
A TUTORIAL ON THE REPRESENTATION OF TWO-DIMENSIONAL WAVE FIELDS BY
MULTIDIMENSIONAL SIGNALS

Rudolf Rabenstein, Peter Steffen, Sascha Spors

University Erlangen-Nuremberg, Multimedia Communications and Signal Processing,
Cauerstr. 7, D-91058 Erlangen, Germany

{rabe, steffen, spors }@LNT.de

ABSTRACT

The representation of information by waves is com-
mon to many fields in engineering and physics like
electromagnetism, acoustics, and optics. Many differ-
ent tools for the description of wave-like signals have
been developed. Most of them are based on meth-
ods and results from mathematical physics with dif-
ferent viewpoints according to the specific application
areas. This tutorial presents a framework for some of
the most common of these representations. It is based
on well-known transform domain signal descriptions
from multidimensional systems theory.

1. INTRODUCTION

Waves play a dominant role in the transmission of in-
formation over time and space. Their propagation is
governed by the wave equation. It is the foundation
of many applications in acoustics, optics, and electro-
magnetism. Solutions of the wave equation are called
wave fields.

This tutorial derives various representations of wave
fields. The purpose is to provide a framework for the
essential relations with only a basic knowledge in sig-
nals and systems. The components of this framwork
are the wave equation and Fourier transforms, Fourier
series, and Dirac impulses in one and two dimensions.
This contribution is an abridged version of [1].

The representations in this tutorial are embedded
in a time-dependent, spatially three-dimensional de-
scription. However, only an important special case
is considered here, namely that the spatial signals are
separable in one of the three spatial coordinates. This
assumption allows a reduction to two-dimensional wave
fields which is important for all applications where the
transmitters and receivers are located in a plane. There-
fore, only the two-dimensional case is presented here.

Sections 2 and 3 review some well-known facts

about one-dimensional signals and systems and intro-
duce the same notions for multidimensional signals and
systems, respectively. Sec. 4 specifies these results for
wave fields, i.e. for signals which satisfy the wave
equation. The so-called plane wave solution is consid-
ered in detail and it is shown how to represent also the
general solution of the wave equation by plane waves.
The resulting representations are derived for different
coordinate systems. Finally the results are compiled to
highlight the developed framework for the representa-
tion of two-dimensional wave fields.

2. ONE-DIMENSIONAL SIGNALS

This section reviews some well-known one-dimensional
signal transforms with respect to time, space, angular,
and radial coordinates. These remarks serve as refer-
ence for the multidimensional case in Sec. 3.

2.1. Fourier Transform

For the time variable t and the temporal frequency vari-
able ω, the Fourier transform is given by

F{f(t)} = F (ω) =

∞
∫

−∞

f(t)e−jωt dt , (1)

F
−1{F (ω)} = f(t) =

1

2π

∞
∫

−∞

F (ω)ejωt dω . (2)

The Fourier transform applies also to functions of the
space variable x and the spatial frequency variable kx

T{f(x)} = f̃(kx) =

∞
∫

−∞

f(x)e−jkxx dx , (3)

T
−1{f̃(kx)} = f(x) =

1

2π

∞
∫

−∞

f̃(kx)ejkxx dkx . (4)



2.2. Fourier Series

Periodic functions f(ϕ) of the angle ϕ with period
2π can be expressed by the complex expansion coeffi-
cients f̊(ν) as

Sϕ{f(ϕ)} = f̊(ν) =
1

2π

2π
∫

0

f(ϕ)e−jνϕ dϕ , (5)

S
−1
ϕ {f̊(ν)} = f(ϕ) =

∞
∑

ν=−∞

f̊(ν)ejνϕ . (6)

Of special importance in this context are the following
Fourier series expansions leading to Bessel functions

Sα{e
+jkr cos(θ−α)} = jν e−jνθ Jν(kr) , (7)

Sθ{e
−jkr cos(θ−α)} = j−ν e−jνα Jν(kr) . (8)

2.3. Fourier-Bessel (Hankel) Transform

The ν-th order Fourier-Bessel transform (Hankel trans-
form) of a function f(r) for r > 0 is given by [2, 3]

Hν{f(r)} = f̂ν(k) =

∞
∫

0

f(r)Jν(kr) r dr , (9)

H
−1
ν {f̂ν(k)} = f(r) =

∞
∫

0

f̂ν(k)Jν(kr) k dk . (10)

