
RST-Invariant Semi-Fragile Image Authentication
Based on DWT-Coefficient Quantization

Mathias Schlauweg and Erika Müller,

Institute of Communications Engineering,
Faculty of Computer Science and Electrical Engineering,

University of Rostock, Rostock 18119, Germany,
{mathias.schlauweg, erika.mueller}@uni-rostock.de

Abstract. In this paper, we propose an image moment-based geometric nor-
malization to be applied before embedding and extracting a digital watermark
in the DWT-domain of JPEG2000. A semi-fragile signature, generated from the
normalized host signal, afterwards, is embedded for image authentication. The
new system is tested extensively and performance results are compared to those
of methods proposed by other authors. Our new semi-fragile image authentica-
tion is robust against non-malicious modifications, such as lossy compression,
noise, image blurring and sharpening, changes of luminance and contrast as
well as scaling, rotation, translation, and shearing.

Keywords: Watermarking, discrete wavelet transform-domain, image moment-
based geometric normalization, JPEG2000.

1 Introduction

During the last decade, growing applications of digital technologies in the field of
multimedia resulted in various advantages. Digital images can be created easily and at
a reasonable price. They can be copied without quality loss and changed without
special knowledge. But, these properties can also yield disadvantages. For example, it
is hard to assert rights of authors and owners and to proof the authenticity of images.
For example, every year, there is a spectacular image content manipulation revealed
in any famous print media. The repertoire reaches from correction of small blemish to
dramatization of war reporting or political campaigns. Hence, images and video are in
a credibility crisis.

To verify the authenticity without limiting user’s customs additional data can be
embedded within images by means of digital watermarks. For embedding, the multi-
media signal is slightly changed. At the verification side, these signal changes can be
detected and thus the embedded information can be retrieved. By checking the cor-
rectness of the extracted watermark a user can infer easily if the image has been
tampered with.

Additionally embedded data should be robust against allowed image processing or
compression format conversions. But, if the content of an image is tampered with,
then an alarm should be raised during verification. Further, image distortions caused

by data embedding should be imperceptible and it should be impossible to manipulate
the overall system.

These objectives are not met by any known system, so far. For that reason, in [1],
we developed a digital watermarking system for efficient and tamper-proof image
authentication. A digital watermark adapted to the image content is embedded imper-
ceptibly by quantization of the coefficients of the discrete wavelet transform domain
(DWT). This process is directly integrated into a JPEG2000 image compression and,
hence, very efficient. The embedded watermark is robust against a variety of allowed
image processing operations, e.g., JPEG and JPEG2000 compression, change of lumi-
nance and contrast, filtering, sharpening as well as scaling of image size.

To further enable watermark extraction after changes of image geometry, such as,
rotation, translation or shearing, in this paper, an extension is presented using an
image moment-based geometric normalization. In section 2, we describe a normali-
zation procedure that is applied before embedding and extracting watermark data. In
section 3, we present the integration of this normalization into the authentication
framework proposed in [1]. The performance of the extended authentication system is
extensively analyzed and compared to data of similar methods by other authors, in
section 4. Finally, section 5 concludes our work.

2 Image Moment-Based Geometric Normalization

In [2], Dong et al. describe an image moment-based geometric normalization that is
applied before embedding and extracting watermark data. Using this normalization
the embedded watermark can be extracted even if the host image has been changed by
rotation, scaling, translation (RST), or shearing.

Since RST as well as shearing in both x and y directions can all be considered as
affine transformations, they can be inverted using one affine transformation at water-
mark extraction side.

To get a fixed orientation and scale of host image (),I x y , that is the same during
watermark embedding and extraction, Dong et al. calculate geometric image moments

pqm (see Eq. (1)) and central moments pqµ (see Eq. (2)), where M N× is the size of I.

()
1 1

0 0

,
M N

p q
pq

x y

m x y I x y
− −

= =

= ∑∑ . (1)

() () ()
1 1

0 0

,
M N

p q
pq

x y

x x y y I x yµ
− −

= =

= − −∑∑ , where 10

00

m
x

m
= , 01

00

m
y

m
= . (2)

Using these moments image I is centered (step 1) to achieve translation invariance.

