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ABSTRACT

This paper presents a object localization and tracking algorithm
integrating audio and video based object localization results. A
face tracking algorithm and a microphone array are used to com-
pute two single-modality speaker position estimates. These posi-
tion estimates are then combined into a global position estimate
using a decentralized Kalman filter. Experiments with a model
railway show that such an approach yields more robust results for
audio-visual object tracking than either modality by itself.

1. INTRODUCTION

Object localization and tracking is a well studied subject, which
has put forth a large number of implemented systems for various
applications such as robotics, scene analysis, person recognition,
etc. Most of these systems fall into two categories: systems based
on the analysis of video sequences or systems processing micro-
phone array signals. Since either of these modalities (visual and
acoustical) has its specific strengths and weaknesses, it is desir-
able to integrate the information of both modalities. This way, one
can obtain more robust position estimates.
This paper describes a system for joint audio-visual object track-
ing. Although the general methodology is valid for any kind of ob-
jects which can be seen and heard at the same time, the specific im-
plementation discussed here aims at tracking human speakers. The
visual object localizer combines skin color based face detection
and eye localization by principal component analysis. The acous-
tical localizer is an effective implementation of a steered beam-
former for a microphone array. A decentralized Kalman filter is
used at the fusion center to integrate such diverse signals as color
video sequences and audio tracks.

2. OBJECT LOCALIZATION FROM VIDEO
SEQUENCES

A robust face tracker for real-time operation was presented in [1].
This system combines feature invariant (skin color) and appear-
ance based methods (eye detection) for face detection. We now
use this face tracking algorithm for joint audio-video object local-
ization.
Figure 1 shows a block diagram of the complete face tracking al-
gorithm. It is implemented on an SGI O2 workstation, supporting
real-time operation with 25 frames per second. Our implementa-
tion is based on the IRIX ’Video Library’ directly interfacing with
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Fig. 1. Block diagram of the face tracking algorithm

the O2 standard video hardware. Once a new frame has been cap-
tured, its color information is subsampled to reduce the data that
has to be processed. A subsampling factor of four turned out to be
sufficient for real-time operation. At the next step, a foreground
segmentation is carried out. For this purpose, a background im-
age is captured at the beginning of the tracking session. To cope
with changes in the background during the tracking session, the
adaptive background scheme from [2] was added. Skin color seg-
mentation is performed on the detected foreground pixels. Based
on the skin color segmentation mask, the position and size of the
dominant skin color region in the input frame is computed. Simul-
taneously, the user’s eyes are located and tracked. In the next sec-
tions, we give a short overview illustrating the main components
of the algorithm.



2.1. Skin color based face detection

Face localization is performed using the statistical properties of
human skin color. Many recent publications confirmed human
skin color as a powerful feature for face detection. To improve the
robustness of color segmentation, a foreground/background seg-
mentation step is introduced before color segmentation is carried
out. Skin color modeling and segmentation is performed using the
YCrCb color space. It provides separation between the luminance
(Y) and the chrominance (Cr,Cb) components.

2.1.1. Skin color segmentation

Statistical models are used to model the characteristics of human
skin color. Among several models, the histogram based color
model described in [3] was chosen for our algorithm. The model
is trained using data from a set of hand labeled training images. In
our case two classes of pixels were considered: skin and non-skin
pixels. Given skin and non-skin histograms, the histogram counts
are converted into estimates for the discrete probability distribu-
tionsP̂ (CrCbjskin) andP̂ (CrCbjnon-skin) in the usual manner:

P̂ (CrCbjskin) =
cs[CrCb]

Ts
, (1a)

P̂ (CrCbjnon-skin) =
cn[CrCb]

Tn
(1b)

wherecs[CrCb], cn[CrCb] denote the pixel counts for a certain
CrCb color pair in the skin and non-skin histograms andTs, Tn

are the total pixel counts contained in the skin and non-skin his-
tograms, respectively. Studies have shown, that the human skin
colors cluster in a small region of the color space and that there is
a significant degree of separation between the skin and non-skin
image classes.
The color segmentation step classifies the pixels of an given in-
put image into skin and non-skin pixels. Only the pixels that were
identified as foreground pixels are processed further by skin color
segmentation. The result is a binary mask, that marks the skin
color areas in a given input image. A given pixel is classified as
skin pixel, if the conditional probabilitŷP (skinjCrCb) is greater
than a preselected thresholdθ for theCrCb color pair of this pixel:

