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ABSTRACT

In this paper we treat sound field reproduction via circular distributions of loudspeakers. The general
formulation of the approach has been recently published by the authors. In this contribution, we concentrate
on the employment of secondary sources (i.e. loudspeakers) whose spatio-temporal transfer function is not
omnidirectional. The presented approach allows to treat each spatial mode of the secondary source’s spatio-
temporal transfer function individually. We finally outline the general process of incorporating spatio-
temporal transfer functions obtained from microphone array measurements.

1. INTRODUCTION

Traditionally, massive-multichannel sound field re-
production approaches like wave field synthesis or
higher order Ambisonics assume that the involved
secondary sources (i.e. loudspeakers) are omnidirec-
tional. For lower frequencies, this assumption is in-
deed approximately fulfilled when conventional loud-
speakers with closed cabinets are considered. How-
ever, for higher frequencies above a few thousand
Hertz complex radiation patterns evolve.
A number of approaches based on the theory
of multiple-input-multiple-output (MIMO) systems
have been proposed in order to compensate for the

influence of the reproduction room and the loud-
speaker radiation characteristics [1, 2, 3, 4, 5]. Room
compensation requires realtime analysis of the re-
produced wave field and adaptive algorithms due to
the time-variance of room acoustics (e.g. temper-
ature variations [6]). Compensation of the loud-
speaker radiation characteristics such as directiv-
ity and frequency response is less complex since it
can be assumed that these characteristics are time-
invariant. No adaptation and therefore no real-time
analysis is required. However, in order that the radi-
ation characteristics can be compensated for exclud-
ing the reproduction room, the radiation character-
istics of the entire secondary source setup have to
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be measured under anechoic conditions. When cer-
tain physical constraints are accepted, a significant
reduction of complexity can be achieved and a con-
tinuous formulation of the MIMO approaches can be
established. Besides time-invariance, the fundamen-
tal physical constraints introduced in the presented
approach are:

(1) The secondary source arrangement is circular.

(2) The spatio-temporal transfer function of the
secondary sources is rotation invariant. In other
words, all individual loudspeakers have to have
equal radiation characteristics and have to be
orientated towards the center of the secondary
source setup.

Requirement (1) can obviously be fulfilled. Pre-
liminary measurements undertaken at Deutsche
Telekom Laboratories have shown that typical com-
mercially available loudspeakers with closed cabi-
nets indeed exhibit similar to equal spatio-temporal
transfer functions in anechoic condition and when
only one model of loudspeakers is considered. This
suggests that requirement (2) can also be fulfilled
when the acoustical properties of the reproduction
room are ignored.
The presented approach is actually not a compen-
sation for deviations of the loudspeaker radiation
characteristics from certain assumptions (e.g. omni-
directionality). It is rather such that the formulation
of the approach allows for an explicit consideration
thereof. However, in accordance with the literature
we also speak of loudspeaker directivity compensa-
tion in conjunction with the presented approach.
The approach treated in this paper has been pre-
sented by the authors in [7, 8], whereby formula-
tions were kept general. In this contribution, we in-
vestigate the properties of the approach in a purely
two-dimensional scenario.

2. NOMENCLATURE

For convenience, we restrict our considerations to
two spatial dimensions. This means in this con-
text that a wave field under consideration is in-
dependent from one of the spatial coordinates,
i.e. P (x, y, z, ω) = P (x, y, ω). The two-dimensional
position vector in Cartesian coordinates is given
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Fig. 1: The coordinate system used in this paper.
The center of the secondary source distribution coin-
cides with the origin of the global coordinate system.
The dotted line indicates the secondary source distri-
bution. The prime ′ denotes quantities belonging to
a local coordinate system with origin at x0 = [r0 0]T

(refer to section 4).

as x = [x y]T . The Cartesian coordinates are
linked to the polar coordinates via x = r cosα and
y = r sin α. Refer to the coordinate system depicted
in figure 1.
The acoustic wavenumber is denoted by k. It is re-

lated to the temporal frequency by k2 =
(

ω
c

)2
with

ω being the radial frequency and c the speed of
sound. Outgoing monochromatic plane and cylin-
drical waves are denoted by e−j ω

c
r cos(θpw−α) and

H
(2)
0 (ω

c
r) respectively, with θpw being the propaga-

tion direction of the plane wave. The imaginary unit
is denoted by j (j =

√
−1).