Afterwards, a shearing transform in the x direction is applied (step 2) followed by a
shearing transform in the y direction (step 3). In a fourth step, the image is scaled in
both x and y directions so that the resulting image achieves a prescribed standard size.

1) Center image (),I x y by calculating the coordinates (1)x , (1)y of the transformed

image ()(1) (1) (1),I x y using Eq. (3).

(1)
1

(1)
2

1 0
0 1

dxx
dyy

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

, where 10
1

00

m
d

m
= , 01

2
00

m
d

m
= . (3)

2) Shear ()(1) (1) (1),I x y by calculating the coordinates (2)x , (2)y of the transformed

image ()(2) (2) (2),I x y using Eq. (4) so that the resulting image achieves (2)
30 0µ = .

(2) (1)

(2) (1)

1
0 1

x x
y y

β⎛ ⎞ ⎛ ⎞⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

, where (1) (1) 2 (1) 3 (1)
30 21 12 033 3 3 0µ βµ β µ β µ+ + + = . (4)

3) Shear ()(2) (2) (2),I x y by calculating the coordinates (3)x , (3)y of the transformed

image ()(3) (3) (3),I x y using Eq. (5) so that the resulting image achieves (3)
11 0µ = .

(3) (2)

(3) (2)

1 0
1

x x
y yγ

⎛ ⎞ ⎛ ⎞⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

, where
(1) (1)(2)
11 0211

(2) (1) (1) 2 (1)
20 20 11 022

µ βµµ
γ

µ µ βµ β µ
+

= =
+ +

. (5)

4) Scale ()(3) (3) (3),I x y by calculating the coordinates (4)x , (4)y of the transformed

image ()(4) (4) (4),I x y using Eq. (6) so that the resulting image achieves a pre-
scribed standard size (e.g., 512 512×) and (4)

50 0µ > as well as (4)
05 0µ > .

(4) (3)

(4) (3)

0
0

x x
y y

α
δ

⎛ ⎞ ⎛ ⎞⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

. (6)

Fig. 1 visualizes this normalization by means of four example images. As can be

seen, the normalization of a square image yields a rotated, scaled, sheared, and possi-
bly mirrored image.

The RST-invariant watermarking approach proposed by Dong et al. is based on the
fact that image I and its affine transforms (geometrically distorted images) all have

or
ig

in
al

 im
ag

es

no
rm

al
iz

ed
 im

ag
es

Fig. 1. Examples: image moment-based geometric normalization by Dong et al. [2]

the same normalized image. The authors generate a pseudo-random-based 2-D signal
with the same size as the normalized image, apply the inverse affine transform to this
signal, and add it to the original image (using spread spectrum watermarking).

3 Image Authentication with Geometric Normalization

Inspired by the above described approach by Dong et al. [2], in this paper, we extend
our image authentication watermarking system proposed in [1]. For that, we change
the normalization procedure (subsection 3.1) to adapt it to the watermark generation
and embedding/extraction of the JPEG2000-based image authentication (see Fig. 2),
which is described in detail in subsections 3.2 - 3.4.

3.1 Extended Normalization Procedure

After applying the calculations of step 1 to step 4 (section 2), we know the parameters
α, β, γ, and δ. Using these parameters we can determine the positions of the four cor-
ners (){ }P : P , : 1,..., 4i i i ix y i= = (shown in Fig. 3) of the normalized image (4)I .

private key
additional

information
(e.g., time, date)

sign
(e.g., RSA)

hash
(e.g., MD5)

image

marked
image

public
key

additional
information

authentication
result

signature
verification

hash

watermark
embedding

feature
extraction

extended image moment-based
geometric normalization

forward error
correction (FEC)

extended image moment-based
geometric normalization

image
reconstruction

watermark
extraction

feature
extraction

FEC

Fig. 2. Digital watermarking system for image authentication

P1

P2

P3

P4

original
image

normalized
image

normalized
image

attacked
image

Fig. 3. Determination of the four corners of the host image using the proposed normalization

P1

P2

P3

P4

Our extended normalization procedure is based on stretching the corners P1, …, P4 to
the corners P1’, …, P4’ of a fixed-size square region during watermark generation/
embedding as well as watermark extraction/verification, as demonstrated in Fig. 4.
This stretching operation is a further shearing transform of the image in the x direc-
tion (step 5) followed by a shearing transform in the y direction (step 6) together with
an image scaling to the fixed size (step 7).