P̂ (skinjCrCb) � θ (2)

Using the Bayes rule the conditional probabilitŷP (skinjCrCb)
can be computed from the color histograms in the following way:

P̂ (skinjCrCb) =

P̂ (CrCbjskin) P̂ (skin)

P̂ (CrCbjskin) P̂ (skin) + P̂ (CrCbjnon-skin) P̂ (non-skin)
(3)

whereP̂ (skin) andP̂ (non-skin) are the prior probabilities for skin
and non-skin.

2.1.2. Face localization

The face localization is implemented using a robust, statistics based
method described in [4]. Starting point for the algorithm is the
mask derived from the color segmentation performed on the input
image as described in the previous sections. Based upon this mask

two one-dimensional projected histograms along the x- and y-axis
of the mask are computed. The center position and size of the
dominant face in an input image is estimated based on the means
and standard deviations of trimmed versions of the projected his-
tograms.

2.2. Eye localization and tracking

Our method is based on the principle component analysis (PCA)
which is better known as eigenface analysis. PCA has been mostly
used for the localization and recognition of faces so far [5]. The re-
search in [6] shows that PCA also provides a powerful framework
for locating eyes. The aim of the PCA is to find the relevant char-
acteristics of eyes from a set of training images. The basic idea is
to use a unitary transform which transforms a given input image
into a lower dimensional space. According to the eigenfaces used
for face detection, the vectors of the transform matrix are called
eigeneyes. The basic idea is, that the eigeneye basis provides the
best reconstruction results for eye like regions and thus minimal
reconstruction errors. The best match between reconstruction and
the input image is an eye candidate.
Although the computational effort for the PCA detection scheme
can be highly reduced by downsampling, it is still too high for a
real time implementation with high frame rates on the given hard-
ware. To reduce the computational complexity further, the eye
detection and tracking task is divided into two steps: First the eye
is detected using the algorithms described in the previous sections.
Once the position of both eyes is known, they are tracked using a
luminance-adapted block matching technique, as described in [2].
This provides robust eye localization through PCA and fast track-
ing using block matching.

3. OBJECT LOCALIZATION FROM AUDIO SIGNALS

Using audio signals, one can estimate the object position from time
differences of arrival (TDOAs) of sound waves recorded at a mi-
crophone array. There are direct and indirect acoustic source local-
ization methods. The direct approach is based on summing the sys-
tematically delayed microphone signals and observing the power
of the overall output signal. This strategy is usually implemented
using a steered filter-and-sum beamformer. Indirect techniques on
the other hand, require two distinct processing steps. A set of time
differences of arrival (TDOAs) of an acoustic wavefront recorded
at separate microphone sensors is computed first. Then geometri-
cal properties are used to infer the source position.
In this paper we use the audio localization technique described
in [7]. In this algorithm the microphone array is operated as a
steered filter-and-sum beamformer implemented as a summed cor-
relator. A potential drawback to any steered beamformer approach
is the fact that we have to focus at all potential speaker positions.
Depending on the spatial accuracy desired, the search complexity
may be considerable. To reduce the computational complexity, a
hierarchical search strategy is used. Additionally a speech pause
detector improves the robustness of the speaker localization algo-
rithm by avoiding erroneous position estimates when no speech
signal is present. Finally, the algorithm provides a source position
estimate in terms of azimuth and range.
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Fig. 2. Structure of the decentralized discrete Kalman filter