2.4. Representations of one-dimensional signals

Figs. 1 and 2 compile graphical representations of the
Fourier transforms with respect to time (1,2) and space
(3,4), of the Fourier-Bessel transform (9,10), and of
the Fourier series expansion (5,6). These relations will
appear as building blocks of the corresponding multi-
dimensional representations in Sec. 3.

f(t)
OO

F
��

f(x)
OO

T
��

f(r)
OO

Hν��
F (ω) f̃(kx) f̂ν(k)

Figure 1: Representations of the Fourier transform F

and T with respect to time and space domain (1–4) and
of the Fourier-Bessel (Hankel) transform Hν (9,10)

3. MULTIDIMENSIONAL SIGNALS

The transforms for one-dimensional signals introduced
in the previous section are now applied to multidimen-

f(ϕ) =
∑

ν
f̊(ν) ejνϕ
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Figure 2: Representation of the Fourier series expan-
sion Sϕ ((5,6)

sional (MD) signals, specifically to signals which de-
pend on time and two spatial coordinates. For the spa-
tial coordinates, two different coordinate systems are
considered, namely Cartesian and polar coordinates.
Signals in polar coordinates may be expanded into a
Fourier series with respect to the polar angle (angular
expansion).

3.1. Time and space dependent signals

The Cartesian and polar coordinates are written as

x =

[

x
y

]

, r =

[

r
α

]

(11)

respectively. The relations between Cartesian and po-
lar coordinates are given by

x = r

[

cosα
sin α

]

, r =

[
√

x2 + y2

arctan
(y

x

)

]

. (12)

Functions of time and of space in Cartesian coordi-
nates are denoted by the subscript c as fc(t,x). Sim-
ilarly functions of time and of space in polar coordi-
nates are written as fp(t, r). The same spatial shape
can be equally described in Cartesian and in polar co-
ordinates, i.e. fc(t,x) = fp(t, r) .

3.2. Fourier Transform with respect to time

The Fourier transforms of fc(t,x) and fp(t, r) with
respect to time are denoted by Fc(ω,x) = F{fc(t,x)}
and Fp(ω, r) = F{fp(t, r)}.

3.3. Fourier Transform with respect to space

The Fourier transform with respect to space takes dif-
ferent forms for Cartesian and polar coordinates. They
are denoted by Tc and Tp, respectively.

The Fourier transform Tc{fc(t,x)} with respect to



space is defined by

f̃c(t,k) =

∞
∫

−∞

∞
∫

−∞

fc(t,x)e−j(x,k) dx dy , (13)

fc(t,x) =
1

4π2

∞
∫

−∞

∞
∫

−∞

f̃c(t,k)ej(x,k) dkx dky . (14)

k = [kx, ky]
T is the vector of spatial angular frequen-

cies (wave numbers) and (x,k) is the scalar product

(x,k) = kTx = kxx + kyy . (15)

The Fourier transform pair for polar coordinates
is obtained from the Cartesian version in (13,14) by
substitution of the Cartesian variables x by the polar
variables r according to (12). With a polar version p

of the vector k

p =

[

k
θ

]

, k = |k|, tan θ =
ky

kx
, (16)

the spatial Fourier transform Tp{fp(t, r)} in polar co-
ordinates becomes

f̃p(t,p) =

2π
∫

0

∞
∫

0

fp(t, r)e
−j<r,p> r dr dα (17)

fp(t, r) =
1

4π2

2π
∫

0

∞
∫

0

f̃p(t,p)ej<r,p> k dk dθ. (18)

The scalar product (15) becomes in polar coordinates

(x,k) = kr cos(θ − α) =< r,p > . (19)

3.4. Two-Dimensional Dirac Impulses

The inverse Fourier transform T
−1
c defines for f̃c(t,k) ≡

1 the two-dimensional Dirac impulse [4] in Cartesian
coordinates δc(x − x0)

δc(x − x0) = δ(x − x0)δ(y − y0) =

=
1

4π2

∞
∫

−∞

∞
∫

−∞

ej(x−x0,k) dkx dky . (20)

δ(x) denotes the one-dimensional Dirac impulse.
By substitution of the Cartesian with polar coor-

dinates follows the two-dimensional Dirac impulse in
polar coordinates

δp(r − r0) =
1

r0
δ(r − r0)δ(α − α0) . (21)

When x0 and r0 are related as in (11, 12) then
δc(x − x0) = δp(r − r0).