All these transform steps can be combined into one single normalization procedure
(Eq. (7)) to determine the coordinates x’ and y’ of the normalized image ()’ ’, ’I x y .
Hence, the overall computational efforts as well as the induced image distortions are
very low. The inverse transform uses the same parameters α, β, γ, δ (see Eq. (9)).

’ 1 1 0 1 ’ 1 0 0
’ 0 1 1 0 1 ’ 1 0

x x
y y

β β α
γ γ δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. (7)

4 1

4 1

’ arctan
x x
y y

β
⎛ ⎞−

= ⎜ ⎟−⎝ ⎠
,

1

4 3

3 4

’ arctan tan
y y
x x

γ β
−⎛ ⎞⎛ ⎞−⎜ ⎟= +⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

,

()3 4 4 3

512
tanx x y y

α
β

=
− + − ⋅

,
4 1

512
y y

δ =
−

.

(8)

1
1 1 0 1 ’ 1 0 0 ’
0 1 1 0 1 ’ 1 0 ’

x x
y y

β β α
γ γ δ

−
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

. (9)

Now, watermark generation/embedding as well as extraction/verification can take
place using the normalized image ()’ ’, ’I x y as described in what follows.

3.2 Watermark Generation and Embedding

As opposed to the approach by Dong et al., our new authentication system is based on
quantization of the coefficients of the host image in the discrete wavelet domain
(DWT). It is directly integrated in the process of a JPEG2000 compression.

Construction of a Secure Image-Dependent Hash. If { }: :1jx x j J≤ ≤= ∈ are the
coefficients of an image in DWT-domain and jq is a quantized value using quantizer
()Q • and step-size ∆, then ()1ˆ j jx Q q−= is the reconstructed value of jq , as in Eq. (10)

and Eq. (11).

step 5 step 1 - 4

P1

P2

P3

P4

step 6 step 7

P2’

P3’

P1’

P4’

Fig. 4. Extended image moment-based normalization procedure

() ()sign j
j j j

x
q Q x x

⎢ ⎥
⎢ ⎥= =
∆⎢ ⎥⎣ ⎦

. (10)

() ()()
1 0 0

ˆ
sign 0,5 0j

q
x Q q

q q q
−

=⎧⎪= = ⎨ + ∆ ≠⎪⎩
. (11)

In numerous simulations, we found out that if we quantize and, afterwards, hash all

coefficients { }: :1nx x n N≤ ≤= ∈ of the LL4-subband of the DWT-decomposition a se-
cure and robust image-dependent hash-value can be constructed.

As long as the quantized coefficients x̂ after changes due to image processing
operations or attacks remain within the range ()); 1∆ ∆ +⎡⎣ they yield the same hash-
value during verification. If a forger moves just one single LL4-coefficient out of its
quantization interval this manipulation can be detected and alarm is raised.

A digital signature is generated from the hash-value by the use of asymmetric en-
cryption (e.g., RSA) with a key of length 512 bits. Additionally to the hash-value also
time, date, etc. can be integrated to make the shot unique (see Fig. 2).

Afterwards, the signature is encoded using forward error correction. We apply con-
volutional coding (code rate r = 1/2). Hence, the watermark { }: 1:1n n N= ∈± ≤ ≤w w
to be embedded has a length of 1024 bits.

Signature Embedding by Quantization. For our semi-fragile authentication ap-
proach it is sufficient not to embed the signature watermark as robust as possible but
as robust as necessary. That means, if an image processing operation or an attack
yields a different hash during verification it doesn’t matter if the signature can be ex-
tracted correctly. Signature and hash-value don’t match, and hence, verification fails.

For that reason, we embed the data within the same host signal locations the
signature is generated from using scalar dither modulation [3]. Hence, the embedding
locations are secured by the hash process in turn.

Since JPEG2000 applies quantization with dead-zone, our watermark embedding is
adapted to this dead-zone as in Eq. (12), where y is the watermarked host signal.

