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ABSTRACT

Object localization based on audio and video information is impor-
tant for the analysis of dynamic scenes such as video conferences
or traffic situations. In this paper, we view the the dynamic audio-
video object localization problem as a joint recursive estimation
problem. It is solved using a decentralized Kalman filter fusing
both audio and video position estimates. To better take into ac-
count different object maneuvers, multiple state-space equations
are also incorporated. The result is a recursive multi-state multi-
sensor estimator. Experiments show that it yields significantly im-
proved joint position estimates compared to results achieved by
using either an audio or a video system only.

1. INTRODUCTION

Various techniques exist both for the localization of sound sources
by microphone arrays and for the tracking of visible objects in
image sequences. All these methods inevitably suffer from reflec-
tions, background noise, illumination changes, and alike. Rather
than improving upon localization techniques for a single modal-
ity, we present here a framework for joint localization combining
audio and video signals.

We assume that audio and video observations are independent
of each other, given the source position. This is to say that the au-
dio measurements only depend on the speaker position and not on
the video measurements and vice versa. Under this condition, we
can decompose the joint estimation problem for the source posi-
tion into two separate object localization problems based on audio
and video measurements, respectively. Once acoustic and visual
position estimates are available, they can be combined using a de-
centralized Kalman filter.

This paper is structured as follows. First, we concentrate on
how the position estimates are obtained at the individual audio
or video sensor. Then we show how they can be combined to a
global estimate using either a single or multiple state models. In
the next steps, we introduce the multi-state multi-sensor estimator
and present the underlying system model. Afterwards experimen-
tal outcomes are provided to validate our approach. Finally we
discuss our results and offer some conclusions.

2. RECURSIVE MULTI-SENSOR PARAMETER
ESTIMATION

In this section we first show how the Kalman filter recursively
computes position estimates using either audio or video measure-
ments. Then we explain how to combine both estimates.

2.1. Separate State Estimates

In situations where the system dynamics can be described by a
state-space model, the Kalman filter algorithm provides an effi-
cient computational solution for estimating the state of a system.
The discrete Kalman filter assumes that the state-space model is
given through a linear stochastic difference equation and that mea-
surements are provided through a linear measurement channel [1].

We describe the system dynamics of both audio (i = 1) and
video (i = 2) observations by a general state space model

xi[k + 1] = A[k]xi[k] + b[k] u[k] + vi[k] (1a)

yi[k] = C[k]xi[k] + ni[k]: (1b)

The random variablesvi[k] andni[k] model the process and mea-
surement noise. They are assumed to be independent of each other
and from the system statexi[k]. Furthermore it is assumed that
they are normally distributed with zero mean and covariance ma-
trixesR(i)

vv [k] andR(i)
nn[k]

vi[k] : N [0;R(i)
vv [k]] (2a)

ni[k] : N [0;R(i)
nn[k]]: (2b)

Note that we assume identical state space models for the audio and
video system. They only differ in the additive noise components.
Since the local statesxi[k] are driven by the local observations
yi[k]; i = 1; 2, the two local state vectors are, however, usually
different.

Internal Consistency Check

To avoid the assimilation of estimation errors, a malfunctioning
sensor must be detected. To this end we perform an internal con-



sistency check by inspecting the innovation sequence

�i[k] =
h
yi[k] �C[k]x̂i[kjk � 1]

i
: (3)

In Eq. (3), the variablêxi[kjk � 1] denotes the a priori state esti-
mate at the i-th sensor. The actual measurement of the i-th sensor
is compared with the predicted measurementC[k]x̂i[kjk � 1] of
the i-th sensor. The consistency check requires that the statistical
properties of the innovation sequence�i[k] are monitored. Under
normal conditions the mean and the covariance matrix of the in-
novation sequence can be calculated form the distributions of the
variables involved. Ideally, the vector�i[k] should be normally
distributed with zero mean and covariance matrixP�i�i [k] [5].
This implies that the scalar�Ti [k]P

�1
�i�i

[k]�i[k] is �2 distributed.
To verify if this is actually the case, a�2 test is applied. The re-
sulting value is called theconsistency statisticK[k]. If K[k] falls
in between the limitsa(�) and b(�), the measured statistics are
assumed to agree with their theoretical counterparts. In this case,
the measurements are said to be consistent, and the state estimate
is accepted. Otherwise its counterpart as predicted by the Kalman
filter is used. Note thata(�) andb(�) dependent on a preselected
false-alarm probability�.

