaller than the reference blob.
The list of chosen blobs is B = {Bi (xi, yi) : i = 0, 1, ...,M},
where (xi, yi) specifies a blob position. Thereby, around ev-
ery single blob a circle is marked as “reserved region”, where
no other blob can be chosen from (see Fig. 5). The size of
this circle is determined from the size of the corresponding
scale σopt (x, y). It is also possible to choose a value smaller
than this scale during embedding and hence to allow blob
overlapping. But in that case, either a recursive embedding
is necessary or embedding is not optimal due to interfer-
ing blobs. In other words, the following inequality must be
hold for any two blobs Bi and Bj within the list of chosen
coordinates, where dij is the distance between both blobs:

σopt (xi, yi) + σopt (xj , yj) ≤ dij . (5)

dij =

√
(xi − xj)2 + (yi − yj)2. (6)

 

Figure 5: Example image with M + 1 = 33 largest
blobs selected, σmin = 3, σmax = 5.



Now, the embedding process takes place in ascending order
of distance of the M blob positions to the reference point,
marked by a cross in Fig. 5. If there are changes within
the order of blobs (insertions/deletions of blob positions)
after cropping or due to signal processing, errors can occur.
Such de-synchronization errors usually cause big numbers
of burst errors at common error correction. To overcome
these errors, we use the idea of insertion/deletion error cor-
rection. In section 4, the problems of blob overlapping and
blob de-synchronization are discussed in detail and the ap-
plied insertion/deletion error correction is explained.

The magnitudes of the reference point as well as the other
M selected blobs have to be amplified by the value Gbase to
make sure that these points will be found again during ex-
traction. The quantization-based RDM technique for water-
mark embedding also requires amplification or attenuation
of the magnitudes of the M watermark blobs.

So, if the magnitude of a blob has to be changed for am-
plification or embedding, a positive or negative LOG-mask,
LOG∗gain (x, y, σgain), is added to the blob. This LOG-mask
can be calculated using Eq. (7) and Eq. (8), where Gdiff
is the relative amplification, the difference between new and
old LOG-magnitude. The scale for LOG-computation must
be σgain (x, y) =

√
2 · σopt (x, y).

LOG∗gain (x, y, σgain) =
Gdiff
K

· LOGgain (x, y, σgain) (7)

K = σ2
opt ·

xmax∑
x=−xmax

ymax∑
y=−ymax

LOGgain (x, y) · LOGopt (x, y)

(8)

Finally, for every blob position the normalized LOG-mask
is added to the image. Fig. 6 shows a watermarked image
and the difference to the original image. For a zoomed and
not intensified view see Fig. 17.
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Figure 6: Watermarked image and difference to
the original (intensified for visualization), M = 32,
σmin = 3, σmax = 5, P = 80, PSNR = 55.119 dB.

For watermark embedding we use scalar rational dither mod-
ulation [11], a modified version of dither modulation, which
is a low-complexity realization of quantization index modula-
tion (QIM) [4]. The advantage of RDM over common dither
modulation is its robustness against value-metric scaling. In
other words, if the magnitudes of the used blobs are scaled
by a constant value ρ, as in the case of contrast changes, the
decoder should be still able to extract the watermark.

Data is embedded by quantizing the magnitude of a blob
Bj to the closest quantization lattice point of one of two
subsets of lattices, Λbj = ∆Z + bj∆/4, where bj = {−1, 1}

is the information symbol to be embedded in the j -th blob.
The quantization step size is ∆, where a larger step size
yields higher robustness of the data against watermarking
attacks but at the expense of higher embedding induced dis-
tortions. The appropriate Quantizers are denoted Q−1 (·)
and Q1 (·) and embedding is performed as B∗j = Qbj (Bj),
where j ∈ [1, ...,M ].

Now, RDM means that the step size ∆ is adapted to the
avarage norm of the host signal. Customized to our embed-
ding and using l2-norm, ∆ is weigthed by factor g as in Eq.
(10), where g is calculated as:

g =

(
1

M

M∑
j=1

|Bj |2
)1/2

(9)

∆ = g · P/255 (10)

Thus, the step size depends on the magnitudes of all used
blobs, where P is the embedding strength parameter of our
watermarking system (in the range [0...255]).

Afterwards, the reference blob is amplified by ∆ to be al-
ways larger than the M magnitudes of the embedding blobs.