()

4 4
and 1

sign 4 otherwise

n
n

n

n
n

n n

x
x

y
x

x

−∆ ≤ ≤ ∆⎧
⎪ = +⎪= ⎨ ⎛ ⎞⎢ ⎥⎪∆ ⋅ + ⋅∆⎜ ⎟⎢ ⎥⎜ ⎟⎪ ∆⎣ ⎦⎝ ⎠⎩

w

w

. (12)

Data is embedded by quantizing every LL4-coefficient to a closest quantization

lattice point of one of two subsets of lattices / 4
n nΛ =∆ + ∆w w . In Fig. 5, these lattice

points are marked by either or .

Luminance and Contrast Normalization. Since we use LL-subband coefficients for
signature generation as well as embedding, the host image and the quantization step-

size have to be normalized prior watermarking to allow luminance and contrast ad-
justment operations.

For that reason, in a first step, the host signal is normalized to the mean pixel
luminance (subtraction of gray-value pixel mean). In a second step, the quantization
step-size is normalized to contrast. As in Eq. (13), a factor g is computed from the
pixel values of image { }: : 0 255,1j jI I I j J≤ ≤ ≤ ≤= ∈ . Prior to hashing and signa-
ture embedding, the step-size is divided by factor g, where the same process takes
place during signature verification.

1/ 2

2

1

1 1
256

J

j
j

g I
J =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ . (13)

A contrast change, now, becomes a scaling of factor g, and hence, can be reversed

similar to the normalization proposed by Pérez-González et al. in [4].
Further, we embed g as a second watermark in the HL4-, LH4-, and HH4-

coefficients using the same strategy as for the LL4-subband. Thereby, g is represented
by 32 bits and encoded using repeat-accumulate coding with a code rate of r = 1/96.
The resulting 3072 bits are embedded using a small step-size, whereby there occur no
further perceptual embedding distortions.

3.3 Watermark Extraction and Hash-Intervall Error Correction

To extract the watermark data the host signal is quantized to the nearest neighbor
lattice point of one of the two quantizer subsets. Afterwards, the extracted signature
has to be compared with the hash-value generated from the received image for content
integrity verification.

As mentioned before, the hash-value remains constant as long as the quantized
LL4-coefficients don’t leave the interval ()); 1∆ ∆ +⎡⎣ . But, due to embedding the
coefficients are moved to the lower or upper half of the quantization interval,
respectively. Hence, even image processing operations changing the LL4-coefficients
more than ∆/4 yield the verification to fail.

To solve this problem we extended the watermark bit error correction as follows. If
[]ˆ 1; 1= − +w denotes the watermark data extracted from the received host signal ŷ∈

and { }1, 1= − +w is the corrected watermark after FEC-decoding, then Eq. (14) can be
applied to correct the hash intervals.

()
ˆ ˆ

ˆsign
8

n
n n

y
q y

⎢ ⎥−
= ⋅ +⎢ ⎥∆⎣ ⎦

n nw w
. (14)

As demonstrated in Fig. 5, in that way, the hash interval is expanded to the range
() ())1/4 ; 3/4∆ − ∆ +⎡⎣ or () ())1/4 ; 5/ 4∆ + ∆ +⎡⎣ , respectively, depending on the

watermark bit at the appropriate location. Hence, despite data embedding the coeffi-
cients can be changed up to ∆/2 without affecting images authenticity. That way, the
overall robustness is gained by a factor of two.

3.4 Adaptation of Step-Size ∆ Based on Image Content

The choice of embedding strength (step-size ∆), and hence, the robustness of the hash
as well as the signature are limited by the visual perception of embedding induced
distortions. As shown in Fig. 6, if the same step-size is used for all LL4-coefficients
watermark embedding is not optimal.

The human visual system is less sensitive to changes in textured regions than in
smooth regions of an image. That means, the choice of embedding strength is mainly
limited by the visual perception of distortions in homogenous regions such as the
cloud-free sky in the example image.

To improve the performance of our authentication system we use different step-sizes.
We separate the image into homogenous regions and stronger textured regions. For
signature generation and embedding within the LL4-coefficients representing the for-
mer regions we use step-size ∆1. For all the rest we use ∆2.

