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ABSTRACT
In this paper, we consider the physical reproduction of
plane-wave sound fields via continuous planar respectively
linear distributions of secondary point sources. Our approach
employs a formulation of the reproduction equation in the
spatial frequency domain to explicitly solve it for the ap-
propriate secondary source driving signals. This constitutes
a generalization of the Ambisonics approach which is typi-
cally formulated for spherical and circular secondary source
arrangements. For planar arrays, the alternative formulation
provided by the Kirchhoff-Helmholtz integral equation is
equivalent. For linear arrays, the Kirchhoff-Helmholtz for-
mulation appears as a far-field/high-frequency approximation
of the presented approach.

Index Terms— Spatial audio, higher order Ambisonics,
wave field synthesis, audio reproduction in a plane

I. INTRODUCTION

Since several decades, the problem of physically recreat-
ing a given wave field has been addressed in the audio com-
munity. It turned out that two alternative approaches exist.
The first of these approaches bases on the straight-forward
solution of the reproduction equation for the loudspeaker
driving signals. The alternative is a technique based on the
Kirchhoff-Helmholtz integral equation.
The best-known representative of the former is Ambisonics
[1]. More recent formulations of Ambisonics [2] include
other representatives of this technique (mainly [3], [4], [5]).
The difference between the above mentioned proposals is
mainly the numerical algorithm which solves the employed
equation system. However, we are aware that this is a
disputable question.
The alternative is known as wave-field synthesis (WFS), e.g.
[6]. It employs a modified formulation of the Kirchhoff-
Helmholtz integral to determine the loudspeaker driving sig-
nals. Numerous attempts of comparing the two alternatives
have been made during the years. However, the results are
rather unsatisfying, mostly due to the fact that Ambisonics
and its relatives rely on a discrete formulation, wave field
synthesis on a continuous one.
Some of the above mentioned approaches of the first type,

especially [3] and [4], are principally not limited to specific
loudspeaker setups. However, their formulation does not
exploit any a priori knowledge of the actual loudspeaker
setup giving away the potential to reduce computational
complexity. The computational complexity is generally very
high in [2]-[5] due to the numerical algorithms employed.
In this paper, we present a framework to sound field syn-
thesis employing continuous planar respectively linear loud-
speaker distributions. We provide analytical expressions for
the loudspeaker driving signals and for the actual reproduced
wave fields. We furthermore highlight the relations of the
presented approach to WFS and Ambisonics. The discussion
of consequences of sampling and spatial truncation of the
secondary source distributions as occurring in real-world
implementations is beyond the scope of this study.

Nomenclature

The following notational conventions are used: For scalar
variables, lower case denotes the time domain, upper case the
temporal frequency domain. The spatial frequency domain is
indicated by a tilde over the respective symbol. The depen-
dent variables of a given quantity in the spatial frequency
domain indicate with respect to which dimension the spatial
frequency domain is considered. Vectors are denoted by
lower case boldface. The three-dimensional position vector
in Cartesian coordinates is given as x = [x y z]T . Confer
also to figure 1. The acoustic wavenumber is denoted by k.
It is related to the temporal frequency by k2 =

(
ω
c

)2
with

ω being the radial frequency and c the speed of sound.
Outgoing monochromatic plane and spherical waves
are denoted by e−jkT

pwx and e−jk|x| respectively, with
kT

pw = [kpw,x kpw,y kpw,z] = kpw · [cos θpw sin φpw

sin θpw sin φpw cos φpw] and (θpw, φpw) being the propaga-
tion direction of the plane wave. j is the imaginary unit. We
refer to secondary sources rather than to loudspeakers since
we assume their distributions to be continuous.

II. DERIVATION OF THE SECONDARY SOURCE
DRIVING FUNCTIONS

In order to analyze the properties of the wave field repro-
duced by planar and linear secondary source distributions,
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Fig. 1. The coordinate systems used in this paper.

we have to find the appropriate secondary source driving
signals. In this section, we demonstrate the derivation of the
driving functions to reproduce a given monochromatic plane
wave. The choice of reproducing a plane wave is justified
by the fact that a suitable superposition of plane waves can
be used to represent arbitrary wave fields [7].