2.2. Joint State Estimation

In the previous subsections we introduced two separate position
estimates. The first position estimate was based on audio mea-
surements, and the second one included video observations. This
section shows how to arrive at a joint position estimate using a
decentralized Kalman filter recursively combining both audio and
video modalities [2].

2.2.1. Single State Model

The decentralized Kalman filter (DKF) as used for the fusion of
audio and video position estimates is a multi-sensor Kalman fil-
ter that has been divided up into two modules associated with the
audio system and with the video system, respectively. Each node
computes a local a posteriori estimate,x̂i[kjk]; i = 1; 2; of the
object position. These partial estimates are finally assimilated to
provide a global a posteriori estimatêx[kjk] in the fusion center.
Figure 1 illustrates the structure of the decentralized Kalman filter.

The time-update equations and measurement-update equations
of a DKF withM sensors can, e.g., be found in [2]. If the mea-
surement noise components of audio and video observations are
independent, the centralized state estimate can be separated. Then
the global state-space equation can be expressed in the same way
as the local system dynamics, i.e.,

x[k + 1] = Ax[k] + bu[k] + v[k]: (4)

Only the global noise componentv[k] differs.
Hashemipour et al. showed in [2] that the global a posteriori

state estimate can be expressed as

x̂[kjk] = P[kjk]
�
P
�1[kjk � 1] x̂[kjk � 1]

+

2X
i=1

fP�1i [kjk] x̂i[kjk]�P
�1
i [kjk� 1] x̂i[kjk� 1]g

�
:

(5)
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Figure 1: Structure of the decentralized Kalman filter. Two local
Kalman filters (KF) provide their estimates to the fusion center.
The fusion center combines the local estimates to compute a global
estimate of the system state.

The matricesP[kjk�1] andP[kjk] denote the global a priori and a
posteriori error estimate covariances, respectively, whilePi[kjk�
1] andPi[kjk]; i = 1; 2; are their counterparts at the two local
processors. The vector̂x[kjk � 1] is the global a priori state esti-
mate, and̂xi[kjk � 1] together witĥxi[kjk]; i = 1; 2; denote the
local a priori and local a posteriori state estimates, respectively.
The second term on the right hand side in Eq. (5) involving the
intermediate state estimates can be viewed as astate error infor-
mationvector.
The global a posteriori error covariance is given by

P
�1[kjk] = P

�1[kjk � 1] +
2X

i=1

fP�1i [kjk] �P
�1
i [kjk � 1]g:

(6)

Equations (5) and (6) summarize the parallel Kalman filter algo-
rithm. In the measurement-update equation (5), the fusion center
needs the central a priori state estimate,x̂[kjk � 1], the associ-
ated global a priori covariance matrix,P[kjk� 1], the a posteriori
covariance matrix,P[kjk], and the state error information vector
together with variance error information matrix. There is no need
for communications from the local processors to the fusion center
during the prediction-update, provided it can store the matricesA,
b, andCi.

Theoretically, there is no performance loss in the decentral-
ized system. However, the algorithm does assume that the local
processors work in sync at the same speed. In general, this cannot
be assumed. A solution to the problem of asynchronous operation
can be found in [5].

