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ABSTRACT

Wave field synthesis (WFS) is a technique allowing the reproduction of sound fields in an extended listening
area. This paper describes the theoretical fundamentals of WFS using linear loudspeaker arrays. A spatio-
temporal frequency domain analysis of the reproduced wave field reveals that not only the desired wave field
is present in the listening area but also an additional near-field component. This component is analyzed in
detail and the resulting wave fields are illustrated. Practical realizations of WFS impose certain technical
constraints, namely the application of a finite number of discrete loudspeakers. The impact of this spatial
discretization and truncation of the secondary source distribution on the near-field component is derived.

1. INTRODUCTION
Spatial sound reproduction systems with a high num-
ber of loudspeakers (massive multichannel sound repro-
duction systems) have increasingly been used in the last
decade. The use of more and more loudspeakers has in-
creased the reproduction quality considerably in the past.
However, most systems still suffer from several artifacts
present in the reproduced wave field. This contribution
discusses one of these artifacts, namely near-field effects
of linear arrays where each loudspeaker is realized by a
line array.
Typical sound reproduction systems aim at reproducing
the wave field at the level of the listeners ears only.
Hence a two-dimensional formulation of sound repro-
duction is suitable for most applications and will be ap-
plied in this paper. The presented principles can be
generalized straightforwardly to three-dimensional re-
production.
One of the reproduction systems proposed in the context
of massive multichannel systems is wave field synthesis
(WFS). It is intuitively based on the Huygens principle
or more mathematically on the Kirchhoff-Helmholtz in-
tegral [1, 2]. Previous studies [3, 4] of the wave field re-
produced by a WFS system using a linear loudspeaker ar-
ray revealed that there are additional artifacts reproduced
besides the desired wave field of the virtual source. How-
ever, to the knowledge of the authors these artifacts have
not been analyzed for WFS in detail up to now. This
paper complements this finding by suggesting that these
additional contributions are near-field effects of the loud-

speaker array.
This paper proceeds as follows: First the theoretical
background of WFS is introduced in Section 2, then a
detailed analysis of the near-field effects is given in Sec-
tion 3. This is followed by a generalization of the results
to point sources as secondary sources in Section 4. Fi-
nally, Section 5 gives a short summary, some conclusions
and an outlook on further research directions.

1.1. Nomenclature
The following conventions are used throughout this pa-
per: For scalar variables lower case denotes the time do-
main, upper case the temporal frequency domain. Vec-
tors are denoted by lower case boldface. The spatial fre-
quency domain is denoted by a tilde placed over the re-
spective symbol. The two-dimensional position vector in
Cartesian coordinates is given asx = [x y]T . The anal-
ysis is performed entirely in the temporal frequency do-
main by transforming all signals and wave fields from
the time domain into the frequency domain by a (tempo-
ral) Fourier transformation [5]. The temporal frequency
variable is denoted byω = 2π f .

2. WAVE FIELD SYNTHESIS
The following section provides the fundamentals of

sound reproduction and WFS as required within this pa-
per. For more details please refer to [6, 7, 1, 2].

2.1. Fundamentals of sound reproduction
The theoretical basis of most loudspeaker-based sound
reproduction systems is given by the Kirchhoff-
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Helmholtz integral [8]. It states, that the acoustic pres-
sure inside a closed regionV can be controlled by a con-
tinuous monopole and dipole source distribution on the
boundary∂V enclosing the regionV. These sources are
termed assecondary sourcesin the following. The wave
field to be reproduced will be denoted asvirtual source
wave field.
It is desirable to remove the secondary dipole sources
for a practical realization of spatial sound reproduction
systems. The reproduced wave field for monopole-only
reproduction is given as [6, 7]

P(x,ω)=−

∮

∂V
2a(x0)

∂
∂n

S(x0,ω)
︸ ︷︷ ︸

D(x0,ω)

G(x|x0,ω) dS0 ,

(1)

where S(x0,ω) denotes the wave field of the virtual
source at the boundary∂V, a(x0) a window function
which determines which secondary sources are excited,
andG(x|x0,ω) a suitably chosen free-field Green’s func-
tion representing the secondary sources. The operator
∂

