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Abstract. In this paper, we propose an image moment-based geometric nor-
malization to be applied before embedding and extracting a digital watermark 
in the DWT-domain of JPEG2000. A semi-fragile signature, generated from the 
normalized host signal, afterwards, is embedded for image authentication. The 
new system is tested extensively and performance results are compared to those 
of methods proposed by other authors. Our new semi-fragile image authentica-
tion is robust against non-malicious modifications, such as lossy compression, 
noise, image blurring and sharpening, changes of luminance and contrast as 
well as scaling, rotation, translation, and shearing. 
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1 Introduction 

During the last decade, growing applications of digital technologies in the field of 
multimedia resulted in various advantages. Digital images can be created easily and at 
a reasonable price. They can be copied without quality loss and changed without 
special knowledge. But, these properties can also yield disadvantages. For example, it 
is hard to assert rights of authors and owners and to proof the authenticity of images. 
For example, every year, there is a spectacular image content manipulation revealed 
in any famous print media. The repertoire reaches from correction of small blemish to 
dramatization of war reporting or political campaigns. Hence, images and video are in 
a credibility crisis. 

To verify the authenticity without limiting user’s customs additional data can be 
embedded within images by means of digital watermarks. For embedding, the multi-
media signal is slightly changed. At the verification side, these signal changes can be 
detected and thus the embedded information can be retrieved. By checking the cor-
rectness of the extracted watermark a user can infer easily if the image has been 
tampered with. 

Additionally embedded data should be robust against allowed image processing or 
compression format conversions. But, if the content of an image is tampered with, 
then an alarm should be raised during verification. Further, image distortions caused 



by data embedding should be imperceptible and it should be impossible to manipulate 
the overall system. 

These objectives are not met by any known system, so far. For that reason, in [1], 
we developed a digital watermarking system for efficient and tamper-proof image 
authentication. A digital watermark adapted to the image content is embedded imper-
ceptibly by quantization of the coefficients of the discrete wavelet transform domain 
(DWT). This process is directly integrated into a JPEG2000 image compression and, 
hence, very efficient. The embedded watermark is robust against a variety of allowed 
image processing operations, e.g., JPEG and JPEG2000 compression, change of lumi-
nance and contrast, filtering, sharpening as well as scaling of image size. 

To further enable watermark extraction after changes of image geometry, such as, 
rotation, translation or shearing, in this paper, an extension is presented using an 
image moment-based geometric normalization. In section 2, we describe a normali-
zation procedure that is applied before embedding and extracting watermark data. In 
section 3, we present the integration of this normalization into the authentication 
framework proposed in [1]. The performance of the extended authentication system is 
extensively analyzed and compared to data of similar methods by other authors, in 
section 4. Finally, section 5 concludes our work. 

2 Image Moment-Based Geometric Normalization 

In [2], Dong et al. describe an image moment-based geometric normalization that is 
applied before embedding and extracting watermark data. Using this normalization 
the embedded watermark can be extracted even if the host image has been changed by 
rotation, scaling, translation (RST), or shearing. 

Since RST as well as shearing in both x and y directions can all be considered as 
affine transformations, they can be inverted using one affine transformation at water-
mark extraction side. 

To get a fixed orientation and scale of host image ( ),I x y , that is the same during 
watermark embedding and extraction, Dong et al. calculate geometric image moments 

pqm  (see Eq. (1)) and central moments pqµ  (see Eq. (2)), where M N×  is the size of I. 
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Using these moments image I  is centered (step 1) to achieve translation invariance. 

Afterwards, a shearing transform in the x direction is applied (step 2) followed by a 
shearing transform in the y direction (step 3). In a fourth step, the image is scaled in 
both x and y directions so that the resulting image achieves a prescribed standard size. 