3. GENERAL FORMULATION

In this section, we briefly review the general ap-
proach presented by the authors in [7, 8]. Its physical
fundament is the so-called simple source approach
and it can be seen as an analytical formulation of
what is known as higher order Ambisonics. The
simple source approach for interior problems states
that the acoustic field generated by events outside a
volume can also be generated by a continuous dis-
tribution of secondary simple sources enclosing the
respective volume [9].
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As stated in section 2, we limit our derivations to
two-dimensional reproduction for convenience. Fur-
thermore, we assume the distribution of secondary
sources to be circular. In order to fulfill the re-
quirements of the simple source approach and there-
fore for artifact-free reproduction, the wave fields
emitted by the secondary sources have to be two-
dimensional. We thus have to assume a continu-
ous circular distribution of secondary line sources
positioned perpendicular to the target plane (the
receiver plane) [9]. Our approach is therefore not
directly implementable since loudspeakers exhibit-
ing the properties of line sources are commonly not
available. Real-world implementations usually em-
ploy loudspeakers with closed cabinets as secondary
sources. The properties of these loudspeakers are
more accurately modeled by point sources.
The main motivation to focus on two dimensions is
to keep the mathematical formulation simple in or-
der to illustrate the general principle of the presented
approach. The extension both to three-dimensional
reproduction (i.e. spherical arrays of secondary point
sources) and to two-dimensional reproduction em-
ploying circular arrangements of secondary point
sources (21/2-dimensional reproduction) is straight-
forward and a general treatment thereof can be
found e.g. in [7].

3.1. Derivation of the secondary source driving

function

The reproduction equation for a continuous circular
distribution of secondary line sources and with ra-
dius r0 centered around the origin of the coordinate
system is given by

P (x, ω) =

2π∫

0

D(α0, ω) G2D(x − x0, ω) r0 dα0 , (1)

where x0 = r0 · [cos α0 sin α0]
T . P (x, ω) denotes the

reproduced wave field, D(α0, ω) the driving func-
tion for the secondary source situated at x0, and
G2D(x− x0, ω) its two-dimensional spatio-temporal
transfer function. Note that we assume G(·) to
be shift-invariant (we write G(x − x0, ω) instead of
G(x|x0, ω)) [9]. Refer also to section 4. See [10] for
the general approach how to treat shift-variant sys-
tems.
A fundamental property of (1) is its inherent non-

uniqueness and ill-posedness [11]. I.e. in certain sit-
uations, the solution is undefined and so-called crit-
ical or forbidden frequencies arise. The forbidden
frequencies represent the resonances of the cavity
under consideration. However, there are indications
that the forbidden frequencies are only of minor rel-
evance when practical implementations are consid-
ered [9].
Equation (1) constitutes a circular convolution and
therefore the convolution theorem

P̊ν(r, ω) = 2πr0 D̊ν(ω) G̊ν(r, ω) (2)

applies [12]. P̊ν(r, ω), D̊ν(ω), and G̊ν(r, ω) denote
the Fourier series expansion coefficients of P (x, ω),
D(α, ω), and G2D

(
x − [r0 0]T

)
1.

The Fourier series expansion coefficients F̊ν(r, ω) of
a two-dimensional function F (x, ω) can be obtained
via [9]

F̊ν(r, ω) =
1

2π

2π∫

0

F (x, ω)e−jνα dα . (3)

The function F (x, ω) can then be synthesized as

F (x, ω) =

∞∑

ν=−∞

F̊ν(r, ω) ejνα . (4)

For propagating wave fields the coefficients F̊ν(r, ω)
can be decomposed as

F̊ν(r, ω) = F̆ν(ω) Jν

(ω

c
r
)

, (5)

whereby Jν(·) denotes the ν-th order Bessel func-
tion [9]. For diverging wave fields the coefficients
F̊ν(r, ω) can be decomposed as

F̊ν(r, ω) = F̆ν(ω) H(2)
ν

(ω

c
r
)