II-A. Continuous planar secondary source arrays

The wave field reproduced by a distribution of secondary
sources continuously distributed on the x-z-plane (cf. to
figure 1) is given by

P (x, ω) =

∞∫∫
−∞

D(x0, ω) · G(x − x0, ω) dx0dz0 , (1)

whereby x0 = [x0 0 z0]T denotes the position of the sec-
ondary source driven by the signal D(x0, ω). G(x− x0, ω)
denotes the spatial transfer function of the secondary source
located at x0, i.e. the spectrum of the sound field it emits
when it is fed by a temporal impulse.
Before solving equation (1) for the secondary source driving
signal, we have to note that we cannot expect to be able to
reproduce arbitrary plane waves. Due to the omnidirectional
directivity of the secondary sources the created wave field
will be symmetric with respect to the secondary source
distribution. The given secondary source setup will only be
capable of creating wave fronts that propagate away from
it. We consider this constraint by replacing the positional
coordinate y with |y| and indicate the replacement by
subscripting a given position dependent quantity with |y|,
e.g. G|y|. Such a function G|y| then exhibits the property
G|y|(x, y, z) = G|y|(x,−y, z) = G|y|(x, |y| , z).
Equation (1) essentially constitutes a two-dimensional con-
volution along the spatial dimensions x and z respectively.
It can thus be formulated as a multiplication in the spatial
frequency domain as

P̃|y|(kx, y, kz, ω) = D̃(kx, kz, ω) · G̃|y|(kx, y, kz, ω) . (2)

Note that unlike [7], we assume a positive exponent for
the spatial Fourier transform (cf. also to the appendix). The
driving function D̃(kx, kz, ω) can be yielded as

D̃(kx, kz, ω) =
P̃|y|(kx, y, kz, ω)

G̃|y|(kx, y, kz, ω)
. (3)

The explicit expressions for P̃|y|(kx, y, kz, ω) and
G̃|y|(kx, y, kz, ω) are derived in the appendix and are
given by (27) and (33) respectively. Due to the constrained
validity of the involved transformations the following
equations are only valid for kpw,y > 0 (cf. also to the
appendix).
Inserting equations (27) and (33) into (3) and exploiting the
sifting property of the delta function [8] yields

D̃(kx, kz, ω) = 8π2jkpw,y · δ(kx − kpw,x) δ(kz − kpw,z)×
× 2πδ(ω − ωpw) . (4)

Therefore,

D(x, z, ω) = 2jkpw,y · e−jkpw,xx e−jkpw,zz×
× 2πδ(ω − ωpw) . (5)

In the time domain, the exponential terms correspond to
delays [7]. Thus, the driving signal for a secondary source
at location x0 = [x0 0 z0]T is yielded by a frequency
dependent weighting of the time domain input signal and
a delay dependent on the location of the secondary source.

II-B. Continuous linear secondary source arrays

Despite the simple driving function for the planar sec-
ondary source array, this setup will be rarely implemented
due to the enormous amount of loudspeakers necessary.
Typically, audio rendering systems employ linear arrays. For
convenience, the secondary source array is assumed to be
along the x-axis (thus x0 = [x0 0 0]T ).
For this setup the analogous to the reproduction equation for
planar arrays (1) reads

P|y|(x, ω) =

∞∫
−∞

D(x0, ω) · G|y|(x − x0, ω) dx0 , (6)

respectively

P̃|y|(kx, y, z, ω) = D̃(kx, ω) · G̃|y|(kx, y, z, ω) , (7)

and finally

D̃(kx, ω) =
P̃|y|(kx, y, kz, ω)

G̃|y|(kx, y, z, ω)
. (8)

P̃|y|(kx, y, kzω) and G̃|y|(kx, y, z, ω) are given by (26) and
(31). Again, the following equations are only valid for
kpw,y > 0 (cf. to the appendix).
Inserting (26) and (31) into (8) yields