In Fig. 7, marked images are shown using non-adaptive as well as adaptive embed-
ding. Although the PSNR-values are similar for the left and middle image, distortions
cannot be seen for the adaptively marked image in the middle.

Fig. 5. Example: reconstruction of hash interval by combining hash-value quantization and
watermark bit error correction

correct host signal
value after embedding

disturbed signal value
quantized to wrong

hash interval

corrected hash
interval

∆ example coefficient

false
hash interval

host signal
change

1= −w

correct
hash interval

ˆ 1= +w

1= −w

-5

0

5

10

-10

original image difference imagemarked image

Fig. 6. Example: image distortions caused by signature generation and embedding using the
same step-size ∆ = 8 for all LL4-subband coefficients

For the texture-based image region separation we use the coefficients of the third
DWT-decomposition level. As visualized in Fig. 8, except for the LL3-subband all
these coefficients are compared to a threshold τ. Afterwards, the three matrices are
added and 2 2× block-wise averaged. Finally, the known morphologic operations
closing and erosion are applied to refine the separation. The resulting matrix F∈ we
call feature mask.

Compared to the original image, homogenous regions yield negative values. For
stronger textured regions feature F is positive. Hence, during watermark embedding,
we apply ∆1 for all locations where F < 0, otherwise, we apply ∆2, if F ≥ 0.

During watermark extraction, we apply adaptive decoding. We use the separation
feature F̂ computed from the received image to weight the extracted watermark signal
during FEC-decoding. We use the certainty of how close the texture feature is to the
feature threshold τ. If the feature is close to the decision threshold (F̂ tending to zero),
it is uncertain which quantization lattice has to be used during extraction. In this case,
the certainty tends to zero. If the feature is far from the threshold and it is sure which
lattice was chosen during embedding, then the certainty is high.

At the decoding side, we separate the received host signal into two sub-signals
()1ˆ ˆQ y′=w and ()2ˆ ˆQ y′′=w , where ()Q′ • denotes the quantizer that uses the step-

(a) (b) (c)

Fig. 7. Example: (a) marked image using non-adaptive embedding, where ∆1 = ∆2 = 6, resulting
in PSNR = 40.89 dB, (b) marked image using texture-based step-size adaptation, where ∆1 = 3
and ∆2 = 9, resulting in similar PSNR = 40.98 dB, and (c) contrast-enhanced difference of (b)
to the original image

feature
mask F of

size 32 32×

– τ

– τ

– τ

HL3

HH3

LH3

x

block-wise
2 2× mean

closing &
erosion

subtraction of
threshold τ

Fig. 8. Texture-based feature mask generation

size ∆1 and ()Q′′ • denotes the quantizer that uses the step-size ∆2. Afterwards, 1ŵ and
2ŵ are weighted using the two functions ()1

ˆf F and ()2
ˆf F . Details can be found in [1].

()1

ˆ1 ,
ˆ1ˆ ˆ1 cos ,

2 2

ˆ0 ,

F

Ff F F

F

α

α π α α
α

α

< <

≤ <

≤ <

⎧ −∞ −
⎪

⎛ ⎞⎛ ⎞⎪ +
= + ⋅ − +⎜ ⎟⎜ ⎟⎨ ⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎝ ⎠
⎪

+ +∞⎩

. (15)

() ()2
2 2

1

ˆ0 ,
ˆ1ˆ ˆ ˆˆ1 cos , ,

2 2

ˆ1 ,

F

Ff F F F

F

α

α π β α α
α

α

< <

≤ <

≤ <

⎧ −∞ −
⎪

⎛ ⎞⎛ ⎞⎪∆ +
= ⋅ − ⋅ ⋅ − +⎜ ⎟⎜ ⎟⎨ ⎜ ⎟⎜ ⎟∆ ⎝ ⎠⎪ ⎝ ⎠

⎪
+ +∞⎩

w , (16)

 where ()2 2

ˆˆ ˆ ˆ, 1 sin cos
2

FF α πβ
α

⎛ ⎞+ ⎛ ⎞= − ⋅ ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
w w . (17)

By applying Eq. (18), the two sub-signals are joint resulting in watermark signal w ,
which is the input to the soft-decision FEC-decoder (e.g., Viterbi algorithm).

