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ABSTRACT

We present an approach targeting the physical reproductio
of sound fields by means of circular distributions of non-

omnidirectional loudspeakers. The approach does not cosape
for loudspeaker properties which deviate from certain mggions
as conventional approaches do. It rather allows for the@kpbn-
sideration of these properties within some limits which au-
lined. The focus of this paper lies on the modal incorporatd
the loudspeaker’s spatio-temporal transfer function thi loud-
speaker driving function.

1. INTRODUCTION

Traditionally, massive-multichannel sound field reprdduct ap-
proaches like wave field synthesis or higher order Ambisoai:
sume that the involved secondary sources (i.e. loudspsakes
omnidirectional. For lower frequencies, this assumptisnin-
deed approximately fulfilled when conventional loudspeskeith
closed cabinets are considered. However, for higher frecjas
above a few thousand Hertz complex radiation patterns evolv

thereof. For convenience, we use the tatimectivity filter to re-
fer to that component of the the secondary source drivingtfon
which represents the spatio-temporal transfer functiothefsec-
ondary sources.

The approach treated in this paper has been presented hythizesa
in [7, 8], whereby formulations were kept general. In thistciou-
tion, we investigate in detail the properties of the louddqee direc-
tivity filters which arise when circular secondary sourctips are
employed.

2. NOMENCLATURE AND MATHEMATICAL
PRELIMINARIES

The following notational conventions are used: For scadaiables
lower case denotes the time domain, upper case the temperal f
guency domain. Vectors are denoted by lower case boldfabe. T
three-dimensional position vector in Cartesian coor@isés given
asx =[xy Z'. The Cartesian coordinates are linked to the spherical
coordinates viax=r cosa sinf, y =r sina sin3, andz= r cosf.
a denotes the azimutif§ the elevation. Confer also to Fig. 1. For

A number of approaches based on the theory of multiple-inputfunctions dependent on spatial coordinates, we use thdiomta

multiple-output (MIMO) systems have been proposed in otder

F(x) andF(r,a,3) to emphasize a given coordinate system.

compensate for the influence of the reproduction room and th&he acoustic wavenumber is denotedkoyit is related to the tem-

loudspeaker radiation characteristics [1, 2, 3, 4, 5, 6JorR@om-

pensation requires realtime analysis of the reproduceddstiald

and adaptive algorithms due to the time-variance of roonustics
(e.g. temperature variations). Compensation of the lcemlsgr ra-
diation characteristics, such as directivity and freqyeresponse,
is less complex since it can be assumed that these chasticieare
time-invariant. No adaptation and therefore no real-timaysis is
required. However, in order that the radiation charadies€an be
compensated for while neglecting the reproduction room réuli-

ation characteristics of the entire secondary source $etupto be
measured under anechoic conditions. When certain physical
straints are accepted, a significant reduction of complecdn be

achieved and a continuous formulation of the MIMO approache

can be established. Besides time-invariance, the fundaiamys-

ical constraints introduced in the presented approach are:

(1) The secondary source arrangement is circular.

(2) The spatio-temporal transfer function of the secondayrces
is rotation invariant. In other words, all individual loymsak-

ers have to have equal radiation characteristics and habe to
orientated towards the center of the secondary source.setup whereby the basBI(

Requirement (1) can obviously be fulfilled. Preliminary miae-

poral frequency byk? = é%’)z with w being the radial frequency
andc the speed of soun

1e71%". i is the imaginary uniti(= v/—1).

Due to the continuous formulation, we will not refer to lopdak-
ers but rather to secondary sources and their distribuindslso to
secondary source driving functions rather than to loudsgesig-
nals. We employ a number of standard mathematical toolshwhic
are defined below.