D̃(kx, ω) =
2πδ(kx − kpw,x)e−jkpw,y|y|e−jkpw,zz

− j
4H

(2)
0

(√
|y|2 + z2

√(ωpw

c

)2 − kx
2

)×

× 2πδ(ω − ωpw) . (9)

We find that |y| and z are apparent in the expression for
the driving function suggesting that equation (6) can only be



satisfied for positions on the surface of a cylinder determined

by r =
√
|y|2 + z2. However, if also the propagating

direction of the plane wave is considered, it turns out that
equation (6) can only be satisfied for positions on two infinite
lines of listening positions parallel to the x-axis opposite
of each other. In spherical coordinates, these two lines are

determined by r =
√

|y|2 + z2, α = ±θpw, β = φpw. This
finding is in analogy to the reproduction of a plane wave by
a circular arrangement of secondary point sources where the
reproduced wave field has to be referenced to a point [9]. For
convenience, we want to reference the reproduction to the
horizontal plane where we assume the listener’s ears, thus
z

!= 0. We consequently also have to limit the propagation
directions of the desired plane wave to the horizontal plane
(φpw

!= π
2 ). We set |y| to the desired distance yref > 0 from

the secondary source array where we want the wave field
to be correct. This referencing is discussed in more detail in
section III-B. Note that equation (9) provides the potential to
compensate for artefacts in listening positions off the target
plane.
With the above mentioned referencing, equation (9) simpli-
fies to

D̃(kx, ω) =
4j · e−jkpw,yyref

H
(2)
0 (kpw,yyref)

· 2πδ(kx − kpw,x)×

× 2πδ(ω − ωpw) , (10)

and finally

D(x, ω) =
4j · e−jkpw,yyref

H
(2)
0 (kpw,yyref)

· e−jkpw,xx×

× 2πδ(ω − ωpw) . (11)

Analogously to the case of planar secondary source distribu-
tions, the time domain secondary source driving signal can
be yielded by delaying and weighting the time domain input
signal. The weight is dependent on the frequency and the
reference distance, the delay is dependent on the position of
the respective secondary source and the reference distance.
This constitutes a computationally efficient implementation
scheme compared to the numerical approaches in [2]-[5].

III. REPRODUCED WAVE FIELDS

III-A. Planar secondary source arrays

The wave field reproduced by a planar secondary distribu-
tion driven according to equation (5) is yielded by inserting
(5) into (1). To solve the integrals one has to substitute
u = x0−x and v = z0−z and follow the procedure outlined
in the appendix. One arrives then at equation (25) proofing
perfect reproduction.

III-B. Linear secondary source arrays

Inserting equation (11) into (6) yields the wave field re-
produced by an appropriately driven linear secondary source

distribution. Solving the integral as indicated in section III-A
yields

Ppw(x, ω) =
e−jkyyref

H
(2)
0 (kyyref)

· e−jkxxH
(2)
0 (ky |y|) . (12)

For |y| = yref equation (12) exactly corresponds to the
desired wave field. However, for |y| �= yref the reproduced
wave field departs from the desired one. The arising arte-
facts are easily identified when the far-field/high-frequency
region is considered (kyyref � 1, ky |y| � 1). There,
the Hankel functions apparent in equation (12) can be
replaced by their large argument approximation H

(2)
ν (z) =√

2
πz e−j(z−ν π

2 −π
4 ) [7]. The approximated reproduced wave

field reads then

Pappr, pw(x, ω) =
√

yref

|y| e
−jkxxe−jky|y| . (13)

Thus, in the far-field/high-frequency region the amplitude of
the reproduced wave field P (x, ω) shows a decay propor-
tional to 1√

|y| , i.e. approximately 3 dB with each doubling

of the distance to the secondary source array. In the near-
field/low-frequency region the amplitude decay is slightly
different and additionally, some subtle spectral deviations
are apparent. These findings have also been derived by the
authors in [9] for the reproduction of a plane wave with a
circular secondary point source distribution. Confer also to
figures 2 and 3. Figure 2 depicts the real part and the absolute
value of the sound pressure of a continuous linear distribu-
tion of secondary point sources reproducing a virtual plane
wave of fpw = 1000 Hz and unit amplitude with propagation
direction θpw = 1