B∗0 = B0 + ∆ (11)

Since Gbase must be larger than ∆/2, we can set the ba-
sic blob amplification depending on the image content to
Gbase = dg · P/(2 · 255− P )e during embedding following
Eq. (10) and Eq. (11). Hence, our test parameter is P.

3.3 Watermark Extraction
Before blob detection, we adjust σmin and σmax depend-

ing on the size X̃ by Ỹ of the watermarked image. That
means, information embedding takes place at a fixed image
size X by Y, and during extraction the scales are normalized
to σmin = S · σmin and σmax = S · σmax, where the scaling

factor S = max
(

X̃/X; Ỹ/Y
)

.

Again M + 1 blobs with the biggest magnitudes are de-
termined using the above blob detector. The largest value

represents the received reference blob B̃0. The M received

blobs are denoted as B̃j , responsible for the calculation of
∆ at the receiver, following Eq. (12) and Eq. (13).

g̃ =

(
1

M

M∑
j=1

∣∣∣B̃j∣∣∣2)1/2

(12)

∆ = g̃ · P/255 (13)

Because of soft-decision decoding, the embedded informa-
tion is not retrieved until error correction decoding.

3.4 Properties of Gray-Level Blobs
Before we carry out performance tests for the overall wa-

termark embedding scheme, in this sub-section, we answer
the question of how robust is a single blob detection. This
makes sense since the effects of overlapping blobs and de-
synchronization (if no blob insertion/deletion error correc-
tion is applied) on the final bit error rate can be enormous.



To illustrate the properties of the proposed blob detection
for a set of 60 images we determined one largest blob per im-
age, B0, applied a set of below shown attacks and analyzed
the effects. The scales are σmin = 3 and σmax = 5.

First, in Fig. 7, we show the effects in terms of mean-
absolute-error or peak-signal-to-noise-ratio if the magnitude
of one blob is changed by the value Gdiff . These effects are
independent from the scale of the appropriate blob. In this
sub-section, for easier comparison of the effects of attacks
and below visualized distortions we draw the LOG-difference
D as attack induced distortions. That means, for example,
if a LOG-value 180 has been changed to the value 188 due
to an attack, then |D| = 8, and, hence, to make the blob-
detection robust against this attack, during quantization,
the magnitude must be changed so that |D| < |Gdiff |.
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Figure 7: Inverse LOG-function, σr = 5 (left). Dis-
tortion due to single blob amplification indepen-
dent from scale (right): Peak-signal-to-noise-ratio
(PSNR) and mean-absolute-error (MAE).

A robust watermarking solution should be able to resist
a wide set of signal processing operations, such as lossy im-
age compression (e.g., JPEG, JPEG2000), luminance as well
as contrast enhancement, low-pass filtering, sharpening, or
noise adding. Due to the properties of the blob detection our
approach is also tolerant to rotation, scaling, translation,
cropping and mirroring of the image. Even slight skewing
or local geometric warping are accepted by the detector.

 

(a)                                  (b)       (c) 

(d)                                  (e)        (f) 

B0 = 83,451

B0 = 85,274

B0 = 85,000

B0 = 84,791 B0 = 51,002

Figure 8: Example image with largest blob. (a) orig-
inal, (b) image with changed blob B0 = 85, marked
image and detected blob after (c) JPEG compres-
sion using quality factor QF = 5, (d) JPEG2000 com-
pression using target rate r = 1/100, (e) luminance
change, and (f) contrast change.

 

(a)                                  (b)        (c) 
B0 = 81,497 B0 = 84,052B0 = 83,951

B0 = 83,257 B0 = 81,809 B0 = 82,922
(d)                                  (e)        (f) 

Figure 9: Marked image and detected blob after (a)
additive Gaussian noise with σ = 0.004, (b) Gaussian
low-pass filtering with mask size 3x3 and σ = 2, (c)
rotation by 36◦, (d) scaling by factor 0.5, (e) hori-
zontal skewing by 50%, (f) vertical skewing by 50%.

In Fig. 8 and Fig. 9, some examples are shown for the set
of attacks we apply to the watermarked images. The blob
with the biggest magnitude, B0, is amplified by Gbase = 15
and rounded to the value 85. Using these parameters the
algorithm is able to detect this blob at the same position
(marked by a circle) after all listed attacks.

