THE SOUNDSCAPE RENDERER: A VERSATILE SOFTWARE FRAMEWORK FOR
SPATTIAL AUDIO REPRODUCTION

Matthias Geier, Jens Ahrens, André Mohl, Sascha Spors, Jonas Loh, Katharina Bredies

Deutsche Telekom Laboratories
Technische Universitit Berlin
Ernst-Reuter-Platz 7
10587 Berlin, Germany
e-mail: Matthias.Geier @telekom.de

ABSTRACT

We present a new software system for spatial audio repro-
duction called SoundScape Renderer. It is currently used for
rendering 2-dimensional virtual acoustic scenes using either
Wave Field Synthesis, binaural rendering or Vector Based
Amplitude Panning. A further extension to higher order Am-
bisonics is planned. However, in this paper we will focus on
the WF'S functionality.

We also describe the physical setup of the WFS system in-
stalled at the Usability Laboratory of Deutsche Telekom Lab-
oratories, the natural habitat of the SoundScape Renderer.

Finally, we present a working draft for an XML file for-
mat enabling the exchange of acoustic scenes between differ-
ent software systems. This Audio Scene Description Format
(ASDF) is entirely open and we encourage everyone to par-
ticipate in its further definition.

1. THE SOUNDSCAPE RENDERER

Beginning in late 2000, the SoundScape Renderer (SSR) was
written to drive the Wave Field Synthesis (WFES) system in
the new Usability Laboratory space inaugurated in spring
2007 at Deutsche Telekom Laboratories in Berlin. However,
its functionality is not limited to this system, nor to WFS
in general. The SSR is a versatile software framework for
any kind of spatial audio reproduction. It was conceived as
a modular and transparent research tool for different spatial
reproduction methods, for multi-party communication sce-
narios, for interaction with spatial audio and related research
areas.

The first rendering module of the SSR was for WES,
which is also the main emphasis of this paper. A binaural
demonstrator used earlier at Telekom Laboratories was incor-
porated into the SSR as another rendering module. Most re-
cently, support for Vector Based Amplitude Panning [1] was
added.

1.1 Software Architecture

The SSR is written in C++ under massive use of the standard
template library (STL). It is compiled with g++ (the GNU
C++ compiler) and of course runs under Linux. The JACK
audio connection kit (JACK)' is used to handle audio data
which makes it very easy to connect several audio process-
ing programs to each other and to the hardware. This way
any program that produces sound (and supports the JACK)
and any live input from the audio hardware can be manually
connected to the SSR and can serve as source input.

"http://jackaudio.org

Audio scene descriptions and the reproduction setup are
stored in XML files. These files can be saved and loaded by
means of the libxml2 library?. Both the JACK client library
and libxml2 are written in C, therefore simple C++ wrapper
classes have been created.

The class structure of the SSR is designed in a way that
functional units can be exchanged or redesigned easily with-
out changes to the rest of the code. The centerpiece of the
SSR is the Controller class. From here, all other modules
are instantiated as needed. First, the loudspeaker geometry
is loaded from an ASDF file (see section 3). A loudspeaker
setup can consist of any number and combination of single
loudspeakers, linear arrays and circular array segments. Af-
ter that, the Renderer class is loaded. As mentioned earlier,
different types of rendering modules can be used. This is
realized by having an abstract interface class named Ren-
derer from which all concrete renderers are derived. For
now, we can choose between the WFSRenderer, Binaural-
Renderer and VBAPRenderer classes. The Controller class
does not need to know which kind of renderer is used, it
only communicates via the abstract interface. The selected
renderer creates the necessary JACK output ports depend-
ing on the reproduction setup and discloses them to the Con-
troller. Once the renderer module is running, a scene can
be loaded from an ASDF file (see section 3). The source
data of this file (source name, position, volume, file name,
point source/plane wave, ...) are stored in the Scene object.
Whenever a source is created, moved, deleted or changed in
any other way, the Scene object is updated accordingly.

1.2 Audio File Handling

Audio files used as virtual source signals are played back
by means of the Ecasound library®. Ecasound supports the
JACK, so soundfiles can easily be connected to the JACK
ports of the renderer. Virtual source signals can be stored
in mono or in multichannel files. If many sources are used,
however, audio data can be read faster from one multichannel
file than from many mono files.

The rendered loudspeaker (or headphone) signals are nor-
mally played back in realtime. If needed, they can also be
written to a multichannel soundfile. This way very complex
scenes can be rendered in non-realtime and played back af-
terwards. The synchronisation of playback, rendering and
recording is realized with the JACK transport protocol.