The Fourier series expansion with respecirtis defined as [9]

G(x,w) = % G (r,B,w) €M . (1)

A sound field can be described by its spherical harmonicsresipa
as [9]

Foow =3 3 FM@BNx ),

n=0m=-n

)

x, w) is the singular basi§)'(x, w) for purely
diverging sound fields, and the regular baRix, w) for passing

ments undertaken at Deutsche Telekom Laboratories hawensho sound fields. Explicitly,

that typical commercially available loudspeakers withseld cab-
inets indeed exhibit similar to equal spatio-temporal $fanfunc-
tions in anechoic condition. This suggests that requirerf@rcan
also be fulfilled when the acoustical properties of the rdpotion
room are ignored.
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We emphasize that the presented approach is not a commensati

for deviations of the loudspeaker radiation charactesdtiom cer-
tain assumptions (e.g. omnidirectionality). It is rathects that the
formulation of the approach allows for an explicit consaten

hﬁa (%r) denotes tha-th order spherical Hankel function of sec-
ond kind, jn (%r) the n-th order spherical Bessel function of first

. Outgoing spherical waves are denoted by



kind [9].

The spherical harmonic§"(a, ) are defined as

(2n+1) (n—m)!
4T (n+m)!

Yoo, B) = -BM(cosB)- €M, (5)

with PT'(-) denoting them-th order associated Legendre polynomial

of n-th degree.

3. DERIVATION OF THE DRIVING FUNCTION

As outlined by the authors in [7], the physical fundamentefpre-
sented approach is the so-calithple source approachThe ap-
proach can be seen as an analytical formulation of what iwkras
higher order Ambisonics. The simple source approach feriimt
problems states that the acoustic field generated by evatgigle
a volume can also be generated by a continuous distribufiseam
ondary simple sources enclosing the respective volume [9].
Sound field reproduction systems are frequently restrictedpro-
duction in the horizontal plane. The secondary sourcesreaaged
on a circle.
well as the receiver positions are bounded to the horizgitade.
In other words, the listener’s ears have to be in the samee pilea
the secondary sources. For this two-dimensional setupdbefield
Green’s function required by the simple source approactbean-
terpreted as the spatial transfer function of a line soufteés case
is treated e.g. in [10].

However, implementations of such systems usually emplag-lo
speakers with closed cabinets whose spatial transferiumds
more accurately modeled by that of a point source. This skayn
source type mismatch prevents us from perfectly recreadimg
source-free sound field inside the secondary source arraynaile
to expect artifacts. This circumstance is also a well tkai®b-

In this case, the acoustic scene to be reprodased

the expansion center at the origin of the coordinate systefer

to Sec. 5 for a detailed treatment.

l:lote that (7) Pnly holds for two-dimensional sound fieldsncgi
Pn(r,w) and Gm(r,w) are generally three-dimensional, (7) only
holds in the horizontal plane (i.e. f@r= 7_21)_

From (8) and (1) we can deduce that

w):i - |é>)m("vc")) eima

D(a, s
2100 4= oo Gm(T, W)
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We reformulate the spherical harmonics expansion givengoya-e
tion (2) by exchanging the order of summations to reveal theier
series expansion coefficients reading

F <X|B:%‘7w> = m:zweimorX
S ~m w n+1(n—m)! _,
3 RN @i (5 o mrmi @ - 00
Fin(r,00)

Introducing the explicit formulation of the Fourier serigansion
coeﬁicientsﬁm(n w) andGm(r, w) given by (10) into (9) yields the
explicit driving functionD(a, w). Analysis of the latter reveals that
the radiug does not cancel out.appears both in the numerator as
well as in the denominator in the summation omén the argument
of the spherical Bessel functiojs (€r). The driving function is
therefore dependent on the receiver position. We thus foaveft
erence the reproduced sound field to a specific radius whitteis
the only location where the reproduction is exact. In otluiions
inside the receiver area deviations arise as outlined in&sec

For convenience we reference the reproduced sound fiele tmetir

lem in WFS [11]. The approach of employing secondary sourceser of the secondary source array< 0). Refer to section Sec. 4 for

which are intended for three-dimensional reproductionuchsan
imperfect two-dimensional scenario is typically refertedas 2/2-

dimensional reproduction.