∂n denotes the gradient in direction of the inward point-
ing surface normaln. A relevant secondary source, in
this context, is a source whose propagation direction co-
incides with the local wave field of the virtual source.
The secondary source driving functionD(x0,ω) abbrevi-
ates the terms constituting the strength of the secondary
sources.
For two-dimensional sound reproduction the required
Green’s function is given by the two-dimensional free-
field Green’s function

G2D(x|x0,ω) =
j
4

H(2)
0 (k|x−x0|) , (2)

whereH(2)
0 (·) denotes the zeroth order Hankel function

of second kind andk= ω/c the wave number. The phys-
ical interpretation ofG2D(x,ω), in three-dimensional
space, is the wave field produced by a line source. A
practical realization of a line source is a line array. The
three-dimensional free-field Green’s function is required
for three-dimensional reproduction. It is given as

G3D(x|x0,ω) =
1

4π
e− jk|x−x0|

|x−x0|
. (3)

The physical interpretation ofG3D(x,ω) is the field pro-
duced by a point source. A practical realization of a point
source is a loudspeaker with closed cabinet.

2.2. Wave Field Synthesis
Wave field synthesis is typically a two-dimensional spa-
tial sound reproduction technique which uses loudspeak-
ers with closed cabinets as secondary sources [7, 1, 2].
Closed loudspeakers can be regarded as approximations
of point sources. The acoustical field of a point source
is provided by the three-dimensional free-field Green’s
function G3D(x|x0,ω). However, line sources would
be more appropriate as secondary sources for a two-
dimensional sound reproduction system. In order to an-
alyze and compensate the error introduced by this sec-
ondary source mismatch a closer look at the properties
of point and line sources is taken. The asymptotic ex-
pansion of the Hankel function for large arguments [9] is
used to approximate the two-dimensional Green’s func-
tion G2D(x|x0,ω) as follows

G2D(x|x0,ω) ≈
1

4π

√

2π
jk

1
√

|x−x0|
e− jk|x−x0| . (4)

Comparing Eq. (4) with Eq. (3) reveals that the given ap-
proximation ofG2D(x|x0,ω) is similar to a point source
but with a different spectrum and amplitude decay. This
reveals that a frequency and amplitude correction can
be applied in order to compensate for the secondary
source mismatch. For WFS both corrections are typi-
cally included into the secondary source driving function
D(x0,ω). In general, the amplitude can only be corrected
exactly for one listener position in the listening area. For
other positions, amplitude errors are present in the re-
produced wave field [10, 11]. Note that the corrections
outlined above assume that the large argument approxi-
mation (k|x−x0| ≫ 1) holds.

2.3. Linear loudspeaker arrays
Practical implementations of WFS systems facilitate lin-
ear or circular loudspeaker arrays. We will focus on
linear secondary line source distributions in this paper.
Without loss of generality, the geometry depicted in
Fig. 1 is assumed: a linear secondary source distribu-
tion located on thex-axis (y = 0) of a Cartesian coordi-
nate system. The reproduced wave field is derived from
Eq. (1) by degenerating the closed contour∂V to a line
on thex-axis with infinite length. This line divides the
xy-plane in two-regions. The upper half plane (y > 0) is
chosen as the listening area. Please note that for this spe-
cialized geometry only those virtual source wave fields
can be reproduced where the local propagation direction
at the secondary source distribution has a contribution in
the direction of the positivey-axis. The window function
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Fig. 1: Geometry used to derive the reproduced wave field of a linear secondary source distribution. The• denote the
sampling positions of the secondary sources for a discontinuous secondary source distribution (loudspeaker array).

a(x0) = 1 in this case.
Specializing Eq. (1) to the geometry depicted by Fig. 1
yields

P(x,ω) = −
∫ ∞

−∞
D(x0,ω)G(x − x0,ω) dx0 , (5)

wherex0 = [ x0 0 ]T andG(x|x0,ω) = G(x− x0,ω)
for typical Green’s functions used in this context. The
integral (5) is also known as Rayleigh integral [8].
The next section will derive the near-field effects for a
linear secondary line source distribution.