() ()1 1 2 2
ˆ ˆˆ ˆ

2

f F f F⋅ + ⋅
=
w w

w . (18)

4 Experimental Results

4.1 Robustness Simulations

In Fig. 9, we present the results of robustness simulations for our new semi-fragile
image authentication system. For these simulations we used a set of 52 different gray-
scale images of size 512 512× pixels. For LL4-coefficient hashing we applied the
message digest algorithm 5 (MD5) yielding a hash-value of length 128 bits. We used
RSA for signing the hash (512 bits key length) and convolutional coding for error
correction (code-rate r = 1/2). Hence, 1024 bits were embedded within the LL4-sub-
band (32 32× coefficients) of every host image.

As can be seen, the developed image authentication is robust against a variety of
image processing operations. Using the extended image moment-based normalization
procedure it is also robust against rotation as well as shearing.

By the use of subjective tests and simulations, we found out that choosing ∆1 = 3
and ∆2/∆1 = 3 yield the best compromise between perceptual image quality and ro-
bustness.

4.2 Comparison with Methods by Other Authors

An authentication watermark should be robust against non-malicious image process-
ing but fragile against image content attacks. Most authentication approaches focus
too much on robustness and neglect security. Good comparative overviews of differ-
ent semi-fragile image authentication methods can be found in [5]-[7].

To compare the performance of our system with those of methods by other authors
we use the results collected by Ekici et al. in [5]. Table 1 shows that our authentica-
tion system (Schlauweg et al.) performs better in most cases. Since it was not possible
to find any image authentication that tested robustness against rotation, translation,
scaling, or shearing, we cannot compare our performances for these operations.

We think that for applicability of an authentication system it is important that the
system is secure. Hence, we highlight that Pmiss (forgery attack) is zero for our system.

0.45 0.7 0.85 1 1.15 1.3 1.45

10-4

10-3

10-2

10-1

100

Contrast Change

FP
R

(F
al

se
 P

os
iti

ve
 R

at
io

)

∆
1 = 2

∆1 = 3

-45 -30 -15 0 15 30 45

10-4

10-3

10-2

10-1

100

Luminance Change

FP
R

(F
al

se
 P

os
iti

ve
 R

at
io

)

∆
1 = 2

∆1 = 3

0.5 2.5 4.5 6.5 8.5

10-4

10-3

10-2

10-1

100

Standard Deviation σ

FP
R

(F
al

se
 P

os
iti

ve
 R

at
io

)

∆
1 = 2

∆1 = 3

0.1 0.22 0.34 0.46 0.58 0.7

10-4

10-3

10-2

10-1

100

JPEG2000 Target Rate

FP
R

(F
al

se
 P

os
iti

ve
 R

at
io

)

∆
1 = 2

∆1 = 3

5 25 45 65 85

10-4

10-3

10-2

10-1

100

JPEG Quality Factor

FP
R

(F
al

se
 P

os
iti

ve
 R

at
io

)

∆
1 = 2

∆1 = 3

Fig. 9. Results of simulations for the overall extended semi-fragile image authentication system
- robustness against: (a) JPEG compression, (b) JPEG2000 compression, (c) Gaussian noise, (d)
luminance change, (e) contrast change, (f) Gaussian low-pass filtering (g) scaling of image size,
(h) rotation, and (i) shearing of the image in x direction. Parameters: ∆2/∆1 = 3, τ = 1.5, α = 5.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

0.25 0.4 0.55 0.7 0.85

10-4

10-3

10-2

10-1

100

Scaling Factor

FP
R

(F
al

se
 P

os
iti

ve
 R

at
io

)

∆
1 = 2

∆1 = 3

90 180 270 360

10-4

10-3

10-2

10-1

100

Rotation °

FP
R

 (F
al

se
 P

os
iti

ve
 R

at
io

)

∆1 = 2

∆1 = 3

0.5 2.5 4.5 6.5 8.5

10-4

10-3

10-2

10-1

100

Standard Deviation σ

FP
R

 (F
al

se
 P

os
iti

ve
 R

at
io

)