4π referenced to the distance yref = 1.0
m. Figure 3 shows a cross section through |Ppw(x, ω)| and
|Pappr, pw(x, ω)| along the y-axis. For a frequency of 1000
Hz, the approximation Pappr, pw(x, ω) is very accurate. For
lower frequencies, more obvious deviations arise close to the
secondary source array. However, the amplitude deviation
stays rather small. The arising phase errors are slightly more
significant.
The exact formulation of the driving function, equation (11),
allows for referencing also in the proximity of the secondary
source array. The thorough investigation of this procedure is
beyond the scope of this paper and is subject to ongoing
research.

IV. RELATION TO HIGHER ORDER AMBISONICS

In this section, we highlight the relation of the presented
approach to what is known as higher order Ambisonics.
In the traditional Ambisonics approach, the loudspeakers of
the respective reproduction system are located on a sphere
respectively on a circle around the listening area. Both the
desired wave field as well as the wave fields emitted by
the loudspeakers are expanded into series of orthogonal
basis functions [1], [2]. The term ’higher order’ simply
emphasizes the fact that the expansions are not restricted to
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Fig. 2. Sound pressure Ppw(x, ω) of a continuous linear distribution of secondary point sources reproducing a virtual plane
wave of fpw = 1000 Hz and unit amplitude with propagation direction θpw = 1

4π referenced to the distance yref = 1.0 m.
The values are clipped as indicated by the colorbars.
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Fig. 3. Cross section through figure 2(b) along the y-axis.
The far-field/high-frequency approximation Pappr,pw(x, ω) of
Ppw(x, ω) is also indicated.

low expansion orders. This results in an equation system that
is solved for the optimal loudspeaker driving signals. These
drive the loudspeakers such that their superposed wave fields
best approximate the desired one in a given sense:

P (x, ω) =
N−1∑
n=0

D(xn, r0, ω) · G(x − xn, ω) , (14)

where P (x, ω) denotes the desired wave field, D(xn, r0, ω)
the driving signal of the loudspeaker located at the posi-
tion xn = r0 · [cos αn sin βn sin αn sin βn cos βn]T , and
G(x − xn, ω) its spatial transfer function.
The solution of the resulting equation system is typically ac-
complished numerically. An analytical solution was recently
presented by the authors [9]. However, the formulations
are restricted to spherical/circular secondary source arrange-
ments. The approach presented in this paper can be seen as

an extension to Ambisonics allowing for the treatment of
planar/linear arrangements. While equation (14) constitutes
a spherical respectively circular convolution, equations (1)
and (6) constitute linear ones. The Fourier transform which
is applied in the presented approach to find the appropriate
secondary source driving function is essentially the analog to
the orthogonal expansions applied in traditional Ambisonics.

V. COMPARISON TO THE
KIRCHHOFF-HELMHOLTZ FORMULATION

In this section, we compare the above derived findings to
the alternative formulation given by the Kirchhoff-Helmholtz
integral [7]. The Kirchhoff-Helmholtz integral states that an
acoustic wave field inside a source-free volume is entirely
determined by the sound pressure and sound pressure gra-
dient distribution on the boundary of that volume enclosing
it. However, in the present case we do not treat enclosed
volumes but infinitely extended boundaries. We furthermore
exclusively treat the sound pressure of the virtual wave field
and not its gradient.
In the context of wave field synthesis (WFS), the Kirchhoff-
Helmholtz formulation has been modified in exactly these
terms [6], [10]:
In WFS the sound pressure inside a closed volume (or in
a half space) is controlled by a continuous distribution of
monopole point sources on the boundary of that volume (or
in the plane dividing space into two half spaces). These
modifications enable a direct comparison of the approach
presented in this paper to the alternative formulation as
discussed below.

V-A. Planar secondary source distributions

Although we are not aware of the existence of a three-
dimensional implementation of WFS we treat it theoretically
for completeness.