Dirac impulses in the frequency domain for Carte-
sian and polar coordinates are defined by

δc(k − k0) = δ(kx − k0,x)δ(ky − k0,y) , (22)

δp(p − p0) =
1

k0
δ(k − k0)δ(θ − θ0) . (23)

3.5. Multidimensional Fourier Transform

Application of the Fourier transforms with respect to
time and space defines a multidimensional Fourier trans-
form denoted by FT

F̃c(ω,k) = FTc{fc(t,x)} =Tc{F{fc(t,x)}} (24)

F̃p(ω,p) = FTp{fp(t, r)} =Tp{F{fp(t, r)}} (25)

3.6. Angular Expansions

The functions Fp(ω, r) and F̃p(ω,p) are periodic in α
and in θ, respectively. Therefore, they can be expanded
into Fourier series with respect to α and θ using the
properties (7,8)

F̊p(ω, r, ν) = Sα{Fp(ω, r)} , (26)
˚̃F p(ω, k, ν) = Sθ{F̃p(ω,p)} . (27)

Then ˚̃F p(ω, k, ν) can be expressed as

˚̃F p(ω, k, ν) = Sθ{Tp{Fp(ω, r)}} = (28)

=

∞
∫

0

2π
∫

0

Fp(ω, r) Sθ{e
−j<p,r>} dα r dr .

With (8) and (26) follows a relation between the angu-

lar expansions F̊p(ω, r, ν) and ˚̃F p(ω, k, ν)

˚̃F p(ω, k, ν) =

∞
∫

0

F̊p(ω, r, ν)
2π

jν
Jν(kr) r dr . (29)

Since this relation bears close resemblance with the
Hankel transform (9), it is called a modified Hankel
transform Hν . An approach analogous to (28) for

F̊p(ω, r, ν) = Sα{T
−1
p {F̃p(ω,p)}}

leads to a relation inverse to (29). Thus the modified

Hankel transform Hν{F̊p(ω, r, ν)} = ˚̃F p(ω, k, ν) is



given by

˚̃F p(ω, k, ν) =

∞
∫

0

F̊p(ω, r, ν)
2π

jν
Jν(kr) r dr , (30)

F̊p(ω, r, ν) =

∞
∫

0

˚̃F p(ω, k, ν)
jν

2π
Jν(kr) k dk . (31)

3.7. Representations of Multidimensional Signals

The sections above have developed the relations be-
tween MD signals in Cartesian and polar coordinates
and in various transform domains. The resulting rep-
resentation of MD signals and the relations between
them are compiled in Figs. 3 and 4 ( ks +3 denotes
conversion between Cartesian and polar coordinates.)
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Figure 3: Coordinates in the space domain and in the
spatial frequency domain in different coordinate sys-
tems.
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Figure 4: Representations of MD signals in the time
and space domain and in the corresponding frequency
domains in different coordinate systems

4. WAVE FIELDS

After having introduced various representations of gen-
eral MD signals, the results are specialized to a cer-
tain class of signals. From now on only those signals
are considered which satisfy the wave equation. This
restriction poses strong constraints on the admissible
signals by closely relating their variations in time and
space. The formulations for these constraints depend
on the chosen domain and are explored in the sequel.

Signals which satisfy the wave equation are also
called solutions of the wave equation or wave fields or
simply waves. They are denoted by pc(t,x) or by the
corresponding notations according to Fig. 4. First, sig-
nals in Cartesian coordinates will be considered, then
follow polar coordinates and Fourier series expansions.

4.1. The Wave Equation

The wave equation is given by

∆pc(t,x) −
1

c2

∂2

∂t2
pc(t,x) = 0 . (32)

∆ = ∇2 denotes the Laplace operator [5]. Application
of the Fourier transform F with respect to time turns
the wave equation into the Helmholtz equation

∆Pc(ω,x) +
(ω

c

)2
Pc(ω,x) = 0 . (33)

Application of the Fourier transform Tc with respect to
space leads to a multiplication with (jk)T (jk) = −k2

−k2P̃c(ω,k) +
(ω

c

)2
P̃c(ω,k) = 0 . (34)

In the spatial and temporal frequency domain, the con-
straint on the possible solutions of the wave equation
consists of a strong coupling between the temporal fre-
quency variable ω and the magnitude k of the spatial
frequency variable k, i.e.

P̃c(ω,k) = 0 for k2 6=
ω2

c2
.

The following sections explain how this constraints af-
fect the various representations from Fig. 4.