, (6)

whereby H
(2)
ν (·) denotes the ν-th order Hankel func-

tion of second kind [9].
From (2) and (5) we can deduce that

D̊ν(ω) =
1

2πr0

P̊ν(r, ω)

G̊ν(r, ω)
= (7)

=
1

2πr0

P̆ν(ω) · Jν

(
ω
c
r
)

Ğν(ω) · Jν

(
ω
c
r
) . (8)

1Note that the coefficients G̊ν(r, ω) as used throughout
this paper assume that the secondary source is situated at
the position (r = r0, α = 0) and is orientated towards the
coordinate origin. Refer to section 4.
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For Jν

(
ω
c
r
)
6= 0 the Bessel functions in (8) cancel

out directly. Wherever Jν

(
ω
c
r
)

= 0 de l’Hôpital’s
rule [13] can be applied to proof that the Bessel
functions also cancel out in these cases, thus mak-
ing D̊ν(ω) and therefore also D(α0, ω) independent
from the receiver position.
Introducing the result into (4) finally yields the sec-
ondary source driving function D(α0, ω) for a sec-
ondary source situated at position x0 reproducing a
desired wave field with expansion coefficients P̆ν(ω)
reading

D(α, ω) =
1

2πr0

∞∑

ν=−∞

P̆ν(ω)

Ğν(ω)
ejνα , (9)

whereby we omitted the index 0 in α0 for conve-
nience. Note again that D(α, ω) is independent from
the receiver position.
Ğν(ω) describes the spatio-temporal transfer func-
tion of the involved secondary sources. Ğν(ω) are
the coefficients as defined in (5) with respect to the
expansion of G(x, ω) around the origin of the global
coordinate system.

3.2. Reproduced wave field

Equation (9) can be verified by inserting it into (1).
After interchanging the order of integration and
summation and exploitation of the orthogonality of
the circular harmonics ejνα [9], one arrives at the
desired wave field, thus proving perfect reproduc-
tion apart from forbidden frequencies. Note how-
ever that the coefficients P̆ν(ω) respectively Ğν(ω)
are typically derived from interior expansions. This
implies that the desired wave field is only correctly
reproduced inside the secondary source distribution.
We emphasize that in order to achieve this perfect
reproduction, the secondary source distribution has
to be continuous and the spatio-temporal transfer
function of the secondary sources has to be two-
dimensional. The latter means that the spatio-
temporal transfer function of the secondary sources
may not exhibit any variation in the vertical di-
rection. This suggests the employment of line-like
loudspeakers. The extension of the presented ap-
proach to three- and 21/2-dimensional reproduction
is straightforward and can be found in [7].

4. INCORPORATION OF THE LOUD-

SPEAKER DIRECTIVITY

Formulating (1) explicitly in polar coordinates as

P (r, α, ω) =

=

2π∫

0

D(α0, ω) G2D(r, r0, α − α0, ω) r0 dα0 , (10)

clearly reveals the convolution reading

P (r, α, ω) = D(α, ω) ⊛αG2D(r, r0, α−α0|α0=0, ω) r0 ,

(11)
whereby the asterisk ⊛α indicates circular convolu-
tion with respect to α.
From (11) it becomes obvious that G̊ν(r, ω) in (2)
are the Fourier expansion coefficients of the spatio-
temporal transfer function of a secondary source sit-
uated at the position (r = r0, α = 0) respectively
x = [r0 0]T . The expansion center is the center of
the secondary source distribution, i.e. the origin of
the coordinate system.
Furthermore, from (11) we can deduce that the
spatio-temporal transfer functions of all secondary
sources need to be invariant with respect to rota-
tion around the center of the secondary source dis-
tribution. In other words, all individual loudspeak-
ers have to have equal radiation characteristics and
have to be orientated towards the center of the sec-
ondary source setup.
The spatio-temporal transfer function of loud-
speakers is typically described via the coefficients
G̊′

µ(r′, ω) (see below) of an expansion around the
acoustical center of the loudspeaker (which is re-
ferred to as its position). We refer to G̊′