For a circular distribution of secondary sources locateithénhori-
zontal plane and centered around the origin of the coorelisytem
(refer to Fig. 1) the reproduction equation is given by [7]

2
P(x,w) = /D(Cfmw)'G(G — 0o, B, w) ro dap ,
0

(6)

whereby P(x,w) denotes the reproduced sound fielag, w)
the driving signal of the secondary source located at théipos
X0 = ro- [cosag sinap 0], andG(a — ag, B, w) its spatio-temporal
transfer function.

Note that we assumé(-) to be rotation invariant with respect to
rotation around the-axis (we writeG(a — ap, 3, w) instead of

G(x|xg,w)) [9]. This requires that all secondary sources have to

exhibit equal spatio-temporal characteristics and havgetorien-

tated towards the center of the secondary source diswifuti

To bound our area of interest to the horizontal plane we seéli+

vation anglef in all position vectors td; in the remainder of this
section.

Equation (6) can be interpreted as a circular convoluticsh thos

the convolution theorem [9]

Pin(r, @) = 2710 Bin(@) G(r, @) (7)
and therefore .
° 1 Pnrhw
Brn(e0) = s =) ®

2m0 Gm(r: (}J)

featuring the Fourier series expansion coeﬁlc@nﬁw) 5m(r w),

a closer look on the properties of the actual reproduceddstiald.

At a first stage, setting= 0 in (9) leads to an undefined expression
of the form% for n = 0 since spherical Bessel functions of argument
0 equal Ovn# 0. Application of de I'Hopital’s rule [12] proves that
the expression is defined for= 0 and finally yields the driving
function D2 sp(a, w) for 2¥2-dimensional reproduction as [7]

1 hd P|n,:1| ()

- - eima )
21 e o G|Tn| ()

D2sp(a,w) =

(11)

Note that the summation overin (10) reduces to a single addend
with n=|m| [7]. The coefficient$™ andG™(w) are defined via (2).
Equation (11) generally onIy holds f¢x| < ro due to the fact that
the coefﬂmentﬂm‘( ) andG™ (w) are typically derived from in-

m]
terior expansions [9].

4. REPRODUCED SOUND FIELD

We yield the actual sound field reproduced by the circulaniséary
source distribution by inserting (11) in (6) as [7]

P2 5p(x, W) nzom:znpm % Ry (x, w)
Vr<rg. (12)

Note thatP‘m‘( w) are the coefficients of the desired sound field.

Refer to [7] for a simulation of a virtual plane wave reprodddy
a continuous circular distribution of secondary monopalereses.
It can be observed that the reproduced sound field indeeditxhi
perfectly plane wave fronts. However, the reproduced sdighdl
experiences an amplitude decay of approximately 3dB witthea
doubling of the distance to the secondary source distohulong

andG(r, w) applies.Gm(r, w) are the Fourier series expansmn co- the propagation direction of the virtual plane wave. Thipttude

efficients of a secondary source positioneckgt= [ro 0 07 with

decay is a typical artifact ofl2-dimensional reproduction.



Figure 1: The coordinate systems used in this paper. Primadtifies belong to a local coordinate system at posiign= [ro 0 0 (see

text). The dash-dotted line indicates the secondary salistebution.

5. INCORPORATION OF THE SECONDARY SOURCE

DIRECTIVITY COEFFICIENTS

As outlined in Sec. 3, the coefﬁcie@1| () apparent in the driv-

ing function (11) describe the spatio-temporal transfecfion of a
secondary source which is positionedsgt= [ro 0 0T and orien-
tated towards the center of the coordinate system (whiafcaes
with the center of the secondary source distribution). Hp&aasion
center is the origin of the coordinate origin. This follonisedtly
from the convolution theorem (7).