Zhttp://xmlsoft.org
3http://www.eca.cx/ecasound

http://jackaudio.org
http://xmlsoft.org
http://www.eca.cx/ecasound

File v e M n >

zoom Tevel

18 160 &

Guitar B0 = Eagles B0 = fria £Q - Guitar - Eagles - Aria -
'\.‘.m‘nence R
O (O /
= Drums Ve

>
>
LA

=
Vocals
I Guitar £ Keys @
=

«c ¥ " Laboratories

& m—
- A

< Deutsche Telekom

Ardnsfifut der Tech nischen Universitat Bardin

Figure 1: Screenshot of the SoundScape Renderer’s graphical user interface in action. The loaded scene consists of two plane
waves and four non-focused point sources. One of the latter is selected and the loudspeakers which are contributing to its

wavefront are marked.

1.3 WFS Renderer

The WFS Renderer calculates the appropriate signal for ev-
ery loudspeaker depending on the position and other features
of the virtual sources. Up to now, both point sources an plane
waves are supported. Before actually computing the contri-
bution of a given source, it determines if the source is fo-
cused or non-focused. If a source is inside the loudspeaker
array it is focused, otherwise it is non-focused. A source is
considered outside of the array if there is at least one array
loudspeaker facing away from the source, i.e. the source is
located in the half-space opposite of the loudspeaker’s main
direction of radiation. This criterion is valid for any open or
closed array as long as it has no concave parts.

Depending on the focusedness of the sources a delay
value and a weighting factor is calculated for each source-
loudspeaker pair. Each audio block is rendered two times,
once with the delay and weighting factor of the previous
block and once with the current values. These two blocks are
cross-faded with a raised cosine window. This way we avoid
discontinuities in the signal on fast source movements. A
positive side effect of this method is that if a source changes
its status from inactive to active or vice versa, it automati-
cally gets a fade-in or a fade-out, respectively. However, if
there are no fast source movements the crossfade can be de-
activated to save CPU load and to avoid a spectral coloration
of the sound. An alternative algorithm based on interpolation

will be implemented in the future and the two methods will
be compared.

In addition to the computation of the loudspeaker signals
the WFS Renderer also stores information for each source-
loudspeaker pair if it is active or not in the current audio
block. This information can be visualized in the graphical
user interface (see figure 1 and section 1.5).

1.4 Other Renderers

So far, the capabilities of the SSR also include binaural ren-
dering and Vector Based Amplitude Panning, although its
main application has been WES. The binaural renderer uses
BruteFIR* as powerful convolution engine. Any form of lis-
tener tracking can be realized via the network interface de-
scribed in section 1.6.

Due to the class architecture of the SSR, any 2-dimen-
sional reproduction method using loudspeakers or head-
phones can be easily incorporated. An extension to higher
order Ambisonics [2] is planned.

1.5 Graphical User Interface

The graphical user interface (GUI) plays an important role in
the SSR development. It is not intended as a mere tool for
the programmers to change parameters of the system, but as

“http://www.ludd.luth.se/-torger/brutefir.html

http://www.ludd.luth.se/~torger/brutefir.html

an attractive interface for a broader clientele who will use it
in in-house demos as well as on expositions or suchlike. It is
designed to enable the user to change the virtual scene intu-
itively and to instantly visualize changes to the scene which
are made from outside of the GUI (e.g. via the network inter-
face). The user interface is clear and straightforward, so that
even an unexperienced user can easily operate the software.

As shown in figure 1, the sources are displayed as round
objects which can be selected and moved around using the
mouse or a touchscreen. So far, point sources and plane
waves are supported. Plane waves are distinguished by an ad-
ditional arrow showing the propagation direction of the wave
front. The symbol in the center of the loudspeaker array is
the reference point of the array. Using this reference point,
the whole loudspeaker array can be rotated. When a source is
selected, the loudspeakers which get a contribution from this
source are marked (like for the virtual source named Vocals
in the screenshot).

If the binaural renderer is used, the loudspeaker array is
replaced by the depiction of a head (the listener’s head) on
the reference point. The display of the sources is unchanged.

The scene is freely zoomable and the displayed section
can be moved by the mouse/touchscreen. On top of the
screen there are controls to play and pause the source sound-
files and to change the master volume.

The GUI is implemented using version 4 of the Qt
toolkit®. However, if the GUI is not needed, the SSR can
be compiled without any Qt dependencies. The display of
the virtual scene is realized using OpenGL, so that hardware
acceleration is possible.

1.6 Network Interface

The SSR can not only be run as a single application, but its
major components can run on different computers. A net-
work interface was developed to allow the communication
between different parts. One of the main applications for
this feature is that the audio processing can run on one ded-
icated computer and the graphical user interface on another.
Furthermore, any type of interface or tracking system can
be connected and control the SSR via the network interface.
Also several connections at a time are possible.

The network interface uses the TCP internet protocol and
the control messages are sent as XML tags. The parsing of
the messages is done with the libxml?2 library.