2.2.2. Multiple State Models

In situations where objects can perform different types of motion,
it will be difficult to find one state-space model that always fits.
Assuming that we can find appropriate state-space models for dif-
ferent parts of the object trajectory, an adaptive Kalman filter can
learn from the measurements which of these models is the right



one. In [1] is shown that for multiple state-space models the opti-
mal a posteriori state estimate is given by

x̂[kjk] =
LX
i=1

x̂�i
[kjk]f(�ijY[k]) (7)

where�i denotes the state-space model used. The optimal a pos-
teriori state estimatêx[kjk] is the sum of the a posteriori state
estimateŝx�i

[kjk] of Kalman filters incorporating the model�i
weighted with the model probabilityf(�ijY[k]). Each of these
filters can then be implemented using a decentralized Kalman fil-
ter. Note that all Kalman filters are observing the same measure-
ment sequence

Y[k] = [y[k] : : : y[0]] : (8)

Figure 2 shows a block diagram of the adaptive Kalman filter.
The model probability can be computed recursively [1].
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Figure 2: Block diagram of the adaptive Kalman filter

2.3. The Extended Kalman Filter

In the previous section, we described the decentralized (or paral-
lelized) Kalman filter for linear systems. For nonlinear systems,
a decentralized extended Kalman filter must be used. To this end,
we rewrite the nonlinear plant equation

x[k + 1] = f(x[k]; u[k]; v[k]): (9)

by introducing local statesxi[k] and mutually independent process
noise components,vi[k]. Following the construction of the decen-
tralized linear Kalman filter, we assume identical nonlinear plant
equationsf(:), and identical control inputs,u[k] at the two local
processors. The result is

xi[k + 1] = f(xi[k]; u[k]; vi[k]); i = 1; 2: (10)

The measurement models of the distributed sensors need, however,
not be identical, i.e., different nonlinear measurement equations,
hi(:), are possible. In the case of two distributed sensors, we get

yi[k] = hi(xi[k]; ni[k]); i = 1; 2: (11)

In Eq. (11), the measurement noise components,ni[k], are as-
sumed to be Gaussian and mutually independent.
Ideally, the final state estimate after fusing all individual nonlin-
ear estimates should be identical to the centralized state estimate.
Due to the nonlinear equations, a general answer to this problem
appears difficult, and, at least to the knowledge of the authors, no
solution to has been presented so far.

3. MULTI-STATE MULTI-SENSOR ESTIMATION

Figure 3 shows a block diagram of the multi-state multi-sensor
estimator. This configuration is composed of two decentralized
Kalman filters. Each decentralized Kalman filter comprises an
audio and a video node both recursively computing position esti-
mates. The two decentralized Kalman filters differ in their under-
lying state-space models, and each fusion center computes a global
estimate. The final, ”universal”, estimate follows as a weighted av-
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Figure 3: Block diagram of a multi-state multi-sensor estimator.

erage of the two global estimates. The weighting may be thought
of as a mechanism prefering that joint a posteriori estimatex̂i[kjk],
i = 1; 2; whose underlying state space model better matches the
current object motion. To sort out unreliable estimates due to mal-
functioning sensors, a consistency check is performed in the two
fusion centers as well. Note that the configuration shown in Fig. 3
could be based on more than two state-space models.

4. SYSTEM MODELS

4.1. State Models

To track a real object using a Kalman filter, a suitable motion
model is needed. Since it is difficult to accurately describe com-
plex object maneuvers, we use a linear model as a first approxi-
mation instead. Assuming constant object speed and a Cartesian
coordinate system, our state-space equation can be expressed as

2
64

xx[k + 1]
vx[k + 1]
xy[k + 1]
vy[k + 1]

3
75

| {z }
x[k+1]

=

2
664

1 T 0 0
0 1 0 0
0 0 1 T

0 0 0 1

3
775

| {z }
A[k]

2
64

xx[k]
vx[k]
xy[k]
vy[k]

3
75

| {z }
x[k]

+ v[k];

(12)

whereT is the sampling interval andxx, xy, vx, vy, are the hori-
zontal and vertical components of the object position and velocity.