However, typical loudspeaker directivity measurementh sis [13]

yield the coeﬁicient@’ﬂ(w) (see below) of an expansion of the
loudspeaker’s spatio-temporal transfer function arotedsicousti-
cal center of the loudspeaker denoteddyy. The acoustical center
of a loudspeaker is referred to as the position of the latt¢hne re-
mainder. For convenience, we assume in the following thesticthd-
speaker under consideration is positione&k’at= x¢ = [ro O O}T
and is orientated towards the origin of the global coordirsgsstem.

We term the coefficient§/ nnj (w) secondary source directivity coef-
ficients

We establish a local coordinate system with origikgand whose
axes are parallel to those of the global origin (refer to E)g.Then
the spatio-temporal transfer functids(x’, w) of the considered
loudspeaker can be described as (refer to (2))

z z &M (w) SV (<, ) (13)
=
with respect to the local coordinate system. Note that
X' =x'(x) =x+A0x, (14)

with Ax = [-ro 0 0], Ar = ro, Aa = 11, andAB = 7.
In the remainder of this section we demonstrate how the cosrftis
Glmml(w) required by the secondary source driving function (11)

can be yielded from a measurement of the directivity coeffits
é’nnj(w) by applying appropriate translation operations.

From [14] we know that the translation of the singular part
Sﬂ(xﬂ w) of the expansion (13) results in

-3 5 (sREy

n=0m=-n

Sq{ x + Ax, )

(Bx,0) R7(x) . (15)

The notation§R) indicates that the translation represents a chang
from a singular basis expansion to a regular basis expaftsidd].

Inserting (15) in (13) and re-ordering of the sums reveagtneral
form of G'(w) as

n
DI
0 n m

<3 Y OISR (bx0).

8

G(x

0 n

n

(16)

= GP(w)

From the driving function (11) we can deduce that we do notinee
all coefficientsG'(w) but onIyGlml( )

z z G/n’ 17)

=—n

SR (Ax, w) .

\m\

This facilitates the translation because the sectorialstedion co-
efficients(S R)‘“,"n‘n, (Ax, w) are easier to calculate than the tesseral

coefficients(S R)nmr'}1 (Ax, w) [14]. The sectorial translation coeffi-
cients can be computed recursively from combinations oittitiel
value [14]

(SRION (b, w) = VAT S (8%, @) =
_ o=l o) W
= (O™ hy (Sro) PY(0)  (28)

via the recursion formulae (24) and (25).
It can be shown that the sectorial translation coefficierdsofthe
form

mmi I"m, (2) -
(SR (A%, @) = Z T 2 < o) PA s (0)
(19)
wherebyc™:"-M is a real number derived from (18), (24), (25),

and (26).
AII factors in (19) are always different from zero except for

Pn, 7\mH2I’( 0) which exhibits zeros wherevef — |m| +2I’+-m —m

is odd [15]. The latter is equivalent to the case'of m' being odd.
To take account for this we modify the summations in (17) as

e o 2kn
AL

m, 2k’ —n’
i, v

&y (@ w) (SR) (Ax,w).  (20)



This reveals that only the coefficiert%ﬁ!( " (w) have to be known
or measured in order to compute the directivity filter.

Refer to [8] for a simulation of a virtual plane wave reprodddy

a continuous distribution of highly directional secondsoyrces. It
can be observed that the desired sound field is indeed dgrfeet
produced. Note that the simulation shows a purely two-dsiteral
scenario. For the present/2dimensional problem, the repro-
duced sound field differs from the desired one as mentionsdan
tion Sec. 4.

6. PROPERTIESOF THE DIRECTIVITY FILTER
6.1 General

As evident from (20), each mode of the directivity filter is given
by a summation over the product of the secondary sourcetiditgc
coefficients and the translation coefficients. The traisiatoeffi-
cients can be implemented via infinite impulse response {ilte)

design approaches such as performed in [16]. Alternatitieydig-
ital implementation can be obtained via an appropriate §ampf

the analytical mathematical expression (20) which reghbs in a
finite impulse response (FIR) representation.