Since the following figures show curves for different ba-
sic blob amplifications (without data embedding) one can
see that basic blob amplification is necessary. Otherwise, if
Gbase = 0 and if not the same blob is found during detec-
tion we obtain outlier results, where Gbase denotes the basic
amplification, and D is the attack induced distortion.
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Figure 10: Results of single blob robustness test:
(a) JPEG compression, (b) JPEG2000 compres-
sion [target rate 0...1] (JasPer-codec),(c) luminance
changes, (d) contrast changes.
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Figure 11: Results of single blob robustness test:
(a) Gaussian noise, (b) Gaussian low-pass filtering
(mask size 3x3), (c) image rotation, (d) scaling, (e)
horizontal skewing, and (f) vertical skewing.

As can be seen in Fig. 10(d), the change of blob magni-
tude linearly depends on the change of contrast. For that
reason, we use rational dither modulation, which scales the
quantization step size (Eq. (13)), and thus, adjusts the in-
terpretation of the M magnitude values to the contrast of
the overall image.

3.5 Security Aspects
Since an attacker maybe has knowledge about the water-

marking scheme, he could find and change the used blobs.
Hence, to prevent easy manipulations blob detection as well
as quantization must be secured by a key. The later can usu-
ally be handled by the application of a pseudorandom dither
signal which randomizes the quantization index modualtion
as proposed in [4] or [6].

To also randomize the process of blob selection we suggest
to make the scales σmin, σmax, and further, the minimal
distance dij between two blobs Bi and Bj depending on a
secret key. Hence, the blob selection process becomes kind
of chaotic following the condition of blob overlapping from
Eq. (5) and Eq. (6). That means, if embedder as well as
receiver apply the same key, the blob selection processes are
equal. But for an attacker not knowing the key it is difficult
to find the used blobs. For example, Fig. 12 demonstrates
three further blob selection results due to slightly changed
parameters for the image from Fig. 5.

 

Figure 12: Slightly changed scales σmin, σmax and
distances dij resulting in further possible blob selec-
tions as opposed to Fig. 5.

Usually, blobs with large magnitude values are associ-
ated with texture elements of smaller blob scales in nat-
ural images. That means, the major function of σmax is
in fact to limit the computational effort. But, if the range
[σmin...σmax] is chosen to small, the watermarking approach
is more sensitive to cropping followed by scaling attack. Fur-
ther, if σmin is chosen to small, the overall robustness against
attacks is lower. During our tests, we found out σmin = 3
and σmax = 5 are a good trade-off between robustness, com-
putational effort, and security in terms of variations of blob
selections.

4. BLOB INSERTION/DELETION ERROR
CORRECTION

As mentioned in sub-section 3.2, the blobs for embed-
ding are selected successively, first the one with the biggest
magnitude (reference blob) and afterwards M more (largest)
blobs smaller than the reference blob. During this selection
process around every blob Bi an σopt (xi, yi)-sized circle is
marked as “reserved region”, where no other blob can be
chosen from.

When signal processing takes place or rarely even after
embedding due to rounding or clipping the blobs slightly
change their positions. Two cases can occur with enormous
effects on the successive blob selection process during water-
mark extraction. First, two blobs, although the inequality
from Eq. (5) holds during embedding, can change their po-
sitions in a way that Bj would overlap the already chosen
blob Bi during the selection process at watermark extrac-
tion. This case would yield the blob Bj not to be selected,
where we talk about a deletion. Also demonstrated in Fig.
13, there is another case, known as insertion, if Eq. (5) was
not fulfilled during embedding but during extraction. Here,
a blob would be selected although no watermark was em-
bedded originally.
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Figure 13: Blob deletion (left) or blob insertion
(right) during the successive selection process at wa-
termark extraction. The shaded blob would not have
been selected.

As a consequence of such a deletion or insertion of a blob
during extraction two effects can occur. First, the order



of all successively extracted data bits could be increased or
decreased resulting in a non-linear de-synchronization prob-
lem within the watermark sequence and burst errors during
common error correction decoding. Second, the selection
process of all successive blobs could be affected resulting in
not only bit de-synchronization but a completely disturbed
or jumbled watermark signal. Both problems are analyzed
in the following sub-section.

