
Audio Engineering Society

Convention Paper
Presented at the 124th Convention

2008 May 17–20 Amsterdam, The Netherlands

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have
been peer reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from
the author’s advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes
no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio

Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights
reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

The SoundScape Renderer: A Unified Spatial
Audio Reproduction Framework for Arbitrary
Rendering Methods

Matthias Geier, Jens Ahrens and Sascha Spors

Deutsche Telekom Laboratories, Technische Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany

Correspondence should be addressed to Matthias Geier (Matthias.Geier@telekom.de)

ABSTRACT

The SoundScape Renderer is a versatile software framework for real-time spatial audio rendering. The
modular system architecture allows the use of arbitrary rendering methods. Three rendering modules are
currently implemented: Wave Field Synthesis, Vector Base Amplitude Panning and Binaural Rendering.
After a description of the software architecture, the implementation of the available rendering methods is
explained and the graphical user interface is shown as well as the network interface for the remote control
of the virtual audio scene. Finally, the Audio Scene Description Format, a system-independent storage file
format, is briefly presented.

1. INTRODUCTION

We present a versatile software framework for spa-
tial audio reproduction called SoundScape Renderer
(SSR), which was developed at Deutsche Telekom
Laboratories. Virtual audio scenes are rendered in
real-time and can be manipulated interactively using
a graphical user interface and a network interface.

Contrary to most existing systems (e.g. IKA-SIM [1],
VirKopf/RAVEN [2], sWONDER [3]), which employ

only one rendering algorithm, the design goal of the
SSR is to support arbitrary reproduction methods.
Until now, we implemented a Wave Field Synthesis
(WFS) renderer, a binaural renderer and a Vector
Base Amplitude Panning (VBAP) renderer. Future
plans include adding a module for Higher Order Am-
bisonics.

2. SOFTWARE ARCHITECTURE

The SSR is written in C++ under massive use of



Geier et al. The SoundScape Renderer (SSR)

GUI

NetworkInterface Controller Scene

RendererInterface

BinauralRenderer

VBAPRenderer

WFSRenderer

Fig. 1: Software architecture

the Standard Template Library (STL). It is com-
piled with g++ (the GNU C++ compiler) and runs
under Linux. The JACK Audio Connection Kit
(JACK) [4] is used to handle audio data which makes
it very easy to connect several audio processing pro-
grams to each other and to the hardware. This way
any program that produces audio data (and supports
the JACK) and any live input from the audio hard-
ware can be connected to the SSR and can serve as
source input.

Audio scene descriptions (see section 6) and the
reproduction setup are stored in XML (eXtensible
Markup Language) files. These files can be saved
and loaded by means of the Libxml2 library [5].
Both the JACK client library and Libxml2 are writ-
ten in C, therefore simple C++ wrapper classes have
been created.

Audio files used as virtual source signals are played
back by means of the Ecasound library [6]. Eca-
sound supports the JACK, so soundfiles can easily
be connected to the JACK ports of the renderer.
Virtual source signals can be stored in mono or in
multichannel files. If many sources are used, how-
ever, audio data can be read more efficiently from
one multichannel file than from many mono files.

The rendered loudspeaker or headphone signals are
normally played back in real-time. If needed, they
can also be written to a multichannel soundfile. This
way very complex scenes can be rendered in non-
real-time and played back afterwards. The synchro-
nization of playback, rendering and recording is re-
alized with the JACK transport protocol.

The class structure of the SSR is designed in a way
that functional units can be exchanged or redesigned

easily without changes to the rest of the code. Fig-
ure 1 show the basic modules. Several rendering
modules can be implemented and one of them will
be selected when the SSR is started. The graphical
user interface and even the network interface can be
switched off if not needed.