4.2. Measurement Models

A Kalman filter requires a model for the measurement channel. In
this paper, we consider object localization using audio and video
data. Audio object localization is based on a steered beamformer
[3], while video object localization relies on skin color detection [4].



Both algorithms use the same measurement model

�
yx[k]
yy[k]

�
| {z }

y[k]

=

�
1 0 0 0
0 0 1 0

�
| {z }

C[k]

2
64

xx[k]
vx[k]
xy[k]
vy[k]

3
75

| {z }
x[k]

+ n[k]; (13)

but the audio and video measurement noise covariance matrices,
R

(i)
nn[k]; i = 1; 2, differ. In case of audio object localization

which takes place in a polar coordinate system, the covariance ma-
trix R(1)

nn [k] is a diagonal matrix depending on the object distance.
Although no longer diagonal, the video covariance matrixR

(2)
nn [k]

also depends on the object distance from the focal plane.

5. EXPERIMENTAL RESULTS

For the experiment, the multi-state multi-sensor configuration shown
in Fig. 3 was used to estimate the position of a whistling model
railway moving along an oval track. The local measurements were
obtained using a steered beamformer [3] and a skin color detec-
tor [4]. The audio estimator operates in a polar coordinate system
to compute object positionsx1[k]. The video estimates,x2[k],
on the other hand, are expressed in Cartesian coordinates. The
joint estimate,̂x[kjk], however, is again expressed in polar coordi-
nates. To recursively combine the outputs of the two local Kalman
filters, the video position estimates are transformed into polar co-
ordinates. As a consequence, the measurement equations for the
associated video Kalman filters become nonlinear, and the recur-
sive video estimators have to be implemented as extended Kalman
filters.

Two state-space models were implemented as shown in Fig. 3.
The first one implies constant speed of the object and is given
through Eq. (12). It is set up with the appropriate covariance
matrixRvv[k]. The second model is based upon the same state-
space model, only the entries of the associated covariance matrix
are multiplied with a factor 100. Due to the increased noise level in
the state-space equation, the Kalman filter using the second motion
model relies more heavily on the measurements. Thus, it provides
better results in situations where the first state model no longer fits.

Figure 4 shows the results of a simulation where the railway
was moving with constant speed. Note that the multi-state multi-
sensor estimator provides a reliable estimate of the object position
at all time.

To quantify the position errors at the audio and video position
estimators, we introduce the Euclidean distance between the true
positionx[k] and its associated a posteriori audio/video estimate
x̂i[kjk] at timek

di[k] = jjx[k] � x̂i[kjk]jj : (14)

Similarly, we measure the Euclidean distance betweenx[k] and
the “universal” a posteriori estimatêx[kjk]

d[k] = jjx[k] � x̂[kjk]jj : (15)

Their variances are�d1
2 = 1:8 � 10�3m2, �d2

2 = 2:4 � 10�4m2,
and�d2 = 1:5 � 10�4m2. We see that the audio position estimates
are rather unreliable compared to what can be achieved with the
video system. Yet the use of a multi-state multi-sensor estimator
combining both modalities yields joint position estimates which
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Figure 4: Simulation of a railway moving on an oval track

are almost 40% more accurate than the video position estimates on
average. Another benefit of a multi-sensor system is its increased
robustness. Even if one sensor fails, a sensible global position
estimate may still be computed. To this end, another consistency
check at the fusion center is to be performed.

6. DISCUSSION AND CONCLUSIONS

We showed how to apply a decentralized Kalman filter to the prob-
lem of dynamic object localization using separate audio and video
sensors. Each sensor recursively computes a local position esti-
mate. Both estimates are then fused using a decentralized Kalman
filter. To take into account multiple motion models, we introduced
a multi-state multi-sensor configuration of the Kalman filter. Our
simulation results showed that the multi-state multi-sensor estima-
tor yields position estimates which are almost 40% more accurate
than what can be obtained with the best single (video) sensor. We
thus conclude, that single sensor estimations can be successfully
improved by a second modality, even when the second sensor esti-
mates are of inferior quality.
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