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1. INTRODUCTION

The state of the art to solve problems of active noise
control and acoustic echo cancellation is to use adap-
tive control systems [1]. For acoustic echo cancellation,
adaptive algorithms have to provide a correct estimate
of the room impulse response of loudspeaker-enclosure-
microphone systems during operation. Test and eval-
uation of such algorithms requires either a real-time
implementation or measured appropriate impulse re-
sponses. However, these impulse responses are only
valid for one special room setup and cannot be applied
to other situations. Simulations of acoustical environ-
ments can help to overcome this problem. Impulse re-
sponses computed from realistic room models can re-
place measured ones for test purposes.
The different methods used for computational model-
ing of room acoustics can be divided into three groups
[2]: Statistical models, Ray-based models and Wave-
based models. The propagation of sound waves in the
air is governed by the wave equation. Unfortunately
the wave equation can only be solved analytically for
special cases like free field conditions or three-dimen-
sional enclosures with very simple geometries. There-
fore the solution must be approximated using more
simple models for the sound propagation. Statistical
models try to model the statistical properties of the
sound intensity and are therefore not useful in our con-
text. Ray-based models suppose that the sound behaves
like optical rays. As a result the effects caused by the
wave nature of sound, like diffraction, cannot be han-
dled by these methods. Wave-based methods try to
find numerical simulations for the wave equation. Be-
cause they use distributed parameter models, they are
able to handle all relevant physical effects, namely wave
propagation, reflection, transmission and diffraction.
To meet the high simulation quality requirements of
the proposed application, wave-based methods are the
only ones suitable here. Among various other methods
developed in the last two decades, we present here a
direct method to computational acoustics, which leads

from the partial differential equations to a state space
description of the simulation algorithm.

2. SIMULATION ALGORITHM

The propagation of sound waves in air is governed by
the equation of motion and the equation of continuity
for the acoustic pressure p(x, t) and the acoustic fluid
velocity vector v(x, t) [2],

ρ0
∂

∂t
v(x, t) + grad p(x, t) = es(x, t) (1a)
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p(x, t) + div v(x, t) = js(x, t) (1b)

where t denotes time and x the vector of space coor-
dinates x, y, z. ρ0 is the static density of the air and
c is the speed of the sound. es and js are appropri-
ate source terms. These two physical principles form a
set of two partial differential equations (PDEs) describ-
ing the propagation of sound waves. For our purposes
a symmetric form of these equations is advantageous.
This is achieved by introduction of the normalization
constant r0 = � 3 ρ0c and combining (1) into one ma-
trix equation
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where the operators Dt, Dx, Dy, Dz denote partial deri-
vation with respect to time and to the components
x, y, z of x. The components of v are denoted by iκ,
κ = 1 . . . 3 and i4 = p/r0. Similarly, the components
of es are denoted by eκ, κ = 1 . . . 3 and e4 = r0js.
This vector PDE is the starting point for the deriva-
tion of our simulation algorithm. It is essentially based
on the multidimensional wave digital principle. How-
ever, a more direct access is given in [3], based on a
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four-dimensional discrete-time and discrete-space state
space description.
The derivation of this discrete system according to the
state space approach starts from the normalized vector
PDE (2). After a series of intermediate steps, the state
space representation of a discrete-time and discrete-
space algorithm is obtained. The following subsections
cover these steps in detail.

2.1. Separation into spatial components

Inspection of (2) shows, that this PDE for three spatial
components can be broken down into three PDEs with
only one spatial component each. For example, the
PDE for the x-component has the form

Z̄1 ī1 = ū1 . (3)

The matrix Z̄1 is obtained from Z in (2) by elimination
of the second and the third row and column, which
contain only y and z components. Similarly, the first
element in ū1 is equal to the first element in e.

2.2. Numerical solution for each component

The numerical solution of the separate spatial compo-
nents follows through a series of steps, which are shown
in Fig. 1. The procedure is explained for the spatial di-
rection x. The starting point is the partial differential
operator Z̄1 from (3). Since it involves both time and
space differentiation, it is not very suitable for direct
numerical integration. A decoupled form with simple
differentiation operators would be more desirable. This
is achieved by two measures: First, a variable transfor-
mation, which decouples the differentiation operators,
or in other words, a diagonalization of the operator
matrix Z̄1. Second, a coordinate transformation, such
that each entry in the diagonal operator matrix con-
tains only differentiation with respect to a single coor-
dinate. The resulting decoupled form allows a numeri-
cal integration by the trapezoidal rule. Care has to be
taken to avoid delay free loops, which would call for
an iterative solution. This problem is circumvented by
another transformation of the variables. It leads to the
so called wave quantities ā1 and b̄1 [4]. Now, the spa-
tial components can be integrated numerically, though
in transformed coordinates and variables. Therefore,
the decoupling steps have to be reversed, to arrive at a
discrete-time, discrete space wave quantity formulation
of the original problem. A more detailed description of
the coordinate and variable transformations shown in
Fig. 1 is given in [3]. The matrix D̄1 in Fig. 1 con-
tains shift operators in x-direction and delay operators
in time direction. As a difference operator matrix it
corresponds to the differential operator matrix Z̄1.