Due to the fact that the secondary source directivity cdefiis are

function (11) it turns into an anticipation. In order thagttiriving
function stays causal, this anticipation has to be compeddasy an
appropriate pre-delay.

Furthermore, the secondary source directivity coeffisient
G’ﬁk - (w) are generally not minimum phase. The inversion then
leads to a filter of infinite length which can not be implemente
with an FIR approach. A lack of the minimum phase property can
also result in acausal components of the inverse filter. &hase

to be compensated for via modeling delay Such a modeling
delay is simply an additional delay imposed on the drivingction

in order to make acausal components causal. Alternatitbégy,
secondary source directivity coefficients can be approtéchdy
minimum phase filters [17].

7. MEASUREMENT OF THE DIRECTIVITY
COEFFICIENTS

In this section we investigate the measurement of the spatio
temporal transfer function of a loudspeaker which allowsply

the presented approach. Since we want to compensate only for
the horizontal radiation characteristics of the involvegandary
sources, we assume that a measurement of the horizontalf plagt

typically yielded from measurements and are modeled as HR fi secondary source’s spatio-temporal transfer functionuficgent

ters, e.g. [13], we propose to also apply the FIR approacthen t
translation coefficients.

In order that the driving function (11) is defined, neitherdeo
Glnr“nl(w) of the directivity filter may exhibit zeros. From (17) it can

be seen that each mode of the directivity filter is given by m-su

/

. S . .
mation over all directivity coefficient&’ , " () multiplied by

the according sectorial translation coeffici€gR) m’]lzﬁlfn/ (Ax, ).

The translation coefficients are linear combinations ofesichal
Hankel functions of the same argument but of different adeafer
to (19)). Spherical Hankel functions of different orders hnearly
independent [15]. Thus, since spherical Hankel functiansat ex-
hibit zeros, a linear combination of spherical Hankel fiorts and
therefore also the translation coefficients do not exhiiog either.
The fact whether the directivity filters are defined is edaéiytde-
pendent on the properties of the secondary source dirgativeffi-

cientsG’ﬁ,k - (w) (refer also to Sec. 6.2).

It has to be noted that the calculation of spherical Hankettions
of high orders and large arguments (i.e. high frequencidarge
radii of the secondary source contour) requires high nuwrakpire-
cision. Due to the fact that the directivity filter can be pmnputed
there are no performance issues in the calculation.

Secondary source directivity coefficients yielded from suza-
ments of real loudspeakers do not per se result in well-tezhdsiv-
ing functions. Therefore (preferably frequency dependesgular-
ization such as in [1] has to be applied in order to yield aizahle
solution. Contrary to conventional multichannel reguation, the
presented approach allows for independent regularizaticgach

modem of the directivity filter. Thereby, stable modes need not be

regularized while the regularization of individual undeamodes
can be assumed to be favorable compared to conventiondaregu
ization of the entire filter.

6.2 Causality
Spherical Hankel functions of second kind are explicitlyegi

by [14]
1 \"
( 2i % I’o) - (@D

(cr)

The exponential term in (21) is independent of the ordemd can
be factored out in (20). The exponential term representday de
time domain whose duration equals the propagation durétoon
a secondary source to the center of the secondary sourceucont
Since the exponential term appears in the numerator of fhimgr

e—i%’ro n

(' + f)!
Dro £y F(0 = 1)

_ in’+1

h@

n

in order to yield the desired coefficiem%ﬁ/k " (w). We therefore
assume a circular horizontal arrangement of pressure pfiores
of radius r’,es whose center coincides with the position of the
loudspeaker to be measured.