 
1) Center image ( ),I x y  by calculating the coordinates (1)x , (1)y  of the transformed 

image ( )(1) (1) (1),I x y  using Eq. (3). 
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2) Shear ( )(1) (1) (1),I x y  by calculating the coordinates (2)x , (2)y  of the transformed 

image ( )(2) (2) (2),I x y  using Eq. (4) so that the resulting image achieves (2)
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3) Shear ( )(2) (2) (2),I x y  by calculating the coordinates (3)x , (3)y  of the transformed 

image ( )(3) (3) (3),I x y  using Eq. (5) so that the resulting image achieves (3)
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4) Scale ( )(3) (3) (3),I x y  by calculating the coordinates (4)x , (4)y  of the transformed 

image ( )(4) (4) (4),I x y  using Eq. (6) so that the resulting image achieves a pre-
scribed standard size (e.g., 512 512× ) and (4)

50 0µ >  as well as (4)
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Fig. 1 visualizes this normalization by means of four example images. As can be 

seen, the normalization of a square image yields a rotated, scaled, sheared, and possi-
bly mirrored image. 

 

 
 
The RST-invariant watermarking approach proposed by Dong et al. is based on the 
fact that image I and its affine transforms (geometrically distorted images) all have 
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Fig. 1. Examples: image moment-based geometric normalization by Dong et al. [2] 



the same normalized image. The authors generate a pseudo-random-based 2-D signal 
with the same size as the normalized image, apply the inverse affine transform to this 
signal, and add it to the original image (using spread spectrum watermarking). 

3 Image Authentication with Geometric Normalization 

Inspired by the above described approach by Dong et al. [2], in this paper, we extend 
our image authentication watermarking system proposed in [1]. For that, we change 
the normalization procedure (subsection 3.1) to adapt it to the watermark generation 
and embedding/extraction of the JPEG2000-based image authentication (see Fig. 2), 
which is described in detail in subsections 3.2 - 3.4. 
 

 

3.1 Extended Normalization Procedure 

After applying the calculations of step 1 to step 4 (section 2), we know the parameters 
α, β, γ, and δ. Using these parameters we can determine the positions of the four cor-
ners ( ){ }P : P , : 1,..., 4i i i ix y i= =  (shown in Fig. 3) of the normalized image (4)I . 
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Our extended normalization procedure is based on stretching the corners P1, …, P4 to 
the corners P1’, …, P4’ of a fixed-size square region during watermark generation/ 
embedding as well as watermark extraction/verification, as demonstrated in Fig. 4. 
This stretching operation is a further shearing transform of the image in the x direc-
tion (step 5) followed by a shearing transform in the y direction (step 6) together with 
an image scaling to the fixed size (step 7). 
 

 
 

All these transform steps can be combined into one single normalization procedure 
(Eq. (7)) to determine the coordinates x’ and y’ of the normalized image ( )’ ’, ’I x y . 
Hence, the overall computational efforts as well as the induced image distortions are 
very low. The inverse transform uses the same parameters α, β, γ, δ (see Eq. (9)). 
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Now, watermark generation/embedding as well as extraction/verification can take 
place using the normalized image ( )’ ’, ’I x y  as described in what follows. 

3.2 Watermark Generation and Embedding 

As opposed to the approach by Dong et al., our new authentication system is based on 
quantization of the coefficients of the host image in the discrete wavelet domain 
(DWT). It is directly integrated in the process of a JPEG2000 compression. 
 
Construction of a Secure Image-Dependent Hash. If { }: :1jx x j J≤ ≤= ∈  are the 
coefficients of an image in DWT-domain and jq  is a quantized value using quantizer 
( )Q •  and step-size ∆, then ( )1ˆ j jx Q q−=  is the reconstructed value of jq , as in Eq. (10) 

and Eq. (11). 
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Fig. 4. Extended image moment-based normalization procedure
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In numerous simulations, we found out that if we quantize and, afterwards, hash all 

coefficients { }: :1nx x n N≤ ≤= ∈  of the LL4-subband of the DWT-decomposition a se-
cure and robust image-dependent hash-value can be constructed. 

As long as the quantized coefficients x̂ after changes due to image processing 
operations or attacks remain within the range ( )); 1∆ ∆ +⎡⎣  they yield the same hash-
value during verification. If a forger moves just one single LL4-coefficient out of its 
quantization interval this manipulation can be detected and alarm is raised. 