3. NEAR-FIELD EFFECTS OF LINEAR LOUD-
SPEAKER ARRAYS
For the following analysis of the near-field effects of

linear loudspeaker arrays the idealized case of secondary
line sources will be assumed in order to discard the am-
plitude and spectral errors of WFS. The near-field effects
of linear line arrays are derived by a spatio-temporal fre-
quency domain analysis of the reproduced wave field.
This analysis is based on the frequency domain repre-
sentation published by one of the authors in [3, 4].
A monochromatic plane wave is assumed as the wave
field of the virtual sourceS(x0,ω) in the following.
The derived results can be generalized straightforwardly,
since arbitrary wave fields can be represented as the su-
perposition of monochromatic plane waves [8, 6].

3.1. Spatio-temporal frequency-domain repre-
sentation of the reproduced wave field
The spatio-temporal frequency-domain representation

of the reproduced wave field is derived by applying a
two-dimensional spatial Fourier transformation to the
signals and wave fields given in the temporal frequency
domain. The applied two-dimensional spatial Fourier
transformation is defined as follows

P̃(k,ω) = Fx{P(x,ω)}

=

∫ ∞

−∞

∫ ∞

−∞
P(x,ω)e− jkT xdkxdky ,

(6)

where the vectork = [ kx ky ]T denotes the spatial fre-
quency vector (wave vector). It is related to the tempo-
ral frequency by|k| = k = ω/c for acoustic wave fields,
wherec denotes the speed of sound. Applying the two-
dimensional spatial Fourier transformation (6) to Eq. (5)
yields the spatio-temporal spectrum of the wave field re-
produced by a linear secondary source distribution as

P̃(k,ω) = −D̃(kx,ω) G̃(k,ω) . (7)

In order to compute the reproduced spectrum, the
spatio-temporal spectrums of the secondary line sources
G̃2D(k,ω) and the driving functionD̃(kx,ω) have to be
considered. Introducing the spectrum of the secondary
line sources and the driving function for a plane wave
into Eq. (7) yields the reproduced spectrum as [3]

P̃pw(k,ω) = π
ω
c

sinαpw δ (kx−
ω
c

cosαpw)×

×

(

1
k

δ (
√

k2
x +k2

y −
ω
c

)+ j
1

k2
x +k2

y − (ω
c )2

)

. (8)
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The reproduced spectrum consists of a real and an imag-
inary valued part. Throughout this paper these will be
denoted as follows

P̃pw(k,ω) = ℜ{P̃pw(k,ω)}
︸ ︷︷ ︸

P̃pw,pr(k,ω)

+ j ℑ{P̃pw(k,ω)}
︸ ︷︷ ︸

P̃pw,ev(k,ω)

. (9)

We will first analyze the real part in detail.
Applying the sifting property of the Dirac function to the
real partP̃pw,pr(k,ω) and rearranging the argument of the
second (circular) Dirac line yields the following alterna-
tive form for P̃pw,pr(k,ω)

P̃pw,pr(k,ω)= π δ (kx−
ω
c

cosαpw) δ (ky±
ω
c

sinαpw) .

(10)

Inverse spatial Fourier transformation of̃Ppw,pr(k,ω)
yields fory≥ 0

Ppw,pr(x,ω) =
1

4π
e− j kT

pw x , (11)

where

kpw = [ kx,pw ky,pw ]T

= [ k cosαpw k sinαpw ]T . (12)

Inspection ofPpw,pr(x,ω) reveals that the real part of the
spectrum of the reproduced wave field constitutes the de-
sired plane wave. It propagates into the direction of the
positivey-axis with the incidence angleαpw. This con-
tribution is therefore termed aspropagatingpart.
The reproduced spectrum̃Ppw(k,ω), however, consists
also of the additive imaginary valued partP̃pw,ev(k,ω)
besides the real part identified as the desired plane wave.
The question arises what influence this part has on the
field reproduced by a sound reproduction system. It will
be derived in the following sections that this part can be
identified as the near-field contribution.

