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1. INTRODUCTION

New emerging multimedia standards, like the MPEG-4 standard allow the creation of virtual or
synthetic acoustical environments. To auralize an environment from its geometric description,
simulation algorithms for acoustic wave propagation are required. The different methods used for
computational modeling of room acoustics can be divided into three groups [1]: statistical models,
ray-based models and wave-based models. Statistical models try to model the statistical properties
of the sound intensity and are therefore not useful in our context. Ray-based models suppose that
the sound behaves like optical rays. As a result the effects caused by the wave nature of sound,
like diffraction, cannot be handled by these methods. Wave-based methods try to find numerical
simulations for the wave equation. Because they use distributed parameter models, they are able to
handle all relevant physical effects, namely wave propagation, reflection, transmission and diffrac-
tion.
To meet the high simulation quality requirements of the proposed application, wave-based meth-
ods are the only ones suitable here. Among various other methods developed in the last two
decades, we present here a direct method to computational acoustics, which leads from the partial
differential equations to a state space description of the simulation algorithm.

2. SIMULATION ALGORITHM

The propagation of sound waves in air is governed by the equation of motion and the equation of
continuity for the acoustic pressure p(x, t) and the acoustic fluid velocity vector v(x, t) [1],
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p(x, t) + div v(x, t) = js(x, t) (1b)

where t denotes time and x the vector of space coordinates x, y, z. ρ0 is the static density of the
air and c is the speed of the sound. es and js are appropriate source terms. These two physical
principles form a set of two partial differential equations (PDEs) describing the propagation of
sound waves. For our purposes a symmetric form of these equations is advantageous. This is
archived by introduction of the normalization constant r0 =
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3 ρ0c and combining (1) into one
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where the operators Dt, Dx, Dy, Dz denote partial derivation with respect to time and to the com-
ponents x, y, z of x. The components of v are denoted by iκ, κ = 1 . . . 3 and i4 = p/r0. Similarly,
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the components of es are denoted by eκ, κ = 1 . . . 3 and e4 = r0js. This vector PDE is the starting
point for the derivation of our simulation algorithm. It is essentially based on the multidimensional
wave digital principle. However, a more direct access is given in [2], based on a four-dimensional
discrete-time and discrete-space state space description.
The derivation of this discrete system according to the state space approach starts from the nor-
malized vector PDE (2). After a series of intermediate steps, the state space representation of a
discrete-time and discrete-space algorithm is obtained. These steps are

� Separation into spatial components
The PDE description (2) is separated into three different spatial components. Each com-
ponent contains derivatives with respect to time and only one of the spatial directions x, y,
or z.

� Numerical solution for each component
A numerical integration is carried out for each of the spatial components. The discretization
is performed by the trapezoidal rule in two dimensions (one time and one space dimension).

� Combination of the spatial components
The discrete-time, discrete-space approximations for each of the three spatial components
are combined into a full four-dimensional representation (one time and three space dimen-
sions) of the PDE description (2).

� State space formulation
A suitable choice of internal states allows to formulate the discrete model in the state space
context.

The following subsections cover these steps in detail.

2.1. Separation into spatial components

Inspection of (2) shows, that this PDE for three spatial components can be broken down into three
PDEs with only one spatial component each. For example, the PDE for the x-component has the
form

Z̄1 ī1 = ū1 . (3)

with

Z̄1 =

[
ρ0Dt r0Dx

r0Dx ρ0Dt

]

, ī1 =

[
i1
i4

]

, ū1 =

[
u11

u14

]

. (4)

The matrix Z̄1 is obtained from Z in (2) by elimination of the second and the third row and column,
which contain only y and z components. Furthermore, the element 3ρ0Dt in Z contributes equally
to all spatial components and is represented in Z̄1 by one third of its value. Similarly, the first
element in ū1 is equal to the first element in e. The sum of u14 and the corresponding elements for
the other spatial components is equal to the fourth element in e.

2.2. Numerical solution for each component

The numerical solution of the separate spatial components follows through a series of steps, which
are shown in Fig. 1. The procedure is explained for the spatial direction x. The starting point is
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partial differential equation

Z̄1 ī1 = ū1

transformation of
coordinates and variables

numerical integration
transformation to wave quantities

inverse transformation of
coordinates and variables

D̄1 ā1 = b̄1

state space formulation

Figure 1: Transformation of the partial differential operator for one spatial component into a state
space formulation

the partial differential operator Z̄1 from (4). Since it involves both time and space differentiation,
it is not very suitable for direct numerical integration. A decoupled form with simple differen-
tiation operators would be more desirable. This is achieved by two measures: First, a variable
transformation, which decouples the differentiation operators, or in other words, a diagonalization
of the operator matrix Z̄1. Second, a coordinate transformation, such that each entry in the diago-
nal operator matrix contains only differentiation with respect to a single coordinate. The resulting
decoupled form allows a numerical integration by the trapezoidal rule. Care has to be taken to
avoid delay free loops, which would call for an iterative solution. This problem is circumvented
by another transformation of the variables. It leads to the so called wave quantities ā1 and b̄1 [3].
Now, the spatial components can be integrated numerically, though in transformed coordinates
and variables. Therefore, the decoupling steps have to be reversed, to arrive at a discrete-time,
discrete space wave quantity formulation of the original problem. A more detailed description
of the coordinate and variable transformations shown in Fig. 1 is given in [2]. The matrix D̄1 in
Fig. 1 contains shift operators in x-direction and delay operators in time direction. As a difference
operator matrix it corresponds to the differential operator matrix Z̄1.