The centerpiece of the SSR is the Controller class.
From here, all other modules are instantiated as
needed: a rendering module for the audio signal pro-
cessing, optionally one or more graphical user inter-
face(s), a network interface, a class to store all scene
information and several other optional modules (e.g.
for head tracking and for playing and recording au-
dio files)

When starting the SSR, first, the loudspeaker geom-
etry or the headphone setup is loaded from an XML
file. A loudspeaker setup can consist of any num-
ber and combination of single loudspeakers, linear
arrays and circular array segments. After that, the
rendering class is loaded. As mentioned earlier, dif-
ferent types of rendering modules can be used. This
is realized by having an abstract interface class from
which all concrete renderers are derived. For now,
we can choose between the WFSRenderer, Binau-
ralRenderer and VBAPRenderer classes. The Con-
troller class does not need to know which kind of ren-
derer is used, it only communicates via the abstract
interface. The selected renderer creates the neces-
sary JACK output ports depending on the repro-
duction setup and discloses them to the Controller.
Once the renderer module is running, a scene can be
loaded from an ASDF file (see section 6). The source
data of this file (source name, position, volume, file
name, point source/plane wave, . . . ) are stored in
the Scene object. Whenever a source is created,
moved, deleted or changed in any other way, the
Scene object is updated accordingly. Both the Ren-
derer and any display module read the current state
from this Scene object (via the Controller) when
needed.

3. RENDERING MODULES

Due to the class architecture of the SSR, any two- or
three-dimensional reproduction method using loud-
speakers or headphones can be easily incorporated.

The signal processing of the different rendering mod-
ules uses basically the same building blocks as shown

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 2 of 6



Geier et al. The SoundScape Renderer (SSR)

source
signal Filter Delay Weight +

other
loudspeakers

loudspeaker

source-loudspeaker
distance

angle of
incidence

other
sources

(a) WFS

source
signal Weight

Filter

Filter

+

+

source-listener
distance

head-
phones

angle of
incidence

other
sources

other
sources

(b) binaural

source
signal Weight

Weight

Weight

+

+

source-loudspeaker
distance

pair of
loudspeakers

angle of
incidence

other
sources

other
sources

(c) VBAP

Fig. 2: Signal flow in the three rendering modules

in figures 2(a) to (c). With a combination of these
three functional units (convolution/filter, delay and
weight), most spatialization algorithms can be re-
alized. A convolution engine was implemented to
realize the filters used in both the WFS and the bin-
aural renderer. It will also be heavily used for Higher
Order Ambisonics.

3.1. Wave Field Synthesis

Wave field synthesis is a spatial sound reproduction
technique that utilizes a high number of loudspeak-
ers to create a virtual auditory scene for a large
listening area. It overcomes some of the limita-
tions of stereophonic reproduction techniques, e.g.
the sweet-spot. The theory of WFS is essentially
based on the Kirchhoff-Helmholtz integral [7]. Af-
ter applying some reasonable approximations to the
Kirchhoff-Helmholtz formulation, the loudspeaker
signals for WFS can be generated by pre-filtering
the source signal, and applying individual weights
and delays to the pre-filtered source signal for each
loudspeaker as shown in the signal flow graph in fig-
ure 2(a). The weights and delays can be derived
from the source parameters and the loudspeaker po-
sitions. For a review of the technical backgrounds of
WFS see [8].

The WFS Renderer calculates the appropriate sig-
nal for every loudspeaker depending on the position
and other features of the virtual sources. Up to now,

both virtual point sources an plane waves can be
generated. Before actually computing the contribu-
tion of a given source, the SSR determines if the
source is focused or non-focused. If a source is in-
side the loudspeaker array it is focused, otherwise
it is non-focused. A source is considered outside of
the array if there is at least one array loudspeaker
facing away from the source, i. e. the source is lo-
cated in the half-space opposite of the loudspeaker’s
main direction of radiation. This criterion is valid
for any open or closed array as long as it has no
concave parts (which is also a requirement for WFS
itself [8]). Depending on whether a virtual source is
focused or not, a delay value and a weighting factor
is calculated for each source-loudspeaker pair.

In addition to the computation of the loudspeaker
signals the WFS Renderer also stores information
for each source-loudspeaker pair if it is active or not
in the current audio block. This information can be
visualized in the graphical user interface (see figure 3
and section 4).