A digital signature is generated from the hash-value by the use of asymmetric en-
cryption (e.g., RSA) with a key of length 512 bits. Additionally to the hash-value also 
time, date, etc. can be integrated to make the shot unique (see Fig. 2). 

Afterwards, the signature is encoded using forward error correction. We apply con-
volutional coding (code rate r = 1/2). Hence, the watermark { }: 1:1n n N= ∈± ≤ ≤w w  
to be embedded has a length of 1024 bits. 

Signature Embedding by Quantization. For our semi-fragile authentication ap-
proach it is sufficient not to embed the signature watermark as robust as possible but 
as robust as necessary. That means, if an image processing operation or an attack 
yields a different hash during verification it doesn’t matter if the signature can be ex-
tracted correctly. Signature and hash-value don’t match, and hence, verification fails. 

For that reason, we embed the data within the same host signal locations the 
signature is generated from using scalar dither modulation [3]. Hence, the embedding 
locations are secured by the hash process in turn. 

Since JPEG2000 applies quantization with dead-zone, our watermark embedding is 
adapted to this dead-zone as in Eq. (12), where y is the watermarked host signal. 
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Data is embedded by quantizing every LL4-coefficient to a closest quantization 

lattice point of one of two subsets of lattices / 4
n nΛ =∆ + ∆w w . In Fig. 5, these lattice 

points are marked by either  or . 
 
Luminance and Contrast Normalization. Since we use LL-subband coefficients for 
signature generation as well as embedding, the host image and the quantization step-



size have to be normalized prior watermarking to allow luminance and contrast ad-
justment operations. 

For that reason, in a first step, the host signal is normalized to the mean pixel 
luminance (subtraction of gray-value pixel mean). In a second step, the quantization 
step-size is normalized to contrast. As in Eq. (13), a factor g is computed from the 
pixel values of image { }: : 0 255,1j jI I I j J≤ ≤ ≤ ≤= ∈ . Prior to hashing and signa-
ture embedding, the step-size is divided by factor g, where the same process takes 
place during signature verification. 
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A contrast change, now, becomes a scaling of factor g, and hence, can be reversed 

similar to the normalization proposed by Pérez-González et al. in [4]. 
Further, we embed g as a second watermark in the HL4-, LH4-, and HH4-

coefficients using the same strategy as for the LL4-subband. Thereby, g is represented 
by 32 bits and encoded using repeat-accumulate coding with a code rate of r = 1/96. 
The resulting 3072 bits are embedded using a small step-size, whereby there occur no 
further perceptual embedding distortions. 

3.3 Watermark Extraction and Hash-Intervall Error Correction 

To extract the watermark data the host signal is quantized to the nearest neighbor 
lattice point of one of the two quantizer subsets. Afterwards, the extracted signature 
has to be compared with the hash-value generated from the received image for content 
integrity verification. 

As mentioned before, the hash-value remains constant as long as the quantized 
LL4-coefficients don’t leave the interval ( )); 1∆ ∆ +⎡⎣ . But, due to embedding the 
coefficients are moved to the lower or upper half of the quantization interval, 
respectively. Hence, even image processing operations changing the LL4-coefficients 
more than ∆/4 yield the verification to fail. 

To solve this problem we extended the watermark bit error correction as follows. If 
[ ]ˆ 1; 1= − +w  denotes the watermark data extracted from the received host signal ŷ∈  

and { }1, 1= − +w  is the corrected watermark after FEC-decoding, then Eq. (14) can be 
applied to correct the hash intervals. 
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As demonstrated in Fig. 5, in that way, the hash interval is expanded to the range 
( ) ( ))1/4 ; 3/4∆ − ∆ +⎡⎣  or ( ) ( ))1/4 ; 5/ 4∆ + ∆ +⎡⎣ , respectively, depending on the 

watermark bit at the appropriate location. Hence, despite data embedding the coeffi-
cients can be changed up to ∆/2 without affecting images authenticity. That way, the 
overall robustness is gained by a factor of two. 