4.1 Consequences of an Insertion/Deletion
Fig. 14 shows what happens to the successive blob selec-

tion if a blob is inserted or deleted. The order of all succes-
sive blobs is increased or decreased respectively by one and
hence the watermark bit sequence is de-synchronized. From
the position of de-synchronization on, watermark informa-
tion can not be extracted correctly if no re-synchronization
is applied.
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Figure 14: Blob deletion (left) or blob insertion
(right) during watermark extraction. As a conse-
quence the order of successive blobs is decreased or
increased respectively.

If there is an insertion/deletion of a blob and if some blobs
are very close to each other further disturbances of the blob
selection process can occur. For example, the shaded blob
in Fig. 15(a) that would not have been selected during em-
bedding suddenly is selected during extraction, because Eq.
(5) now is fulfilled. Its magnitude is larger, and as a conse-
quence, the originally selected blob with number 2 can not
be selected. In the second scenario, the inserted blob results
in additional problems. Due to the very similar distance to
the reference blob, compared to the third blob in the middle
graphic, the order of these both blobs are changed, too.
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Figure 15: Blob deletion due to blob insertion dur-
ing the successive selection process at watermark
extraction. The shaded blob would not have been
selected.

Further, if the host image is cropped, blobs can be deleted
and hence the blob selection process can be also affected like
in above graphics.

4.2 Overlapping Blobs During Extraction
During watermark embedding Eq. (5) must be hold or, in

other words, two blobs must not overlap. But during extrac-
tion we suggest to also consider blobs that slightly overlap.
Two selected blobs that are very close to each other during
embedding are likely to overlap at extraction site. We define

an overlapping factor Cij := {Cij ∈ R : −∞ < Cij < 1} as
an extension of Eq. (5) and allow this value to be larger
than zero during extraction with respect to Eq. (14):

Cij =
σopt (xi, yi) + σopt (xj , yj)− dij
σopt (xi, yi) + σopt (xj , yj)

. (14)

For example, if Cij = 0.01 the blobs are allowed to over-
lap one per cent during extraction resulting in decreased
probability of occurrence of deletions.

4.3 Re-Synchronizing Error Correction
If an overlapping of blobs is allowed during extraction

there are fewer deletions due to changes of blob positions
but blob deletions caused by image cropping are still possi-
ble. Further, we can not avoid the occurrence of insertions
by this strategy. That means blobs that do not fulfil Eq. (5)
during embedding, now, at the extraction process could be
selected.

To overcome these de-synchronization problems we have
to employ an error correction solution that is able to also cor-
rect insertions/deletions in addition to common substitution
errors (binary: 0→1 or 1→0). Such a scheme was proposed
by Solanki et al. in [17]. It is based on punctured chan-
nel coding and the ability of some error correcting codes to
handle erasures at known symbol positions within the mes-
sage. At extraction site, deletions are treated as erasures
and insertions become substitution errors (see Fig. 16).

Another scheme was proposed by Schlauweg et al. in [13]
and in [14] based on extended dynamic programming dur-
ing FEC-decoding (forward error correction) using multiple
parallel-interconnected Viterbi decoders. Each of the de-
coders is one bit out of sync with the others and each receives
a stream containing information about the reliabilities of the
received symbols. By monitoring the appropriate message
paths the overall system is able to determine which is the
most likely stream, and, hence the correct message.

We tested both approaches and decided to use the solution
of Schlauweg et al., which can be applied using the following
side conditions that we formulated for our second generation
watermarking scheme.

4.3.1 Input to the Decoder
First, additionally to the reference blob, we not only se-

lect M but M +N +K largest blobs, where N blobs repre-
sent candidates for insertions and K blobs are candidates for
deletions (see Fig. 16). For this, we introduce a user defined
blob overlapping threshold τ ∈ R+, e.g., τ = 0.01. The selec-
tion criterion for the first M blobs is Cmj ≤ −τ : 0 ≤ m ≤M
as well as Cnj ≤ 0 : 1 ≤ n ≤ N . The N blobs, repre-
senting candidates for insertions, must fullfil the criterion
Cnj ≤ 0 : 0 ≤ n ≤ M + N . All other K blobs in the range
0 < Ckj ≤ τ : 0 ≤ k ≤M +N are candidates for deletions.