3.2. Binaural Rendering

Binaural rendering uses Head Related Transfer
Functions (HRTFs) to reproduce the soundfield at
the listeners ears. HRTFs are measured e.g. with a
dummy head at a certain angular resolution. Lin-
ear interpolation is used to increase this resolution.
A pair of HRTFs is chosen depending on the posi-

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 3 of 6



Geier et al. The SoundScape Renderer (SSR)

Fig. 3: Screenshot of the SoundScape Renderer’s graphical user interface in action using the Wave Field Synthesis
renderer. The loaded scene consists of two plane waves, one focused and three non-focused point sources. One
of the latter is selected and the loudspeakers which are contributing to its wavefront are marked.

tion of the virtual sound source. These HRTFs are
applied to the input signal by convolution. Option-
ally, the users head movement can be obtained by a
head-tracking device. This head orientation is taken
into account when calculating the headphone signals
resulting in a more realistic experience of the virtual
scene. The head tracking module can be compiled
into the SSR or it can be connected via the network
interface described in section 5.

Figure 2(b) shows the signal flow graph for one vir-
tual source. Each source signal is first attenuated
depending on its distance from the listener, then it
is filtered using the selected pair of HRTFs to obtain
the two output signals for the headphones.

3.3. Vector Base Amplitude Panning

Vector Base Amplitude Panning (VBAP) [9] is an
extension of two channel stereo panning techniques.
Depending on the position of the virtual sound
source a pair of loudspeakers is selected to repro-
duce the sound from this source and the levels of
the two loudspeakers are calculated by amplitude
panning laws. In case of a three-dimensional setup
a triple of loudspeakers is selected for each source
position.

Given the architecture of the SSR, a VBAP renderer
is straightforward to implement. Figure 2(c) shows
its signal flow graph. The source signals are weighted
and played back by two adjacent loudspeakers which
are selected based on the angle of incidence of the

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 4 of 6



Geier et al. The SoundScape Renderer (SSR)

virtual source.

4. GRAPHICAL USER INTERFACE

The graphical user interface (GUI) plays an impor-
tant role in the SSR development. It is not intended
as a mere tool for the programmers to change param-
eters of the system, but as an intuitive interface for a
broader clientele. It is designed to enable the user to
change the virtual scene intuitively and to instantly
visualize changes to the scene which are made from
outside of the GUI (e.g. via the network interface).
The user interface is clear and straightforward, so
that even an unexperienced user can easily operate
the software.

As shown in figure 3, the sources are displayed as
round objects which can be selected and moved
around using the mouse or a touchscreen. All user
actions can be done using only single left mouse
clicks, so the full functionality is available when us-
ing a touchscreen. So far, point sources and plane
waves are supported. Plane waves are distinguished
by an additional arrow showing the propagation di-
rection of the wave front. The symbol in the center
of the loudspeaker array is the reference point of the
array. Using this reference point, the whole loud-
speaker array can be rotated and translated. When
a source is selected, the loudspeakers which get a
contribution from this source are marked (like for the
virtual source named Guitar & Keys in the screen-
shot).

If the binaural renderer is used, the loudspeaker ar-
ray is replaced by the depiction of a head (the lis-
tener’s head) on the reference point, as shown in
figure 4. The display of the sources, however, is un-
changed.

The scene is freely zoomable and the displayed sec-
tion can be moved by the mouse/touchscreen. On
top of the screen there are transport controls to play
and pause the source soundfiles and to change the
master volume. The time-line shows the progress
within the source soundfiles and it can be used to
jump to certain file positions. In the top right part,
the zoom level and the master volume of the audio
scene can be changed. The CPU usage of the ren-
dering engine and the current audio signal level is
also shown there.

Fig. 4: When using the binaural renderer, a listener
is displayed on the graphical interface

The GUI is implemented using version 4 of the Qt
toolkit [10]. The display of the virtual scene is re-
alized using OpenGL, so that hardware acceleration
can be used. However, if the GUI is not needed, the
SSR can be compiled without any Qt or OpenGL
dependencies. In this case it can either reproduce
a given audio scene or it can be run as a network
server and clients (potentially running on other com-
puters) can connect to it and manipulate the scene
as described in the following section.

5. NETWORK INTERFACE

The SSR can not only be run as a single entity, but
its major components can be distributed over differ-
ent computers. A network interface was developed
to allow the communication between different parts.
One of the main applications for this feature is that
the audio processing can run on one dedicated com-
puter and the graphical user interface on another.
Furthermore, any type of interface or tracking sys-
tem can be connected and control the SSR via the
network interface. Also several connections at a time
are possible.