 

3.4 Adaptation of Step-Size ∆ Based on Image Content 

The choice of embedding strength (step-size ∆), and hence, the robustness of the hash 
as well as the signature are limited by the visual perception of embedding induced 
distortions. As shown in Fig. 6, if the same step-size is used for all LL4-coefficients 
watermark embedding is not optimal.  

The human visual system is less sensitive to changes in textured regions than in 
smooth regions of an image. That means, the choice of embedding strength is mainly 
limited by the visual perception of distortions in homogenous regions such as the 
cloud-free sky in the example image. 
 

 
 
To improve the performance of our authentication system we use different step-sizes. 
We separate the image into homogenous regions and stronger textured regions. For 
signature generation and embedding within the LL4-coefficients representing the for-
mer regions we use step-size ∆1. For all the rest we use ∆2. 

In Fig. 7, marked images are shown using non-adaptive as well as adaptive embed-
ding. Although the PSNR-values are similar for the left and middle image, distortions 
cannot be seen for the adaptively marked image in the middle. 

Fig. 5. Example: reconstruction of hash interval by combining hash-value quantization and 
watermark bit error correction 
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Fig. 6. Example: image distortions caused by signature generation and embedding using the 
same step-size ∆ = 8 for all LL4-subband coefficients



 
 
For the texture-based image region separation we use the coefficients of the third 
DWT-decomposition level. As visualized in Fig. 8, except for the LL3-subband all 
these coefficients are compared to a threshold τ. Afterwards, the three matrices are 
added and 2 2×  block-wise averaged. Finally, the known morphologic operations 
closing and erosion are applied to refine the separation. The resulting matrix F∈  we 
call feature mask. 
 

 
 
Compared to the original image, homogenous regions yield negative values. For 
stronger textured regions feature F is positive. Hence, during watermark embedding, 
we apply ∆1 for all locations where F < 0, otherwise, we apply ∆2, if F ≥ 0. 

During watermark extraction, we apply adaptive decoding. We use the separation 
feature F̂  computed from the received image to weight the extracted watermark signal 
during FEC-decoding. We use the certainty of how close the texture feature is to the 
feature threshold τ. If the feature is close to the decision threshold (F̂  tending to zero), 
it is uncertain which quantization lattice has to be used during extraction. In this case, 
the certainty tends to zero. If the feature is far from the threshold and it is sure which 
lattice was chosen during embedding, then the certainty is high. 

At the decoding side, we separate the received host signal into two sub-signals 
( )1ˆ ˆQ y′=w  and ( )2ˆ ˆQ y′′=w , where ( )Q′ •  denotes the quantizer that uses the step-

(a)          (b)                (c)

Fig. 7. Example: (a) marked image using non-adaptive embedding, where ∆1 = ∆2 = 6, resulting 
in PSNR = 40.89 dB, (b) marked image using texture-based step-size adaptation, where ∆1 = 3 
and ∆2 = 9, resulting in similar PSNR = 40.98 dB, and (c) contrast-enhanced difference of (b) 
to the original image 
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size ∆1 and ( )Q′′ •  denotes the quantizer that uses the step-size ∆2. Afterwards, 1ŵ  and 
2ŵ  are weighted using the two functions ( )1

ˆf F  and ( )2
ˆf F . Details can be found in [1]. 
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By applying Eq. (18), the two sub-signals are joint resulting in watermark signal w , 
which is the input to the soft-decision FEC-decoder (e.g., Viterbi algorithm). 
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4 Experimental Results 

4.1 Robustness Simulations 

In Fig. 9, we present the results of robustness simulations for our new semi-fragile 
image authentication system. For these simulations we used a set of 52 different gray-
scale images of size 512 512×  pixels. For LL4-coefficient hashing we applied the 
message digest algorithm 5 (MD5) yielding a hash-value of length 128 bits. We used 
RSA for signing the hash (512 bits key length) and convolutional coding for error 
correction (code-rate r = 1/2). Hence, 1024 bits were embedded within the LL4-sub-
band (32 32×  coefficients) of every host image. 