2.3. State space formulation

The final form of the algorithm can be formulated in terms of a state space description. The state
z is associated with one of the wave quantities (see [2] for details). The state space model consists
of the state equation and the output equation

z = � [ � z + � e] , (5a)

i = � z + � e, (5b)

The state equation (5a) follows from condensing the procedure outlined in Fig. 1 into one matrix
equation. The output equation (5b) represents the conversion of the wave quantities back to acous-
tic variables pressure and velocity. The concise matrix formulation of the discrete model as a state
space description allows the direct implementation of (5) in a software algorithm.
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2.4. Boundary conditions

The operator matrix � in the state equation (5a) contain shifts in both directions of each spatial
dimension. This requires the knowledge of the previous states in all adjacent points. However, if a
point lies at the boundary of the spatial domain, e.g. at the wall of an enclosure, then one or more
of the adjacent points are beyond the boundary, where the PDE is no more valid. In this case, the
state of these points has to be determined from boundary conditions rather than from the PDEs (1).
(See also [4].) A detailed presentation of the incorporation of various types of boundary conditions
is beyond the scope of this paper. Only a short outline of the general approach is given here.

The idea is to split the state vector z into two components: the interior states zi and the bound-
ary states zb. The interior states follow from a state equation similar to (5a). The boundary states
follow from the interior states and the boundary conditions. The state space representation has to
consider both types of states appropriately. Its general form is given by

zi =
(
T

T
i �

)
[ � z + � e] , (6a)

zb = � bzi + � be, (6b)

z = Tizi + Tbzb, (6c)

i = � z + � e. (6d)

The matrices Ti and Tb contain only ones and zeros. They depend on the geometry and describe
whether a state is an interior state zi or a boundary state zb. Equation (6a) is very similar to the state
equation (5a), except that it delivers only the interior states. The boundary states are computed in
(6b) from the interior states and the boundary conditions, which determine � b and � b. Both interior
and boundary states are merged into the complete state vector z in (6c). It is used to deliver the
output quantities in (6d) and to update the interior states in (6a).

3. IMPLEMENTATION

The algorithm described above has been implemented in C++ in an object oriented fashion. This
implementation is based on a multidimensional systems library which was developed at our labo-
ratory. In the current version, objects with rectangular shape and analytical objects of 2nd degree
(e.g. ellipsoids) with given surface reflexion factors can be modeled. Available sources include
point sources, loudspeaker arrays and horn loudspeakers. The respective sound pressure of the
wavefield can be captured at any point within the spatial grid.

4. RESULTS

This section shows some results of simulations carried out by the algorithm described in the previ-
ous sections. The first example shows an application of the algorithm to room acoustics, the second
example shows the simulation of loudspeaker arrays. Animated simulations for other acoustical
environments are available at [5].

4.1. Room acoustics

The experimental setup consists of a room with the size 2.0 � 2.0 � 1.8 m (w � d � h), with
three walls inserted inside. The ceiling and floor have a surface reflection factor of r = 0 and
are therefore absorbing, the remaining walls have a surface reflection factor of r = 0.7. Figure 2
shows a snapshot of the wavefield at t = 4.1 ms and t = 6.7 ms in 90 cm height after excitation
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Figure 2: Snapshots of the wavefield after excitation with an Gaussian impulse at the position Q.

with an Gaussian impulse at t = 0 at the shown source position Q. The source Q is also positioned
in 90 cm height. Note that the simulation was performed in three dimensions. It can be clearly
seen, that the diffraction effects caused by the inner walls are handled correctly by the proposed
algorithm.

4.2. Loudspeaker array simulations

The wave field of an acoustic scene can be synthesized by the concept of wave field synthesis
(WFS). The theory of WFS is based on the Kirchhoff-Helmholtz integral [6]. WFS uses loud-
speaker arrays to synthesize the wavefronts. This example shows spatial aliasing effects caused by
an linear line array. The experimental setup consists of a room with the size 1.8 � 1.8 � 1.8 m (w

� d � h). All walls have a surface reflection factor of r = 0 and are therefore absorbing. The line
array is mounted along the x-axis in 90cm height. Figure 3 shows a snapshot of the wavefields
at t = 4.4 ms using 10 or 100 loudspeakers to synthesize a plane sinusoidal wave with frequency
f = 1000 Hz. The spatial aliasing effects when using only 10 loudspeakers can be seen clearly in
Figure 3(a) on the other hand, Figure 3(b) shows that 100 loudspeakers produce an almost perfect
plane wave.

5. CONCLUSION

The results show that numerical simulation of acoustic wave propagation through the proposed
algorithm is able to reproduce the physical effects of transmission, reflection and diffraction. The
algorithm is therefore applicable for high quality room acoustics simulation and auralization. The
drawback is a high computationally complexity which does not allow a real time implementation
for higher frequencies. This problem can be overcome by combining our proposed wave-based al-
gorithm for lower frequencies with an algorithm based on ray-based models for higher frequencies.
The approximation that sound behaves like optical rays is nearly fulfilled for higher frequencies.
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(a) 10 loudspeakers
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Figure 3: Snapshots of the wavefield generated by two different loudspeaker arrays (t = 4.4 ms).

Another application shown here is the simulation of WFS systems. Advanced numerical simulation
tools like the one presented here allow a physically correct design of WFS systems by simulating
their properties. Further simulated scenarios and animated simulations can be found in [5].
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