The SSR and its clients communicate using XML
messages which are exchanged over a TCP/IP con-
nection. In comparison to a binary format, this
makes it easier to add new features. Parsing of the
XML messages is done with the Libxml2 library.

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 5 of 6



Geier et al. The SoundScape Renderer (SSR)

The network interface was recently used to connect
a multi-touch interface [11] to the SSR.

6. AUDIO SCENE DESCRIPTION FORMAT

Virtual audio scenes are stored in an XML based
file format called Audio Scene Description Format
(ASDF) [12] which contains geometric information
for all virtual sound sources as well as general scene
properties.

As the SSR, the ASDF is independent of the spatial-
ization algorithm. Moreover, it is even independent
of the SSR itself. It includes no implementation-
specific information whatsoever and can therefore be
used for any spatial reproduction system out there.

For now, only static scenes can be stored, but a
new version of this format is currently developed
which will allow moving sources along trajectories,
adding and removing sources during the runtime of
the scene and other dynamic features.

7. FUTURE WORK

The SoundScape Renderer is work in progress and
there are many possibilities to improve and to extend
it. We are working on creating dynamic scenes with
moving virtual sources and on saving these move-
ments and other dynamic changes to ASDF files.

A Higher Order Ambisonics renderer will be imple-
mented which will help us to evaluate Wave Field
Synthesis, Vector Base Amplitude Panning and Am-
bisonics on the same loudspeaker array. In addition
to plane waves and point sources we want to im-
plement directional sound sources in both WFS [13]
and Ambisonics [14].

8. REFERENCES

[1] A. Silzle, H. Strauss and P. Novo. IKA-SIM:
A system to generate auditory virtual environ-
ments. In 116th AES Convention. Berlin, Ger-
many, May 2004.

[2] T. Lentz et al. Virtual reality system with inte-
grated sound field simulation and reproduction.
EURASIP Journal on Advances in Signal Pro-
cessing, Article ID 70540, 2007.

[3] M. A. Baalman et al. Renewed architecture of
the sWONDER software for Wave Field Syn-
thesis on large scale systems. In Linux Audio
Conference. Berlin, Germany, March 2007.

[4] P. Davis et al. JACK Audio Connection Kit.
http://jackaudio.org.

[5] D. Veillard et al. Libxml2.
http://xmlsoft.org.

[6] K. Vehmanen et al. Ecasound.
http://www.eca.cx/ecasound.

[7] A. J. Berkhout. A holographic approach
to acoustic control. Journal of the AES,
36(12):977–995, December 1988.

[8] S. Spors, R. Rabenstein and J. Ahrens. The the-
ory of Wave Field Synthesis revisited. In 124th

AES Convention. Amsterdam, The Nether-
lands, May 2008.

[9] V. Pulkki. Virtual sound source positioning us-
ing Vector Base Amplitude Panning. Journal
of the AES, 45(6):456–466, June 1997.

[10] Trolltech ASA. Qt.
http://trolltech.com/products/qt.

[11] K. Bredies et al. The Multi-Touch SoundScape
Renderer. In 9th International Working Con-
ference on Advanced Visual Interfaces (AVI).
Napoli, Italy, May 2008.

[12] M. Geier, J. Ahrens and S. Spors. ASDF: Ein
XML Format zur Beschreibung von virtuellen
3D-Audioszenen. In 34. Jahrestagung für
Akustik (DAGA). Dresden, Germany, March
2008.

[13] J. Ahrens and S. Spors. Implementation of di-
rectional sources in Wave Field Synthesis. In
IEEE Workshop on Applications of Signal Pro-
cessing to Audio and Acoustics (WASPAA).
New Paltz, NY, USA, October 2007.

[14] J. Ahrens and S. Spors. Rendering of vir-
tual sound sources with arbitrary directivity in
Higher Order Ambisonics. In 123rd AES Con-
vention. New York, NY, USA, October 2007.

AES 124th Convention, Amsterdam, The Netherlands, 2008 May 17–20

Page 6 of 6