4.2. Plane Wave Solution of the Wave Equation

A plane wave is a special solution of the wave equa-
tion, which has a very simple form for Cartesian co-
ordinates. It is determined by its waveform and by
the direction from which the waveform emanates. The



waveform is given by a time function g0(t) and the di-
rection is given by the unit vector n0

n0 =

[

n0,x

n0,y

]

=

[

cos θ0

sin θ0

]

. (35)

The plane wave solution is the MD signal

pc,0(t,x) = g0

(

t +
1

c
(x,n0)

)

, (36)

where (x,n0) is the scalar product between x and n0.
It describes a planar wave front which propagates through
space from the direction of n0 with speed c. In the ori-
gin x = 0, the wave form g0(t) is observed directly as
pc,0(t,0) = g0(t).

Now the Fourier transforms F and Tc with respect
to time and space are applied to the plane wave solu-
tion. First, Fourier transform F with respect to time
gives

Pc,0(ω,x) = G0(ω)ej ω

c
(x,n0) = G0(ω)ej(x,k0) (37)

where k0 is the spatial frequency vector in the direc-
tion n0 from where the plane wave is emitted.

k0 =
ω

c
n0 = k0n0 = k0

[

n0,x

n0,y

]

=

[

k0,x

k0,y

]

,

k2
0,x + k2

0,y = k2
0 =

ω2

c2
. (38)

Next, spatial Fourier transform Tc gives with (22)

P̃c,0(ω,k) = 4π2G0(ω)δc(k − k0) . (39)

Equation (39) shows that temporal and spatial frequency
variables in P̃c,0(ω,k) are closely related. Waves have
a spatial spectrum which is rather restricted, i.e. it is a
2D Dirac pulse in the kx–ky–plane. The distance from
the origin is given by the temporal frequency ω due to
|k0| = ω/c. The direction is determined by the direc-
tion of wave emanation n0. Fig. 5 shows the possible
locations of δc(k− k0).

4.3. General Solution of the Wave Equation

The wave equation admits more general solutions than
the plane wave solution discussed above. However, the
general solution may be obtained by superimposing
plane waves from all possible directions (0 ≤ θ0 <
2π) and with varying waveforms. To express the de-
pendency on the angle θ0 properly, the plane wave so-
lution (39) is rewritten as

P̃c,0(ω,k) = P̃c(ω, θ0,k) = 4π2G(ω, θ0)δc(k − k0) .
(40)
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Figure 5: Possible locations of the Dirac impulse
δc(k − k0) in the kx–ky–plane
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Figure 6: Support of the Dirac impulse δc(k − k0) in
the (ω, kx, ky)–domain

The general solution is obtained by integration over all
possibe directions θ0

P̃c(ω,k) =

2π
∫

0

P̃c(ω, θ0,k) dθ0 =

= 4π2

2π
∫

0

G(ω, θ0)δc(k − k0) dθ0 . (41)

This construction of the general solution is straight-
forward, but it is not compatible with either a Carte-
sian or a polar coordinate system. While the spatial
frequency vector k is formulated in Cartesian coordi-
nates, the angle dependence in G(ω, θ0) corresponds
to polar coordinates. In the sequel, equation (41) is ex-
pressed first in Cartesian and then in polar coordinates.

4.3.1. Cartesian coordinates

To express (41) in Cartesian coordinates, the angle θ0

has to be substituted by k0,x (or k0,y). It is of advantage



to break the integral from 0 to 2π into two integrals
from 0 to π and π to 2π. Introducing G̃(1)(ω, k0,x) for
0 ≤ θ0 < π and G̃(2)(ω, k0,x) for π ≤ θ0 < 2π

G̃(1)(ω, k0,x) =

{

G(ω, θ0) |k0,x| ≤ k0

0 |k0,x| > k0
, (42)

G̃(2)(ω, k0,x) =

{

−G(ω, θ0) |k0,x| ≤ k0

0 |k0,x| > k0
, (43)

and following the standard procedures for the substitu-
tion in integrals leads to

P̃c(ω,k) = P̃ (1)
c (ω,k) + P̃ (2)

c (ω,k) , (44)

with (for i = 1, 2)

P̃ (i)
c (ω,k) =

4π2

∞
∫

−∞

G̃(i)(ω, k0,x)
1

√

k2
0 − k2

0,x

δc(k − k0) dk0,x.