∆1 = 2

∆1 = 3

-45 -30 -15 0 15 30 45

10-4

10-3

10-2

10-1

100

Horizontal shearing [%]

FP
R

 (F
al

se
 P

os
iti

ve
 R

at
io

)

∆1 = 2

∆1 = 3

[°]

5 Conclusion

This paper presents the embedding of a digital watermark for image authentication
within images normalized using geometric moments. During JPEG2000 compression,
a semi-fragile signature is generated from image content and embedded by quantiza-
tion of the coefficients in the DWT-domain. Generation as well as embedding of the
signature is adapted to the image content using texture-based image region separation.
Our image authentication is tested extensively and performance results are compared
to those of methods proposed by other authors. The semi-fragile authentication is ro-
bust against non-malicious modifications, such as lossy compression, noise, image
blurring and sharpening, changes of luminance and contrast as well as scaling, rota-
tion, translation, and shearing.

References

1. Schlauweg, M. and Müller, E.: Content-adaptive semi-fragile image authentication based on
JPEG2000 compression. In: Proc. of 16th IEEE International Conference on Digital Signal
Processing, Santorini, Greeece, (2009)

2. Dong, P., Brankov, J. G., Galatsanos, N. P., Yang, Y., and Davoine, F.: Digital watermark-
ing robust to geometric distortions. In: IEEE Transactions on Image Processing, vol. 14
(12), pp. 2140--2150, (2005)

3. Chen, B. and Wornell, G.: Quantization index modulation: a class of provably good methods
for digital watermarking and information embedding. In: IEEE Transactions on Information
Theory, vol. 47 (4), pp. 1423--1443, (2001)

4. Pérez-González, F., Mosquera, C., Barni, M., and Abrardo, A.: Rational dither modulation:
a novel data hiding method robust to value-metric scaling attacks. In: Proc. of 6th IEEE
Workshop on Multimedia Signal Processing, Siena, Italy, pp. 139--142, (2004)

5. Ekici, Ö., Sankur, B., Coşkun, B., Naci, U., and Akcay, M.: Comparative evaluation of
semifragile watermarking algorithms. In: Journal of Electronic Imaging, vol. 13 (1), pp.
209--216, (2004)

6. Zhu, B. B., Swanson, M. D., and Tewfik, A. H.: When seeing isn’t believing. In: IEEE
Transaction on Signal Processing, vol. 21, pp. 40--49, (2004)

7. Rey, C and Dugelay, J.-L.: A survey of watermarking algorithms for image authentication.
In: EURASIP Journal of Applied Signal Processing, vol. 6, pp. 613--621, (2002)

Signal-processing attacks Pf

Semi-fragile
method

Forgery
attack
Pmiss

No
attack Smooth

Histog.
equal.

S and P
1%

AWGN
35 dB JPEG 70 Sharpen

Random
errors

Chang et al. 0,0 % 0,0 % 100 % 99,0 % 100 % 32,3 % 0,0 % 100 % 0,0 %

Delp et al. 0,1 % 2,3 % 54,5 % 3,4 % 6,5 % 2,7 % 2,4 % 0,3 % 14,1 %

Eggers et al. 0,0 % 0,0 % 41,4 % 91,0 % 2,6 % 0,0 % 0,0 % 65,6 % 2,5 %

Fridrich 1,0 % 1,6 % 62,0 % 5,5 % 19,5 % 2,5 % 25,8 % 21,0 % 2,5 %

Kundur et al. 0,1 % 0,0 % 77,7 % 99,5 % 51,9 % 10,0 % 2,9 % 98,1 % 0,1 %

Queluz 0,01 % 0,01 % 27,8 % 94,3 % 42,7 % 0,01 % 0,01 % 100 % 1,1 %

Liao et al. 8,7 % 3,0 % 34,3 % 80,7 % 43,3 % 1,7 % 1,5 % 79,9 % 4,2 %

Schlauweg et al. 0,0 % 0,0 % 0,0 % 100 % 100 % 0,0 % 0,0 % 43,7 % 0,0 %

Table 1. False alarm and miss probabilities for comparison of performance of our approach
with results of other authentication methods as given in [5] (embedding induced PSNR = 41dB)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