4. OBJECT LOCALIZATION USING AUDIO AND VIDEO
INFORMATION

To increase the robustness of our tracking algorithm, we incorpo-
rate the video based position estimates as well as the audio based
position estimates in the final position estimate. State estimation
utilizes prior knowledge of the measurements and the system dy-
namics to obtain a more reliable estimate of the true system state.
In the context of face localization, the state is identified as the cen-
ter position or the size of the object tracked. Among various state
estimation techniques, we decided to use the Kalman filter. It eas-
ily takes into account many important factors such as sequential
time updates, measurement accuracy and target maneuver models.
The parallelized or decentralized (linear) Kalman filter (DKF) pro-
vides a useful fusion framework for our application. The DKF is
a multisensor Kalman filter that has been divided up into mod-
ules, each one associated with a particular sensor system. Figure 2
shows the structure of the DKF used. The local Kalman filter at the
microphone array, the local Kalman filter at the video camera, and
the global Kalman filter are the three main components needed to
recursively calculate a joint object position estimate. The deriva-
tion of the DKF can be found in [8, 9]. All Kalman filters use the
same dynamic model. To model the system dynamics, a motion
model for the tracked object is needed. The linear motion model
used here implies that the object moves with constant speed with
respect to the Cartesian coordinate system used.
The video based face detection algorithm provides the Cartesian
coordinates of the center position of the users head. The micro-
phone array, on the other hand, observes the source position in
terms of azimuth and range. The nonlinear relation between Carte-
sian and polar coordinates makes it necessary to combine a linear

Fig. 3. View from the video camera on the model railway

local Kalman filter and an extended Kalman filter when design-
ing the overall fusion algorithm recursively computing the global
position estimate in Cartesian coordinates.

5. RESULTS

Tracking of a human speaker in an audio-visual environment is a
very interesting application. Unfortunately, it does not easily facil-
itate a quantitative analysis, since the true speaker position cannot
be determined accurately by other means. To demonstrate the ro-
bustness and accuracy of our joint audio-video tracking algorithm
we made experiments using a model railway with non-ambiguous
color and a loudspeaker mounted on top of the engine. Figure 3
shows the view from the video camera on the model railway track.
The skin color based localization scheme, trained on the color of
the model railway, was used to localize and track the model rail-
way. The loudspeaker played a voice signal, which was tracked
by the audio localizer. The knowledge of the fixed railway track
contour together with continuous measurements of the engine’s
exact position along the track provided the ground truth against
which the audio-video tracking results could be compared. Figure
4 shows sample results from an tracking session with the model
railway.
To demonstrate the increased robustness of joint audio-video pro-
cessing against sensor failure, we assumed that both modalities
suffer from poor localization conditions at different times. The au-
dio localization results are shown on the top of Figure 4(a). The
dashed line is the railway track. The sequence of position esti-
mates from the summed correlator beamformer is indicated by
crosses (+). They represent the input datay1[k] to the local ex-
tended Kalman filterKF1. The estimation result computed by
the Kalman filter is depicted as a solid line. Furthermore, there
are two instances in the sequence of position estimates where we
dropped raw position estimates (observations) to mimic a silent
acoustic source. In both cases, the Kalman filter extrapolated the
position estimates based on the linear motion model of the local
Kalman filter. When new input data became available, the posi-
tion estimates got back on the track again. The situation is simi-
lar for video localization shown on the bottom. Since the camera
usually has a much higher spatial resolution than the microphone



array, the video position estimates are significantly more accurate
in general. Again, we simulated two instances with missing video
observations. As before at the audio localizer, the associated video
position estimates were linearly extrapolated, since the associated
video Kalman filter,KF2, uses the same motion model as the au-
dio Kalman filter,KF1. The fusion result is shown on the top
of Figure 4(b). We see that the joint estimation algorithm could
successfully remove deviations due to unreliable audio or video
observations. Finally, the plot on the bottom shows how the au-
dio, video, and joint audio-video position estimates differ from the
true object positions. The absolute position errors of the audio and
video position estimates peak at the startup of the audio estimator
and when there are failures related to missing mono-modal sensor
observations. Since these deviations do not coincide in time, the
joint estimate can still rely on the more accurate single localizer es-
timate in these cases. This example shows, that joint audio-video
object localization can provide more robust results than any of the
two mono-modal methods.

6. CONCLUSION

This paper presented a localization and tracking system integrat-
ing a video based face tracker and a microphone array for speaker
tracking. A quantitative analysis has shown that the presented bi-
modal tracking system can deliver more robust and reliable results
than either of the two single modalities.
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(a) position estimates from the local Kalman filters (KF 1, KF 2)
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Fig. 4. Sample results from experiments with the model railway