(45)

The two terms in (44) have a physical interpretation
as waves emanating from opposite directions. Since
both terms have an identical structure, they will not be
further distinguished from now on. The results derived
below apply to either term with proper definition of
G̃(ω, k0,x) according to (42) or (43).

Equation (45) shows that the 2D spatial Fourier
transform P̃c(ω,k) is generated by a signal with one
spatial dimension only. Denoting the Fourier trans-
form of this signal by

H̃c(ω, k0,x) = G̃(ω, k0,x)
2π

√

(

ω
c

)2
− k2

0,x

(46)

gives equation (45) the concise form (the superscript
(i) now omitted)

P̃c(ω,k) = 2π

∞
∫

−∞

H̃c(ω, k0,x)δc(k − k0) dk0,x.

(47)

To show the relation between P̃c(ω,k) and its spa-
tially 1D counterpart H̃c(ω, k0,x), the definition of the
Dirac impulse (22) and the dispersion relation accord-
ing to (38) are used

δc(k − k0) = δ(kx − k0,x) δ

(

ky −

√

(ω

c

)2
− k2

0,x

)

.

(48)

Performing the 1D integration in (47) yields

P̃c(ω,k) = 2π H̃c(ω, kx) δ

(

ky −

√

(ω

c

)2
− k2

x

)

.

(49)

This representation shows, that the spatially 2D spec-
trum P̃c(ω,k) exists only on the region of support in
the (ω, kx, ky)–domain indicated in Fig. 6.

The inverse transformation T
−1
c with respect to k

gives

Pc(ω,x) =
1

2π

∞
∫

−∞

H̃c(ω, kx)e
j

(

kxx+
√

(ω

c
)
2
−k2

x
y

)

dkx .

(50)

Equation (50) establishes the connection between a gen-
eral solution of the wave equation Pc(ω,x) and the 1D
spatial Fourier spectrum H̃c(ω, kx). This relation can
be understood more clearly, if P̃c(ω,x) is restricted to
its values on the x-axis, i.e. y = 0. Then (50) turns
into a one-dimensional inverse Fourier transform with
respect to space according to (4)

Pc(ω,x)|y=0 = Hc(ω, x) = T
−1{H̃c(ω, kx)} , (51)

The relations shown above give rise to the follow-
ing interpretations:

From (51) follows

H̃c(ω, kx) = T{Hc(ω, x)} = T{Pc(ω,x)|y=0}.

(52)

This relation along with (50) shows that a spatially 2D
wave field is completely determined by its values along
a line in the x-y plane, i.e. a spatially 1D signal. For
the derivation given here, this line is the x-axis, but by
suitable coordinate transformations the representation
could be extended to other lines in the x-y plane which
are not orthogonal to n0.

From (46) follows

G̃(ω, kx) =
1

2π
H̃c(ω, kx)

√

(ω

c

)2
− k2

x , (53)

The values along the x-axis are related by (53) to the
Fourier spectrum of the waveform of plane waves from
different angles of incidence. This relation can be in-
terpreted as a projection of the waveform spectra G̃(ω, kx)
to the kx-axis of the Cartesian coordinate system.

Equation (49) shows that the frequency domain rep-
resentation P̃ (ω,k) of a wave field is nonzero only on
a cone in the (ω, kx, ky)–domain as shown in Fig. 6.



The relations developed in this subsection are the
specialization of the the 2D Fourier transform Tc for
general MD signals to solutions of the wave equation.
They are also known as plane wave expansion or plane
wave decomposition (see e.g. [6]).

4.3.2. Polar coordinates

To formulate these results in polar coordinates, the gen-
eral solution of the wave equation in the form of (41)
is reconsidered. Converting it from Cartesian to polar
coordinates results in [1]

P̃p(ω,p) = 4π2

2π
∫

0

G(ω, θ0)δp(p − p0) dθ0 . (54)

Observing (23) and carrying out the integration in (54)
yields

P̃p(ω,p) = 4π2 G(ω, θ)
1

k
δ
(

k −
ω

c

)

. (55)

As in the Cartesian case the frequency domain repre-
sentation P̃p(ω,p) is nonzero only on a cone in the
(ω, kx, ky)–domain or in the (ω, k, θ)–domain respec-
tively (see Fig. 6). This condition is mathematically
represented by the Dirac impulse incorporating the dis-
persion relation in (55).