The modified formulation of the Kirchhoff-Helmholtz inte-
gral for planar secondary source arrays in the x-z-plane

P (x, ω) =

∞∫∫
−∞

−2
∂

∂n
S(x0, ω)︸ ︷︷ ︸

DWFS,3D(x0,ω)

·G3D(x − x0, ω) dx0dz0

(15)
states that the sound pressure in the half spaces defined by
the secondary source array is determined by an integration
over all secondary sources driven by the driving signals
DWFS,3D(x0, ω). The driving signals DWFS,3D(x0, ω) are
given as the directional gradient ∂

∂n normal to the secondary
source distribution of the desired wave field at the respective
secondary source’s position. As in section II, we assume
the half space in positive y-direction to be the target area.
Thus, the normal vector n points parallel to the y-axis. Note
that the free-field Green’s function G3D(x−x0, ω) apparent
in equation (15) essentially corresponds to the monopole
sources employed in section II [7].
Deriving the driving function for a monochromatic plane
wave with angular frequency ωpw propagating into the di-
rection (θpw, φpw) as indicated in (15) yields

DWFS,3D(x, ω) = 2jkpw,y · e−jkT
pwx · 2πδ(ω − ωpw) . (16)

DWFS,3D(x, ω) evaluated at y = 0 essentially corresponds to
the driving function for our approach given by equation (5),
thus proofing the equivalence of the two approaches.

V-B. Linear secondary source distributions

For linear secondary source distributions along the x-axis
the WFS formulation reads

P (x, ω) =

∞∫
−∞

−2
∂

∂n
S(x0, ω)︸ ︷︷ ︸

DWFS,2D(x0,ω)

·G2D(x−x0, ω) dx0 . (17)

The driving function for a monochromatic plane wave
with angular frequency ωpw propagating into the direction
(θpw, π

2 ) evaluated at y = 0, z = 0 is then

DWFS,2D(x, ω) = 2jkpw,y · e−jkpw,xx · 2πδ(ω − ωpw) . (18)

The two-dimensional WFS equation (17) employs the two-
dimensional free-field Green’s function [7]

G2D(x − x0, ω) =
j

4
H

(2)
0

(ω

c
|x − x0|

)
(19)

which can be interpreted as the spatial transfer function of a
line source. However, WFS typically employs loudspeakers
with closed cabinets as secondary sources whose behavior
can be better approximated by that of point sources. This
secondary source mismatch has to be compensated for.
In the far-field/high-frequency region G2D(x−x0, ω) can be
approximated as (cf. to section III-B)

G2D(x−x0, ω) ≈
√

2π

j ω
c

√
|x − x0| · 1

4π

e−j ω
c |x−x0|

|x − x0|︸ ︷︷ ︸
G3D(x−x0,ω)

, (20)

where the spatial transfer function G3D(x−x0, ω) of a point
source is apparent (cf. to equation (29)). Thus, in the far-
field/high-frequency region the secondary source mismatch
can be compensated for as [10]

Dappr,WFS,2D(x, ω) =

√
2π

jkpw

√
yref · DWFS,2D(x, ω) , (21)

with yref denoting the reference distance. More explicitly,

Dappr,WFS,2D(x, ω) = 2
√

2πjkpw,y
√

yref · e−jkpw,xx×
× 2πδ(ω − ωpw) . (22)

The far-field/high-frequency approximation of the non-
holographic driving function equation (11) reads

Dappr,2D(x, ω) = 2
√

2πjkpw,y
√

yref · e−jkpw,xx · 2πδ(ω−ωpw)
(23)

Thus, the two driving functions are similar when the far-
field/high-frequency region is considered. However, our ap-
proach provides the capability of referencing the reproduced
wave field in the near-field/low-frequency region (cf. to
section III-B). WFS does not allow this.