As can be seen, the developed image authentication is robust against a variety of 
image processing operations. Using the extended image moment-based normalization 
procedure it is also robust against rotation as well as shearing. 

By the use of subjective tests and simulations, we found out that choosing ∆1 = 3 
and ∆2/∆1 = 3 yield the best compromise between perceptual image quality and ro-
bustness. 



 

4.2 Comparison with Methods by Other Authors 

An authentication watermark should be robust against non-malicious image process-
ing but fragile against image content attacks. Most authentication approaches focus 
too much on robustness and neglect security. Good comparative overviews of differ-
ent semi-fragile image authentication methods can be found in [5]-[7]. 

To compare the performance of our system with those of methods by other authors 
we use the results collected by Ekici et al. in [5]. Table 1 shows that our authentica-
tion system (Schlauweg et al.) performs better in most cases. Since it was not possible 
to find any image authentication that tested robustness against rotation, translation, 
scaling, or shearing, we cannot compare our performances for these operations. 

We think that for applicability of an authentication system it is important that the 
system is secure. Hence, we highlight that Pmiss (forgery attack) is zero for our system. 
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Fig. 9. Results of simulations for the overall extended semi-fragile image authentication system 
- robustness against: (a) JPEG compression, (b) JPEG2000 compression, (c) Gaussian noise, (d) 
luminance change, (e) contrast change, (f) Gaussian low-pass filtering (g) scaling of image size, 
(h) rotation, and (i) shearing of the image in x direction. Parameters: ∆2/∆1 = 3, τ = 1.5, α = 5. 
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5 Conclusion 

This paper presents the embedding of a digital watermark for image authentication 
within images normalized using geometric moments. During JPEG2000 compression, 
a semi-fragile signature is generated from image content and embedded by quantiza-
tion of the coefficients in the DWT-domain. Generation as well as embedding of the 
signature is adapted to the image content using texture-based image region separation. 
Our image authentication is tested extensively and performance results are compared 
to those of methods proposed by other authors. The semi-fragile authentication is ro-
bust against non-malicious modifications, such as lossy compression, noise, image 
blurring and sharpening, changes of luminance and contrast as well as scaling, rota-
tion, translation, and shearing. 
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Signal-processing attacks Pf 

Semi-fragile 
method 

Forgery 
attack 
Pmiss 

No  
attack Smooth

Histog. 
equal. 

S and P 
1% 

AWGN
35 dB JPEG 70 Sharpen

Random 
errors 

Chang et al. 0,0 % 0,0 % 100 % 99,0 % 100 % 32,3 % 0,0 % 100 % 0,0 % 

Delp et al. 0,1 % 2,3 % 54,5 % 3,4 % 6,5 % 2,7 % 2,4 % 0,3 % 14,1 % 

Eggers et al. 0,0 % 0,0 % 41,4 % 91,0 % 2,6 % 0,0 % 0,0 % 65,6 % 2,5 % 

Fridrich 1,0 % 1,6 % 62,0 % 5,5 % 19,5 % 2,5 % 25,8 % 21,0 % 2,5 % 

Kundur et al. 0,1 % 0,0 % 77,7 % 99,5 % 51,9 % 10,0 % 2,9 % 98,1 % 0,1 % 

Queluz 0,01 % 0,01 % 27,8 % 94,3 % 42,7 % 0,01 % 0,01 % 100 % 1,1 % 

Liao et al. 8,7 % 3,0 % 34,3 % 80,7 % 43,3 % 1,7 % 1,5 % 79,9 % 4,2 % 

Schlauweg et al. 0,0 % 0,0 % 0,0 % 100 % 100 % 0,0 % 0,0 % 43,7 % 0,0 % 

Table 1.  False alarm and miss probabilities for comparison of performance of our approach 
with results of other authentication methods as given in [5] (embedding induced PSNR = 41dB) 
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