The Fourier series expansion coefficients

é’m(r’\,«:,/ref7ﬁ’|ﬁ,2g7w) of the horizontal component of

the spatio-temporal transfer function of the loudspealkar be
determined from the microphone signals via [9]

G/m <r/|r’:r’,ef7ﬁ/‘[3’:’—;7w)
2n

1 7 e
= [6(Xrp—g) e da’ . (22)
0

21

The pressures (X/‘r’:r’ref.ﬁ’:ng) is yielded directly from the

microphone signals. The integral in (22) then has to be appro
imated by an appropriate summation of the measurementspoint
For convenience, we assume that the microphone spacing is so
close that no considerable spatial aliasing occurs.
By exploiting relation (10), the measured

G'm(r' =r'rer,B' = 5, w) can be decomposed as

coefficients

G/m <r/|r’:r’,ef7ﬁ/‘/3’:’—;7w) =
o0

3 2041 (0 — ) g o (2) (D
n;m‘enf @)\ i 7 O M (Cr ref) ,
- &Y ()

(23)

Again the factOIP,T (0) is apparent which is zero wherevér+ m'
is odd.
The right hand side of (23) constitutes an expansion of

é’m (rl\r’:r’remB/|B’:§vw) over spherical Hankel functions of
fixed argument but different degreg’s However, we are not aware
that a method is readily available that allows to analylycektract

the coeﬁicienté’n"/{ (w) via (23) from the circular microphone array
measurements. Numerical methods such as [18] can be erdploye
However, their accuracy and limitations have not been tiyated

in detail.



It can therefore not be clarified in the scope of this papertidre
a horizontal measurement is sufficient for the retrievahef toef-

ficients G’n,k
such as in [13] is necessary.

8. CONCLUSIONS

An approach for sound field reproduction employing circudar
rangements of secondary sources was presented.
on the general properties of the resulting secondary salriciag
function when non-omnidirectional secondary sources seeluln
order that the presented approach is applicable the spatiperal
characteristics of the employed secondary sources have to-b
variant with respect to rotation around the center of thesdary
source arrangement. In other words, all secondary soumesth
exhibit equal radiation characteristics and have to bentated to-
wards the center of the secondary source arrangement.

Preliminary measurements of the ELAC 301 loudspeakers twhic

[7] J. Ahrens and S. Spors. An analytical approach to soufdi fie

-
(w) or whether a three-dimensional measurement

reproduction using circular and spherical loudspeakeridis
butions. Acta Acustica utd. with Acusticé4(6):988-999,
Nov./Dec. 2008.

[8] J. Ahrens and S. Spors. Sound field reproduction emptpyin

It waseébcus [9]

(10]

(11]

are employed in the loudspeaker system installed at Desitsch

Telekom Laboratories indicate that only very little vaidatin the

spatio-temporal characteristics are apparent withiredsffit loud-
speakers of the same model. This indicates that the presapte
proach is indeed applicable when all loudspeakers are dahee
model. However, the investigation of resulting errors wisech

variation in the spatio-temporal characteristics of theosdary

sources is apparent or when secondary sources are notlgrpper
sitioned and orientated could not be included in the presapér.

It was shown that only a subset of the spherical harmonicHicoe

cients of the loudspeaker directiviy have to be known. Wemss
that these directivity coefficients are precisely knownisThquires
high resolution measurements of the coefficients in ordesgure
that no considerable spatial aliasing occurs. These measuts
can be assumed to be less complex than in the conventiongleztem
sation approaches which require to measure the entirepeaéisr
array (refer to Sec. 1).

It also advisable that the radius of the microphone arraytsap
different from the radius of the secondary source contoutetn
consideration. The presented approach implicitly incude ex-
trapolation of the microphone array measurements to thegsad
the secondary source contour. The restrictions of exteaiool of
such spatially discrete data when spatial aliasing is appas not
known.

Due to the fact that each spatial mode of the directivityfit@n be
pre-computed offline, it is likely that the precision re@urents can
be met. Future work includes an error analysis as describecka
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