By inverse Fourier transformation Pp(ω, r) =
T
−1
p {P̃p(ω,p)} with respect to space follows

Pp(ω, r) =

2π
∫

0

G(ω, θ)ej ω

c
r cos(θ−α) dθ . (56)

As for Cartesian coordinates in (50), the wave field in
polar coordinates is generated by a spatially 1D signal.
Here, this signal is given by the waveform spectrum
G(ω, θ).

4.3.3. Angular Expansions

The Fourier coeffients P̊p(ω, r, ν) of Pp(ω, r) and
˚̃P p(ω, k, ν) of P̃p(ω,p) follow from a Fourier series
expansion of the wave field description in polar coor-
dinates according to (54) and (56). The coefficients
P̊p(ω, r, ν) = Sα{Pp(ω, r)} are given by

P̊p(ω, r, ν) =

2π
∫

0

G(ω, θ0) Sα{e
j ω

c
r cos(θ0−α)} dθ0 .

(57)

With (7) follows

P̊p(ω, r, ν) = 2πjνJν

(ω

c
r
)

G̊(ω, ν) (58)

with the Fourier coefficients of G(ω, θ)

G̊(ω, ν) = Sθ{G(ω, θ)} =
1

2π

2π
∫

0

G(ω, θ)e−jνθ dθ .

(59)

The Fourier coefficients P̊p(ω, r, ν) of the spatially 2D
signal Pp(ω, r) can be represented in terms of the Fourier
coefficients G̊(ω, ν) of the spatially 1D signal G(ω, θ).

There are two ways to calculate the coefficients
˚̃P p(ω, k, ν) of P̃p(ω,p) (see Fig. 4). One way is to
apply Sθ directly to P̃p(ω,p). The second way is to
apply the modified Hankel transform Hν to the Fourier
coefficients P̊p(ω, r, ν). In either case, the result is [1]

˚̃P p(ω, k, ν) = 4π2 G̊(ω, ν)
1

k
δ
(

k −
ω

c

)

. (60)

Again, the Fourier coefficients ˚̃P p(ω, k, ν) of the spa-
tially 2D signal P̃p(ω,p) can be represented in terms
of the Fourier coefficients G̊(ω, ν).

4.4. Compilation of the Results

The properties of MD signals which describe wave fields
are now compiled in concise form. The contents of ta-
ble 1 specify the properties of the general signals from
Fig. 4 for the case that they satisfy the wave equation.
The spatially two-dimensional signals which solve the
wave equation can be represented by a spatially one-
dimensional quantity. This statement holds for all con-
sidered coordinate systems and for both space and spa-
tial frequency domains. This one-dimensional quantity
can be derived directly from the general solution con-
stituted by the wave forms of plane waves from all di-
rections. These wave forms appear either directly as
their temporal Fourier transform G(ω, θ), its Fourier
coefficients G̊(ω, ν), or as the projection H̃c(ω, kx) of
G(ω, θ) to the kx–axis of the coordinate system of the
spatial frequency domain. This projection corresponds
to the values Hc(ω, x) of the wave field Pc(ω,x) along
the x–axis.

5. CONCLUSIONS

A framework for the representation of two-dimensional
signals in different coordinate systems and different



Cartesian Coordinates

Pc(ω,x) =
1

2π

∞
∫

−∞

H̃c(ω, kx)e
j

(

kxx+
√

(ω

c
)
2
−k2

x
y

)

dkx P̃c(ω,k) = 2π δ

(

ky −
√

(

ω
c

)2
− k2

x

)

H̃c(ω, kx)

Pc(ω,x)|y=0 = Hc(ω, x) G̃(ω, kx) =
1

2π
H̃c(ω, kx)

√

(

ω
c

)2
− k2

x

Polar Coordinates

Pp(ω, r) =

2π
∫

0

G(ω, θ)ej ω

c
r cos(θ−α) dθ P̃p(ω,p) = 4π2 G(ω, θ)

1

k
δ
(

k −
ω

c

)

Fourier Series Coefficients

P̊p(ω, r, ν) = 2πjνJν

(ω

c
r
)

G̊(ω, ν) ˚̃P p(ω, k, ν) = 4π2 G̊(ω, ν)
1

k
δ
(

k −
ω

c

)

Table 1: Representation of a wave field in the space domain (left) and in the spatial frequency domain (right)

transform domains has been developed. It comprises
known results for wave fields as usually derived in the
fields of imaging and acoustics. By adopting a gen-
eral viewpoint from the theory of signals and systems,
these results could be derived in a straightforward fash-
ion and without resorting to special applications.
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