2. PHYSICAL SETUP @ TELEKOM LABS

The WEFS system in our new Usability Laboratory space fea-
tures a circular loudspeaker array suspended from the ceiling
with its height adjustable by an electric winch. The array
has a diameter of three meters and comprises 56 loudspeak-
ers (ELAC 301). It is left as an exercise for the reader to
calculate the loudspeaker distance.

The computer running the SSR is placed in the next room
to avoid fan noise. We use a dual-core dual AMD Opteron
PC running Gentoo Linux. The audio signals are output via
an RME HDSP MADI Soundcard.

The 56-channel MADI signal is split up into seven ADAT
signals with an RME ADI-648 converter. The seven multi-
channel amplifiers with ADAT input are custom-made by the

Shttp://trolltech.com/products/qt

Chair of Multimedia Communications and Signal Processing
at University of Erlangen-Nuremberg.

3. AUDIO SCENE DESCRIPTION FORMAT

The SSR can load both virtual scenes and reproduction se-
tups from XML (eXtensible Markup Language) files. For
this purpose we defined a file format called Audio Scene De-
scription Format (ASDF). This format should not be limited
to the SSR, we want it rather to become an open exchange
format which will make it easy to reproduce the same scene
on different locations and systems. This way, for example
an electroacoustic spatial composition could be performed
on many different locations without the need to rearrange it
anew for each venue.

In the following paragraphs, we present the format in
its current state in which it is in use within the SSR.
An ASDF file consists of four optional parts: header,
scene_setup, reproduction_setup and score.
The last part is not yet defined because for now, only static
scenes are supported in the SSR. For some details about the
ASDF consider the following small example scene:

<?xml version="1.0"?2>
<asdf>
<header>
<name>Simple Example Scene</name>
</header>
<scene_setup>
<source name="Vocals" model="point">
<file channel="1">demo.wav</file>
<position x="-2" y="2"/>
</source>
<source name="Ambience" model="plane">
<file channel="2">demo.wav</file>
<position x="2" y="2"/>
</source>
</scene_setup>
</asdf>

The header element holds general information about the
ASDF file, like name, description and creation date. In the
scene_setup part, all sources are defined. The example
shows both a point source and a plane wave. Positions are
specified in meters in a right handed cartesian coordinate sys-
tem. As shown, one sound file can be used for several virtual
sources.

As mentioned before, the ASDF can also describe loud-
speaker setups. The loudspeaker setup at Telekom Laborato-
ries can be defined as follows:

<?xml version="1.0"7?>
<asdf>
<header>
<name>Circular Loudspeaker Array</name>
</header>
<reproduction_setup>
<circular_array number="56">

<first>
<position x="1.5" y="0"/>
<orientation azimuth="-180"/>
</first>

</circular_array>
</reproduction_setup>
</asdf>

For the definition of an arbitrary loudspeaker array, the
reproduction_setup section can contain any number

http://trolltech.com/products/qt

of the elements loudspeaker, circular_array and
linear_array. Arrays can be specified by the number of
speakers and by the first and second, or by the first
and last loudspeaker. If only a first loudspeaker is
givenina circular_array, a full circle is assumed.

The definition of the ASDF is still in an early stage. We
greatly appreciate any feedback on the topic and would be
glad if many people and institutions could participate in cre-
ating a commonly accepted exchange format.

4. OUTLOOK

The SoundScape Renderer is still quite young and there are
many possibilities to improve and to extend it. We will be
working on creating dynamic scenes with moving virtual
sources and on saving these movements and other dynamic
changes to ASDF files.

A higher order Ambisonics renderer will be implemented
which will help us to compare Wave Fiel Synthesis, Vec-
tor Based Amplitude Panning and Ambisonics on the same
loudspeaker array. In addition to plane waves and point

sources we want to implement directional sound sources in
both WES [3] and Ambisonics [4].

REFERENCES

[1] Ville Pullki, “Virtual sound source positioning using
Vector Based Amplitude Panning”, Journal of the Audio
Engineering Society (JAES), vol. 45(6), June 1997.

[2] Jérdome Daniel, “Représentation de champs acoustiques,
application a la transmission et a la reproduction de
scenes sonores complexes dans un contexte multimédia,”
PhD thesis, Université Paris 6, 2001.

[3] Jens Ahrens and Sascha Spors, “Implementation of Di-
rectional Sources in Wave Field Synthesis,” 2007 IEEE
Workshop on Applications of Signal Processing to Au-
dio and Acoustics (WASPAA), October 21-24, 2007, New
Paltz, NY.

[4] Jens Ahrens and Sascha Spors, “Rendering of virtual
sound sources with arbitrary directivity in higher order
Ambisonics”, 123rd Convention of the Audio Engineer-
ing Society (AES), 2007 October 5-8 New York, NY.