Second, we can use the information of how likely the oc-
currence of an insertion/deletion is as weighting factor. That
means Cij can be used as a certainty of decision. If the ab-
solute value of Cij is very small, the occurrence of an inser-
tion/deletion is likely. In contrast, if Cij is large negative,
two blobs are far away from each other and neither deletion
nor instertion are possible. Or vice versa, if the value is pos-
itive and two blobs are strongly overlapping, then a deletion
is also not very likely.
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Figure 16: Insertion/deletion/substitution (IDS) er-
ror correction using erasures during watermark ex-
traction. There are M white fix blobs, N checkered
candidate blobs, and K shaded candidate blobs.

Finally, there remains one problem using either Solanki’s
or Schlauweg’s FEC-approach. If there are blobs near the
edge region of the host image, these blobs can get lost when
cropped. But, as long as the blobs remain within the image
our new watermarking scheme is robust against cropping.

5. RESULTS AND FURTHER RESEARCH
In several tests we examined the robustness of the pro-

posed watermarking algorithm against numerous attacks.
We used 60 different natural images of size 512x512 pixels
and embedded 32 bit of random data into each of them. We
used the embedding strength parameter P = 80. For exam-
ple, embedding 32 bit results in PSNR ≈ 55dB at P = 80.
But since the PSNR value is maybe not the ideal measure
for distortions here, in Fig. 17, several cuttings around dis-
torted blobs are visualized. It can be seen that the proposed
blob feature has very high masking effect. Blobs can be un-
derstood as whole texture elements.

 

(a)                                  (b)       (c) 

(d)                                  (e)        (f) 

Figure 17: Two example images (3x zoomed), where
(a, d) original, (b, e) blob manipulated using ∆ = 20,
(c, f) blob manipulated using ∆ = 70.

To clarify the influence of blob overlapping (insertions/de-
letions) we tested the algorithm with and without re-syn-
chronizing error correction. In the case of no usage of re-
synchronization we simply embedded twice the number of
bits and determined the resulting bit error rate for com-
parison. In Fig. 18, it can be seen that re-synchronization
is necessary and yields strong performance improvements
due to blob overlapping correction. But, although our new
watermarking feature fulfils Kutter’s localization property,

cropping remains an open problem since the employed error
correction scheme up to now is not able to handle it.
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Figure 18: Results of robustness test (σmin = 3,
σmax = 5, P = 80, M = 32): (a) JPEG compres-
sion, (b) JPEG2000 compression [target rate 0...1]
(JasPer-codec), (c) luminance changes, (d) contrast
changes, (e) Gaussian noise, (f) Gaussian low-pass
filtering (mask size 3x3), (g) image rotation, (h) scal-
ing, (i) horizontal skewing, and (j) vertical skewing.

All remaining blobs can be detected and the embedded bits



can be extracted correctly even after cropping followed by a
scaling attack. But cropped blobs yield de-synchronization
within the watermark sequence. The Viterbi decoder-based
solution by Schlauweg et al. maybe can handle this kind of
error after further research.

In addition to the restriction in terms of image cropping,
there is a second field for further research. Although most
security aspects concerning the attackers ability of finding
and manipulating the used blobs have been discussed and
solved, in this paper, the position of the reference blob, B0,
remains a weak point. If an attacker finds this blob, a change
would affect the order of all other blobs during extraction.
Maybe, one can find another criterion to define the order of
embedding/extraction, which is invariant to rotation, scal-
ing, translation, and cropping as well.

6. CONCLUSION
This paper presents a new method for embedding informa-

tion in the feature space. In the proposed method, a texture-
based rotation-invariant feature is used, the so-called gray-
level blob in Gaussian scale-space. Due to the feature de-
tection in scale-space, the approach is invariant to image ro-
tation and scaling. Since embedding at a fixed raster, e.g.,
the pixel grid, is a big problem in all first generation water-
marking approaches, our new second generation approach
does not work depending on any raster. Blob selection and
information embedding only depend on the image content.
As a consequence and due to re-synchronization in the case
of blob insertions/deletions our new method is also robust to
slight image cropping and translation. Further, it is robust
against lossy compression, contrast as well as luminance en-
hancement, filtering, and noise adding.
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[13] M. Schlauweg, D. Pröfrock, and E. Müller. Soft
feature-based watermark decoding with
insertion/deletion correction. In Proc. of Information
Hiding Workshop, pages 236–250, June 2007.
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