VI. CONCLUSIONS

A unified framework for the physical reproduction of
plane-wave sound fields by continuous planar and linear
secondary point source arrangements was presented. For
planar arrays, the desired wave field is perfectly reproduced
in one of the half spaces defined by the secondary source
distribution. The wave field in the other half space is equal
but mirrored on the secondary source arrangement. The
treatment of linear secondary source arrangements revealed
that the wave field can only be perfectly reproduced on two
infinite lines parallel to the secondary source distribution
opposite of each other. The reproduced wave field shows an
amplitude decay of approximately 3 dB with every doubling
of the distance and slight spectral deviations. Plane waves
propagating parallel to the secondary source arrays can not
be recreated. This fact emerges in a restricted validity of
the involved transformations.
Since no ambiguities arose in the derivation of the driving
function for a given plane wave, the solution can be
assumed to be unique. This finding is supported by the
fact that the comparison to the alternative formulation
provided by the Kirchhoff-Helmholtz integral showed
that the two approaches are equivalent. In the case of a
linear distribution, the presented approach provides the
capability of referencing the reproduced wave field in the
near-field/low-frequency region. Kirchhoff-Helmholtz based
audio reproduction as implemented in wave field synthesis
can only provide a far-field/low-frequency approximation.
Note that the computational complexity is equally low for
both approaches.
It was furthermore shown that the presented approach



constitutes a generalization of what is known as Ambisonics.
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APPENDIX

FOURIER TRANSFORMS OF A PLANE WAVE

A monochromatic plane wave with angular frequency ωpw

and unit amplitude propagating into the direction (θpw, φpw)
is described by

p(x, t) = e−jkT
pwx · ejωpwt . (24)

As discussed in section II-A, the wave field described
by equation (24) cannot be perfectly recreated with the
secondary source setups discussed in this paper. The repro-
duction is constricted to p|y|(x, t).
A Fourier transform of p|y|(x, t) with respect to t yields [8]

P|y|(x, ω) = e−jkT
pwx · 2πδ(ω − ωpw) . (25)

A further Fourier transform with respect to x yields

P̃|y|(kx, y, z, ω) = 2πδ(kx − kpw,x) e−jkpw,y|y| e−jkpw,zz×
× 2πδ(ω − ωpw) , (26)

and finally

P̃|y|(kx, y, kz, ω) = 4π2δ(kx − kpw,x) e−jkpw,y|y|×
× δ(kz − kpw,z) · 2πδ(ω − ωpw) , (27)

whereby δ(·) denotes the Dirac delta function [8].

FOURIER TRANSFORMS OF A POINT SOURCE

The spatial transfer function of an acoustic point source
situated at the coordinate origin is described by

g(x, t) =
1
4π

δ(t − |x|
c )

|x| , (28)

with |x| =
√

x2 + y2 + z2. The factor 1
4π was introduced

for convenience to allow an interpretation of g(x, t) as free-
field Green’s function [7] (cf. to section V). We furthermore
replace y2 by |y|2 in (28). This replacement is justified since
y2 = |y|2. It will be of significance as discussed below.
The temporal Fourier transform of (28) is then

G|y|(x, ω) =
1
4π

e−j ω
c |x|

|x| . (29)

The Fourier transform with respect to x reads

G̃|y|(kx, y, z, ω) =
1
4π

∞∫
−∞

e−j ω
c

√
x2+|y|2+z2√

x2 + |y|2 + z2

ejkxxdx .

(30)
With [11, (3.876-1) and (3.876-2)] one yields

G̃|y|(kx, y, z, ω) = − j

4
H

(2)
0

(√
|y|2 + z2

√(ω

c

)2

− kx
2

)
.

(31)
H

(2)
0 (·) denotes the zeroth-order Hankel function of second

kind [7]. Equation (31) is only valid for
√

k2
y + k2

z > 0 [11].
A further Fourier transform with respect to z is

G̃|y|(kx, y, kz, ω) =

= − j

4

∞∫
−∞

H
(2)
0

(√
|y|2 + z2

√(ω

c

)2

− kx
2

)
ejkzzdz .

(32)

With [11, (6.677-3) and (6.677-4)] one finally yields

G̃|y|(kx, y, kz, ω) = − j

2
e−jky·|y|

ky
, (33)

whereby the relation
√

(ω
c )2 − k2

x − k2
z = ky has been

exploited. Note that equations (31) and (33) are only valid
for ky > 0. By having replaced y2 with |y|2 as discussed
above, we ensured the validity of (33) for all possible values
of y [11].