3.2. Identification of near-field contributions
The inverse spatial Fourier transformation of the imag-
inary valued partP̃pw,ev(k,ω) of the spectrum of the re-
produced wave field is calculated in order to derive an in-
terpretation of this part. The inverse Fourier transforma-
tion of P̃pw,ev(k,ω) for y≥ 0 is given as [12, Eq. 3.354-5]

Ppw,ev(x,ω) =
1

4π
e− j kx,pw x e−ky,pw y , (13)

wherekx,pw andky,pw are defined according to Eq. (12).
The field Ppw,ev(x,ω) exhibits the form of a two-
dimensional evanescent plane wave [8].

Evanescent plane waves are solutions of the wave equa-
tion in the form of plane waves, where one of the ele-
ments of the wave vectorkpw is imaginary. The ampli-
tude of the evanescent wave decays exponentially in this
direction, as a consequence. Evanescent waves can be
observed in problems involving e. g. vibrating plates or
wave reflection and transmission between two different
media. They are also termed as near-field of a source
due to their local structure given by the exponential de-
cay of amplitude.
The evanescent plane wavePpw,ev(x,ω) generated by the
linear secondary source distribution oscillates parallelto
thex-direction and its amplitude decays exponentially in
they-direction. The wavenumber of the oscillation in the
x-direction is similar to the wavenumberkx,pw of the de-
sired plane wave in this direction, the exponent of the de-
cay in they-direction is proportional to the wavenumber
ky,pw of the desired plane wave in they-direction. Us-
ing results from [8] it can be derived that the power flow
is parallel to thex-axis, decaying exponentially in they-
direction.
Figure 2 shows the propagatingPpw,pr(x,ω) and evanes-
cent partsPpw,ev(x,ω) of the wave field reproduced by
a continuous linear secondary source distribution. The
reproduced wave field for the desired reproduction of a
monochromatic plane wave with frequencyf = 1000 Hz
and two different incidence anglesαpw = {45o,90o} is
shown. Note that the amplitude of the wave fields has
been normalized by discarding the 1/4π factor present
in both fields.
Figure 3 illustrates the amplitude decay of the evanescent
part along they-axis for two different frequencies and in-
cidence angles. The dependence on these variables can
be seen clearly. It is also evident that the amplitude of
the evanescent part of the reproduced wave field at some
fixed distance from the array is higher for lower frequen-
cies and incidence anglesαpw different from 90 degrees.

3.3. Spatial sampling of continuous secondary
source distributions
Practical implementations of sound reproduction and
WFS systems utilize loudspeakers placed at discrete po-
sitions. The influence of this spatial sampling of the sec-
ondary source distribution on the reproduced wave field
will be investigated in the following.
The reproduced spectrum̃PS,pw(k,ω) for a discontinu-
ous secondary line source distribution has been derived
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(a) propagating wavefieldαpw = 90o
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(b) evanescent wavefieldαpw = 90o
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(c) propagating wavefieldαpw = 45o
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(d) evanescent wavefieldαpw = 45o

Fig. 2: PropagatingPpw,pr(x,ω) and evanescent partPpw,ev(x,ω) of the wave field reproduced by a continuous linear
secondary source distribution for the reproduction of a plane wave with frequencyf = 1000 Hz and two different
incidence anglesαpw. The reproduced wave field is given as the superposition of both contributions.
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Fig. 3: Illustration of the amplitude decay of the evanescent part for two different frequenciesf = {500,1000} Hz and
incidence anglesαpw = {45o,90o}.

in [3]. It is given as

P̃S,pw(k,ω) =

π
ω
c

sinαpw

∞

∑
η=−∞

δ (kx−
2π
∆x

η −
ω
c

cosαpw)×

×

(

1
k

δ (
√

k2
x +k2

y −
ω
c

)+ j
1

k2
x +k2

y − (ω
c )2

)