2.3. State space formulation

The final form of the algorithm can be formulated in
terms of a state space description. The state z is as-
sociated with one of the wave quantities (see [3] for
details). The state space model consists of the state
equation and the output equation

z = � [ � z + � e] , (4a)

i = � z + � e, (4b)

The state equation (4a) follows from condensing the
procedure outlined in Fig. 1 into one matrix equation.
The output equation (4b) represents the conversion of
the wave quantities back to acoustic variables pressure
and velocity. The concise matrix formulation of the
discrete model as a state space description allows the
direct implementation of (4) in a software algorithm.

2.4. Boundary conditions

The operator matrix � in the state equation (4a) con-
tain shifts in both directions of each spatial dimension.
This requires the knowledge of the previous states in all
adjacent points. However, if a point lies at the bound-
ary of the spatial domain, e.g. at the wall of an en-
closure, then one or more of the adjacent points are
beyond the boundary, where the PDE is no more valid.
In this case, the state of these points has to be deter-
mined from boundary conditions rather than from the
PDEs (1). A detailed presentation of the incorporation
of various types of boundary conditions is beyond the
scope of this paper. Only a short outline of the general
approach is given here.

The idea is to split the state vector z into two
components: the interior states zi and the boundary
states zb. The interior states follow from a state equa-
tion similar to (4a). The boundary states follow from
the interior states and the boundary conditions. The
state space representation has to consider both types
of states appropriately. Its general form is given by

zi =
(
TT

i � )
[ � z + � e] , (5a)

zb = � bzi + � be, (5b)

z = Tizi + Tbzb, (5c)

i = � z + � e. (5d)

The matrices Ti and Tb contain only ones and zeros.
They depend on the geometry and describe whether
a state is an interior state zi or a boundary state zb.
Equation (5a) is very similar to the state equation (4a),
except that it delivers only the interior states. The
boundary states are computed in (5b) from the inte-
rior states and the boundary conditions, which deter-
mine � b and � b. Both interior and boundary states
are merged into the complete state vector z in (5c). It
is used to deliver the output quantities in (5d) and to
update the interior states in (5a).
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Figure 1: Transformation of the partial differential operator for one spatial component into a state space formu-
lation

3. IMPLEMENTATION

The algorithm described above has been implemented
in C++ in an object oriented fashion. This implemen-
tation is based on a multidimensional systems library
which was developed at our laboratory. In the current
version, objects with rectangular shape and analytical
objects of 2nd degree (e.g. ellipsoids) with given surface
reflexion factor can be modeled. Available sources in-
clude point sources, loudspeaker arrays and horn loud-
speakers. The respective sound pressure of the wave-
field can be captured at any point within the spatial
grid.

4. RESULTS

To show the performance of the algorithm described
above, we conducted some experiments with two differ-
ent room setups. The first room has the size 2.0 � 2.0 �
1.8 m (w � d � h). The ceiling and floor have a surface
reflection factor of r = 0 and are therefore absorbing,
the remaining four walls have a surface reflection fac-
tor of r = 0.7. The source is placed in the middle of
a reflecting wall at 20 cm distance, the microphone at
the middle of the opposite wall in 40 cm distance. Fig-
ure 2 shows the impulse response of the empty room.
The direct sound and the first reflections can be seen
clearly. The second room setup consists of the same
boundaries as the first one, but has some walls built
within. Again the surface of the inserted walls have an
reflection factor of r = 0.7. Figure 3 shows snapshots
of the wavefield for the second room setup at t = 4.1
ms and t = 6.7 ms after excitation with an Gaussian
impulse at t = 0 at the shown source position Q. Figure
4 shows the impulse responses of two different micro-
phone positions M1 and M2 as shown in Figure 3. The
upper plot shows the impulse response recorded at the
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Figure 2: Impulse response of an empty rectangular
room

microphone M1, the lower plot the one recorded at the
microphone M2. The difference in terms of a higher
reverberation is clearly visible in the upper one.

5. CONCLUSION

The simulations presented here show, that a numerical
calculation of room impulse responses is an alterna-
tive to room response measurements. It is the only
possibility if test data is required for virtual acousti-
cal environments. Due to its solid physical foundation,
the presented method handles all relevant acoustical
effects (propagation, reflection, diffraction) and does
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Figure 3: Snapshots of the wavefield after excitation with an Gaussian impulse at the source position Q. The
microphone positions M1 and M2 where used to record the impulse responses shown in Figure 4
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Figure 4: Impulse responses recorded at the micro-
phone positions M1 and M2 as shown in Figure 3

not require simplifying assumptions. Applications for
the derived algorithm include test data generation for
echo cancellation, noise control and source separation
algorithms. Another application field includes virtual
acoustics. The algorithm can be applied to predict
room acoustics and calculate characteristic parameters
like the sound decay time T60 and MPEG4 perceptual
parameters [5] based on an geometrical description of
the scene.
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