µ(r′, ω)
as secondary source directivity coefficients. The
secondary source directivity coefficients can be di-
rectly obtained from microphone array measure-
ments, e.g. [14].
We assume that the loudspeaker under considera-
tion is positioned at x0 = [r0 0]T and is orientated
towards the origin of the global coordinate system.
We establish a local coordinate system with origin at
x0 and whose axes are parallel to those of the global
coordinate system (refer to figure 1). Quantities be-
longing to the local coordinate system are denoted
with a prime ′.
The spatio-temporal transfer function of the loud-
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speaker under consideration is then given by

G(x′, ω) =

∞∑

µ=−∞

Ğ′

µ(ω) H(2)
µ

(ω

c
r′

)

ejµα′

. (12)

We apply the harmonic addition theorem [15] in or-
der to translate the center of the expansion to the
center of the global coordinate system yielding

G(x, ω) =

∞∑

ν=−∞

ejνα×

×
∞∑

µ=−∞

Ğ′

µ(ω) H
(2)
ν−µ

(ω

c
r0

)

︸ ︷︷ ︸

=Ğν(ω)

Jν

(ω

c
r
)

,

∀ r < r0 (13)

In (13) the coefficients Ğν(ω) to be inserted into the
driving function (9) become apparent.
In order that the driving function (9) is defined each
mode Ğν(ω) of the compensation filter may not ex-
hibit zeros since Ğν(ω) appears in the denominator
of the driving function (9). Ğν(ω) for a given order ν

is given by a summation over the product of all loud-
speaker directivity coefficients Ğ′

µ(ω) and Hankel
functions of same argument but different order. The
Hankel functions do not exhibit zeros. Since Hankel
functions of different orders are linearly independent
it can be concluded that the zeros in the coefficients
Ğν(ω) are exclusively dependent on the loudspeaker
directivity coefficients Ğ′

µ(ω). In cases where Ğν(ω)
becomes zeros or is small so that numerical insta-
bilities arise, (preferably frequency dependent) reg-
ularization such as in [1] can be applied in order to
yield a realizable solution. Contrary to conventional
multichannel regularization, the presented approach
allows for independent regularization of each mode
ν of the compensation filter. Thereby, stable modes
need not be regularized while the regularization of
individual unstable modes can be assumed to be fa-
vorable compared to conventional regularization of
the entire filter. However, note that regularization
reduces the accuracy of the compensation filter.

5. RESULTS

In order to illustrate the general properties of the
presented approach we consider in the following a

circular distribution of highly directional secondary
sources whose spatio-temporal transfer function is
given by

Ğ′

µ(ω) =

{
M !2

(M+µ)!(M−µ)! for − M ≤ µ ≤ M

0 elsewhere .

(14)
with M = 13. Ğ′

µ(ω) given by (14) leads to a sta-
ble and defined driving function as described in sec-
tion 4.
Refer to figure 2(a) for an illustration of the wave
field emitted by a secondary source with a spatio-
temporal transfer function given by (14).
Figure 3(a) depicts a continuous circular distribution
of secondary sources with a directivity given by (14)
for M reproducing a plane wave of fpw = 1000 Hz.
Consider then 3(b). It depicts a continuous cir-
cular distribution of secondary sources with a di-
rectivity given by (14) for M reproducing a plane
wave of fpw = 1000 Hz but using the conventional
driving function which assumes that the secondary
sources are omnidirectional. It can be seen that the
wave fronts are still perfectly plane in the latter case
since the timing of the driving function is appro-
priate. However, the energy of the reproduced vir-
tual plane wave concentrates around the center of
the secondary source distribution. In this location
the secondary source transfer function that the driv-
ing function assumes is closest to the actual transfer
function that the employed secondary sources ex-
hibit.
Typically, conventional loudspeakers with closed
cabinets are employed for sound field reproduction
approaches like the presented one. This type of loud-
speakers is close to omnidirectional for low frequen-
cies and becomes directional for high frequencies (re-
fer e.g. to [14]). When a distribution of such loud-
speakers is driven with a driving function which as-
sumes omnidirectional loudspeakers, the deviations
of the reproduced wave field from the desired one be-
come more pronounced for higher frequencies. This
means that for off-center receiver position, an atten-
uation of high frequencies has to be expected.
The above described findings have been derived
for a continuous distribution of secondary sources.
Real-world implementation of sound field reproduc-
tion systems always employ a finite number of dis-
crete loudspeakers. This circumstance can lead
to spatial discretization artifacts. These artifacts
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(a) Real part of the wave field when driven with a monochro-
matic signal of f = 1000 Hz.
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(b) Polar plot of normalized secondary source far-
field directivity.