, (14)

where∆x denotes the distance between the secondary
sources (see Fig. 1), the indexS indicates a sampled sec-
ondary source distribution. Spatial sampling leads to ad-
ditional propagating plane waves in the reproduced wave
field. The effect of spatial sampling on the propagating
part and anti-aliasing conditions have already been dis-
cussed in [3, 4]. In this contribution we will focus on
the effects of spatial sampling on the near-field contribu-
tions.
The reproduced wave field̃PS,pw(k,ω) is split into a real
and an imaginary valued part, according to Eq. (9). Fig-
ure 4 illustrates the structure of the imaginary valued part
P̃S,pw,ev(k,ω) of the reproduced spectrum in the spatial
frequency domain. This part consists of a series of Dirac
lines parallel to thekx-axis weighted by a contribution
which is inversely proportional tok2

x + k2
y − (ω

c )2. The
poles of this weighting contribution lie on a circle with
radiusω/c, the values are negative inside the circle and
positive outside. No exact anti-aliasing condition can be
derived for the imaginary valued part since the weighting
of the Dirac lines never becomes zero. As a consequence,

aliasing artifacts will always be present in the near-field
contributions of the reproduced wave field. However,
this is not the case for the propagating part of the repro-
duced wave field.
Inverse spatial Fourier transformation of the imaginary
valued partP̃S,pw,ev(k,ω) using [12, Eq. 3.354-5] for
y > 0 yields

PS,pw,ev(x,ω) =
jω
4c

sinαpw×

×
∞

∑
η=−∞

e− j( 2π
∆x η+ ω

c cosαpw)x 1
aη

e−|aη y| , (15)

whereaη is given as

a2
η = (

2π
∆x

η +
ω
c

cosαpw)2− (
ω
c

)2 . (16)

Please note that Eq. (15) is equal to Eq. (13) forη =
0. The inverse Fourier transformation of the imaginary
valued partPS,pw,ev(x,ω) for a sampled secondary line
source distribution consists of a superposition of evanes-
cent plane waves. The wavenumber of the oscillating
part in thex-direction is given by the wavenumber of the
desired plane wave in thex-direction and its repetitions
at 2π

∆xη due to the spatial sampling. The exponent of the
decay in they-direction is proportional to the factoraη .
The factoraη given by Eq. (16) can be interpreted as the
cathetus of a right angled triangle, as shown in Fig. 4
for a1. Hence,aη is imaginary for allη were the Dirac
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Fig. 4: Illustration of the imaginary valued part of the reproducedspectrumP̃S,pw by a discrete secondary line source
distribution for the reproduction of a plane wave with incidence angleαpw.

lines intersect with the circular pole and real otherwise.
Please note, that additional Dirac lines intersect with the
circular pole in Fig. 4 if the frequency of the monochro-
matic plane wave or the secondary source distance∆x is
increased.
For the x-axis (y = 0) Eq. (15) can be rewritten as a
Fourier series with respect to thex-coordinate

PS,pw,ev(x,0,ω) =
jω
4c

sinαpw×

×
1

∆x
e− j ω

c cosαpwx
∞

∑
η=−∞

1
aη

e− j 2π
∆x ηx . (17)

Hence, the factors1aη
can be regraded as the Fourier se-

ries coefficients of the reproduced field on thex-axis.
Figure 5 shows the evanescent part of the wave field
reproduced by a continuous and a sampled secondary
source distribution. Again the reproduction of a plane
wave with a frequency off = 1000 Hz and incidence
angleαpw = 45o is considered. The secondary source
distance was chosen to be∆x= 10 cm. This way no spa-
tial sampling artifacts will be present in the reproduced
propagating part [4]. Figure 5(a) is a zoomed version of
Fig. 2(d) to allow a better visualization of the decaying
evanescent part. Please note that the amplitude of the
wave fields has been normalized. The aliasing artifacts
for the evanescent part are clearly visible in Fig. 5(b).

3.4. Truncated linear arrays
Up to now, the linear secondary source distribution was
assumed to be of infinite length in thex-direction. How-
ever, practical implementations of linear loudspeaker ar-
rays will always be of finite length. In [3] truncation
of a linear secondary source distribution was only dis-
cussed on a qualitative level by considering a limited re-
production area. The limitation is based on a geometric
approximation of the truncation effects. This approxima-
tion states that a plane wave will only be reproduced in a
tilted rectangular area in front of the array, whose width
is equivalent to the aperture of the array in thex-direction
and whose length in they-direction is infinite. The area
is tilted by the incidence angleαpw of the plane wave to
be reproduced.
We will now give some details on the quantitative de-
scription of the truncation effects. Truncation is typi-
cally modeled by multiplying the secondary source driv-
ing functionD(x0,ω) with a suitable window function
w(x0) [1]. Incorporatingw(x0) into Eq. (5) yields the
wave fieldPtr(x,ω) reproduced by a truncated linear ar-
ray as

Ptr(x,ω) = −

∫ ∞

−∞
w(x0)D(x0,ω)G(x−x0,ω) dx0 .

(18)

Spatial Fourier transformation ofPtr(x,ω) yields the
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Fig. 5: Comparison of the evanescent part of the wave field reproduced by a continuous and sampled secondary
source distribution (∆x = 10 cm) for the reproduction of a plane wave with frequencyf = 1000 Hz and incidence
angleαpw = 45o.

spectrum of the reproduced wave field as

P̃tr(k,ω) = −
1

2π
(
w̃(kx)∗kx D̃(kx,ω)

)

︸ ︷︷ ︸

D̃tr(kx,ω)

G̃(k,ω) , (19)

where∗kx denotes convolution with respect to the spatial
frequencykx-variable. A secondary source distribution
with finite lengthL can be modeled by a rectangular win-
dow. In this case the window functionw(x0) is given by
the rect-function [5]

rect
( x

L

)

=

{

1 , if |x| ≤ L
2 ,

0 , otherwise.
(20)

The spatial Fourier transformation of rect( x
L ) with re-

spect to thex-variable can be computed as

Fx{rect
( x

L

)

} = |L|
sin( kx

2 L)
kx
2 L

= |L|sinc(
kx

2
L) . (21)

Other window functions can also be applied to limit trun-
cation effects caused by the hard truncation in space [1].
We will outline the formulation of the reproduced spec-
trum at the example of the rect-window in the following.
However, the same principles apply also to other win-
dow functions. Applying the procedure outlined in [3] to

the case of a truncated sampled linear array derives the
reproduced wave field as follows

P̃S,tr,pw(k,ω) =

π
ω
c

sinαpw |L|
∞

∑
η=−∞

sinc(
L
2
(kx−

2π
∆x

η −
ω
c

cosαpw))×

×

(

1
k

δ (
√

k2
x +k2

y −
ω
c

)+ j
1

k2
x +k2

y − (ω
c )2

)

. (22)

Hence, the Dirac lines in Fig. 4 will be replaced by
shifted sinc-functions at the positions of the Dirac lines.
The spectrum of the reproduced propagating wave field
is derived by applying the sifting property of the circular

Dirac line δ (
√

k2
x +k2

y −
ω
c ) in Eq. (22) to the shifted

sinc-functions. The result is a circular Dirac function
which is weighted in thekx-direction by the shifted sinc-
functions. Forη = 0 (continuous case) this will result in
the reproduction of a plane wave superimposed by trun-
cation artifacts. For a sampled secondary source distri-
bution, the repetitions of the sinc functions at2π

∆xη will
also interfere with the baseband, since the sinc-function
has contributions at all spatial frequencieskx. As a con-
sequence, no exact anti-aliasing conditions can be given
for the truncated linear array. However, an aliasing-to-
signal (ASR) ratio [4] could be used to characterize the
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aliasing contributions. However, the ASR will depend on
the choice of the particular window functionw(x0) used
for truncation. Here might be some potential for opti-
mization with respect to aliasing artifacts of finite length
linear arrays. The same procedure as outlined above can
also be applied to the imaginary valued part of the spec-
trum.