Fig. 2: Illustration of the properties of the directional secondary sources under consideration. The transfer
function given by (14) with M = 13.
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(a) Proposed driving function.
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(b) Conventional driving function.

Fig. 3: Real part of the wave field reproduced by a continuous distribution of secondary sources with a
transfer function given by (14). The desired wave field is a plane wave of frequency fpw = 1000 Hz. Expansion
orders are limited to the interval [−27 27].
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(b) Conventional driving function.

Fig. 4: Real part of the wave field reproduced by a distribution of 56 discrete secondary sources with
a transfer function given by (14) resp. depicted in figure 2(a). The desired wave field is a plane wave of
frequency fpw = 1000 Hz. Expansion orders are limited to the interval [−27 27].

have only been investigated in the literature in
conjunction with omnidirectional secondary sources,
e.g. [7, 8, 16]. The results hold qualitatively also for
directional secondary sources but a detailed analysis
is not available.
Refer to figure 4(a) in order to get a first impres-
sion of the properties of a discrete distribution of
secondary sources exhibiting the above described
directivity. The same array driven with the con-
ventional driving function which assumes the sec-
ondary sources to be omnidirectional is depicted in
figure 4(b).

6. CONCLUSIONS

An approach for sound field reproduction employing
circular arrangements of secondary sources was pre-
sented. It was focused on the general properties of
the resulting secondary source driving function when
non-omnidirectional secondary sources are used. In
order that the presented approach is applicable the
spatio-temporal characteristics of the employed sec-
ondary sources have to be invariant with respect to
rotation around the center of the secondary source
arrangement. In other words, all secondary sources
have to exhibit equal radiation characteristics and

have to be orientated towards the center of the sec-
ondary source arrangement. It is then sufficient to
know (or measure) the free-field (anechoic) radia-
tion characteristics of only one secondary source of
the distribution.
The presented approach exhibits two major ben-
efits: (1) only a simple measurement of the sec-
ondary source distribution is required, and (2) the
continuous formulation gives better insights into the
fundamental properties of solution than MIMO ap-
proaches. This enables e.g. an investigation of the
effects of spatial sampling which occurs in the MIMO
approaches. Note that in the spatially discrete case,
the presented approach is equivalent to the MIMO
approaches under the assumption of rotation invari-
ance of the secondary source transfer function.
Preliminary measurements of the ELAC 301 loud-
speakers which are employed in the loudspeaker sys-
tem installed at Deutsche Telekom Laboratories in-
dicate that only very little variation in the spatio-
temporal characteristics are apparent within differ-
ent loudspeakers of this model. This indicates that
the presented approach is indeed applicable when
all loudspeakers are of the same model. However,
the investigation of resulting errors when such vari-
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ation in the spatio-temporal characteristics of the
secondary sources is apparent or when secondary
sources are not properly positioned and orientated
could not be included in the present paper. Note
however, that the spatio-temporal transfer function
of the ELAC 301 loudspeakers is three-dimensional
and requires a 21/2-dimensional respectively three-
dimensional scenario.
We assumed that these directivity coefficients are
precisely known. This requires high resolution mea-
surements of the coefficients in order to assure that
no considerable spatial aliasing occurs. It also ad-
visable that the radius of the microphone array is
not too different from the radius of the secondary
source contour under consideration. The presented
approach implicitly includes an extrapolation of the
microphone array measurements to the radius of
the secondary source contour. The restrictions of
extrapolation of such spatially discrete data is not
known. Due to the fact that each spatial mode of the
compensation filter can be pre-computed offline, it
is likely that the precision requirements can be met.
The extension of the presented approach to 21/2-
dimensional and three-dimensional reproduction has
been submitted [17, 18].
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