4. POINT SOURCES AS SECONDARY
SOURCES
Most practical implementations of WFS systems use

closed loudspeakers (point sources) as secondary sources
for the reproduction in a plane. The consequences of
this secondary source mismatch have been pointed out
in Section 2.2. This section will derive the reproduced
spectrum and will outline its interpretation.
The reproduced spectrum̃Ppw(k,ω) is derived by intro-
ducing the spectrum of the three-dimensional Green’s
function G̃3D(k,ω) and the driving functionD̃(kx,ω)
into Eq. (7). Applying the procedure shown in Sec-
tion 3.1 yields

P̃pw(k,ω) =
jω
c

sinαpw×

× δ (kx−
ω
c

cosαpw)
1

√

k2
x +k2

y − (ω
c )2

, (23)

where the spectrum of the Green’s functionG̃3D(k,ω)
given in [3] was used. A detailed analysis of the repro-
duced wave field for point sources as secondary source
could be performed, similar as for the secondary line
sources, by computing the inverse spatial Fourier trans-
formation of the real and imaginary valued parts of the
reproduced wave field̃Ppw(k,ω). However, the detailed
solution and its implications go beyond the scope of this
paper and is topic of ongoing research. First results indi-
cate that no near-field artifacts (evanescent plane waves)
are reproduced for point sources as secondary sources.
Interestingly this finding seems to be in conjunction with
other research results in the area of numerical simulation
of sound propagation [13].
A first approximation of the reproduced field can be
gained from Eq. (4) fork|x−x0| ≫ 1, hence for a rea-
sonable distance from the array (far-field) or high fre-
quencies. The reproduced propagating part will not have
equal amplitude throughout the entire listening area, it
will be superimposed by a decaying amplitude over dis-
tance to the array.

5. SUMMARY AND CONCLUSIONS
This paper presented a detailed analysis of the sound

field reproduced by a linear secondary line source dis-
tribution. The analysis was based on a spatio-temporal
spectral analysis of the reproduced wave field. Investi-
gation of the spectral components revealed that beside
the desired wave field also evanescent contributions are
emitted by the secondary sources. In the continuous case
an evanescent plane wave was reproduced with similar
parameters as the desired wave field, but with decay-
ing amplitude perpendicular to the array axis. Due to
this amplitude decay the evanescent wave will only have
influence in the vicinity (near-field) of the secondary
sources. It was further shown that for a sampled sec-
ondary source distribution no anti-aliasing condition can
be given for this part since aliasing is always present
in the reproduced evanescent plane wave. This result is
quite remarkable since this is not the case for the prop-
agating part. The analysis of the reproduced wave field
was complemented by quantitatively considering trunca-
tion of the array and indicating the consequences of us-
ing point sources as secondary sources. Most WFS sys-
tems are built using closed loudspeakers (point sources)
as secondary sources. However, the use of (truncated)
line arrays, where several closed loudspeakers are used
for one secondary source, has proven to be a promising
concept with several benefits [14, 15].
The results presented in this paper together with the pre-
vious publications [3, 4] provide the theoretical link be-
tween the wave field reproduced by a continuous and a
sampled (loudspeaker array) secondary source distribu-
tions used for sound reproduction. The derived results
can be generalized straightforwardly to other massive
multichannel sound reproduction systems (e. g. higher-
order Ambisonics) by modifying the driving function ac-
cordingly and performing the steps shown in this paper.
Besides sound reproduction only, WFS has also been ap-
plied to active control applications like active noise con-
trol (ANC) or active listening room compensation. The
presented near-field effects of linear arrays will limit the
performance of such applications in the vicinity of the
loudspeaker array. The presented results allow to quan-
tify the performance degradations in practical situations
by considering sampling and truncation.
However, an open question still is the audibility of the
derived near-field effects. The physically based analy-
sis presented here revealed their evanescent nature. The
question remains if evanescent plane waves are audible
to humans, and if this is the case, how they are perceived
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by them. The authors did not find conclusive literature
on the topic to finally answer this question.
Further research topics and directions are the exact anal-
ysis of near-field effects for point sources as secondary
sources, the use of more sophisticated models for the sec-
ondary sources (e. g. a piston radiator model [16]) and
experimental validation of the results.
The results derived in this paper have some indica-
tions on the theoretical background of sound reproduc-
tion systems that are essentially based on the Kirchhoff-
Helmholtz integral. It is often assumed that it is suffi-
cient to use the directional gradient of the virtual source
on the boundary of the listening area as driving signal in
order to perfectly reproduce the wave field of the virtual
source inside the listening area. This paper revealed a po-
tentially undesired additional near-field effect for linear
arrays. There is strong evidence that these results hold
also for arbitrary secondary source contours.
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