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ABSTRACT

We present an approach targeting the physical reproduction
of sound fields by means of circular distributions of non-
omnidirectional loudspeakers. The approach does not compensate
for loudspeaker properties which deviate from certain assumptions
as conventional approaches do. It rather allows for the explicit con-
sideration of these properties within some limits which areout-
lined. The focus of this paper lies on the modal incorporation of
the loudspeaker’s spatio-temporal transfer function intothe loud-
speaker driving function.

1. INTRODUCTION

Traditionally, massive-multichannel sound field reproduction ap-
proaches like wave field synthesis or higher order Ambisonics as-
sume that the involved secondary sources (i.e. loudspeakers) are
omnidirectional. For lower frequencies, this assumption is in-
deed approximately fulfilled when conventional loudspeakers with
closed cabinets are considered. However, for higher frequencies
above a few thousand Hertz complex radiation patterns evolve.
A number of approaches based on the theory of multiple-input-
multiple-output (MIMO) systems have been proposed in orderto
compensate for the influence of the reproduction room and the
loudspeaker radiation characteristics [1, 2, 3, 4, 5, 6]. Room com-
pensation requires realtime analysis of the reproduced sound field
and adaptive algorithms due to the time-variance of room acoustics
(e.g. temperature variations). Compensation of the loudspeaker ra-
diation characteristics, such as directivity and frequency response,
is less complex since it can be assumed that these characteristics are
time-invariant. No adaptation and therefore no real-time analysis is
required. However, in order that the radiation characteristics can be
compensated for while neglecting the reproduction room, the radi-
ation characteristics of the entire secondary source setuphave to be
measured under anechoic conditions. When certain physicalcon-
straints are accepted, a significant reduction of complexity can be
achieved and a continuous formulation of the MIMO approaches
can be established. Besides time-invariance, the fundamental phys-
ical constraints introduced in the presented approach are:
(1) The secondary source arrangement is circular.
(2) The spatio-temporal transfer function of the secondarysources

is rotation invariant. In other words, all individual loudspeak-
ers have to have equal radiation characteristics and have tobe
orientated towards the center of the secondary source setup.

Requirement (1) can obviously be fulfilled. Preliminary measure-
ments undertaken at Deutsche Telekom Laboratories have shown
that typical commercially available loudspeakers with closed cab-
inets indeed exhibit similar to equal spatio-temporal transfer func-
tions in anechoic condition. This suggests that requirement (2) can
also be fulfilled when the acoustical properties of the reproduction
room are ignored.
We emphasize that the presented approach is not a compensation
for deviations of the loudspeaker radiation characteristics from cer-
tain assumptions (e.g. omnidirectionality). It is rather such that the
formulation of the approach allows for an explicit consideration

thereof. For convenience, we use the termdirectivity filter to re-
fer to that component of the the secondary source driving function
which represents the spatio-temporal transfer function ofthe sec-
ondary sources.
The approach treated in this paper has been presented by the authors
in [7, 8], whereby formulations were kept general. In this contribu-
tion, we investigate in detail the properties of the loudspeaker direc-
tivity filters which arise when circular secondary source setups are
employed.

2. NOMENCLATURE AND MATHEMATICAL
PRELIMINARIES

The following notational conventions are used: For scalar variables
lower case denotes the time domain, upper case the temporal fre-
quency domain. Vectors are denoted by lower case boldface. The
three-dimensional position vector in Cartesian coordinates is given
asx= [x y z]T . The Cartesian coordinates are linked to the spherical
coordinates viax = r cosα sinβ , y = r sinα sinβ , andz= r cosβ .
α denotes the azimuth,β the elevation. Confer also to Fig. 1. For
functions dependent on spatial coordinates, we use the notations
F(x) andF(r,α,β ) to emphasize a given coordinate system.
The acoustic wavenumber is denoted byk. It is related to the tem-

poral frequency byk2 =
(ω

c

)2 with ω being the radial frequency
andc the speed of sound. Outgoing spherical waves are denoted by
1
r e−i ω

c r . i is the imaginary unit (i =
√
−1).

Due to the continuous formulation, we will not refer to loudspeak-
ers but rather to secondary sources and their distributionsand also to
secondary source driving functions rather than to loudspeaker sig-
nals. We employ a number of standard mathematical tools which
are defined below.
The Fourier series expansion with respect toα is defined as [9]

G(x,ω) =
∞

∑
m=−∞

G̊m(r,β ,ω) eimα
. (1)

A sound field can be described by its spherical harmonics expansion
as [9]

F(x,ω) =
∞

∑
n=0

n

∑
m=−n

F̆m
n (ω)Bm

n (x,ω) , (2)

whereby the basisBm
n (x,ω) is the singular basisSm

n (x,ω) for purely
diverging sound fields, and the regular basisRm

n (x,ω) for passing
sound fields. Explicitly,

Sm
n (x,ω) = h(2)

n

(ω
c

r
)

Ym
n (α,β ) , (3)

Rm
n (x,ω) = jn

(ω
c

r
)

Ym
n (α,β ) . (4)

h(2)
n

(ω
c r

)
denotes then-th order spherical Hankel function of sec-

ond kind, jn
( ω

c r
)

the n-th order spherical Bessel function of first



kind [9].
The spherical harmonicsYm

n (α,β ) are defined as

Ym
n (α,β ) =

√

(2n+1)

4π
(n−m)!
(n+m)!

·Pm
n (cosβ ) ·eimα

, (5)

with Pm
n (·) denoting them-th order associated Legendre polynomial

of n-th degree.

3. DERIVATION OF THE DRIVING FUNCTION

As outlined by the authors in [7], the physical fundament of the pre-
sented approach is the so-calledsimple source approach. The ap-
proach can be seen as an analytical formulation of what is known as
higher order Ambisonics. The simple source approach for interior
problems states that the acoustic field generated by events outside
a volume can also be generated by a continuous distribution of sec-
ondary simple sources enclosing the respective volume [9].
Sound field reproduction systems are frequently restrictedto repro-
duction in the horizontal plane. The secondary sources are arranged
on a circle. In this case, the acoustic scene to be reproducedas
well as the receiver positions are bounded to the horizontalplane.
In other words, the listener’s ears have to be in the same plane like
the secondary sources. For this two-dimensional setup the free-field
Green’s function required by the simple source approach canbe in-
terpreted as the spatial transfer function of a line source.This case
is treated e.g. in [10].
However, implementations of such systems usually employ loud-
speakers with closed cabinets whose spatial transfer function is
more accurately modeled by that of a point source. This secondary
source type mismatch prevents us from perfectly recreatingany
source-free sound field inside the secondary source array. We have
to expect artifacts. This circumstance is also a well treated prob-
lem in WFS [11]. The approach of employing secondary sources
which are intended for three-dimensional reproduction in such an
imperfect two-dimensional scenario is typically referredto as 21/2-
dimensional reproduction.
For a circular distribution of secondary sources located inthe hori-
zontal plane and centered around the origin of the coordinate system
(refer to Fig. 1) the reproduction equation is given by [7]

P(x,ω) =

2π∫

0

D(α0,ω) ·G(α −α0,β ,ω) r0 dα0 , (6)

whereby P(x,ω) denotes the reproduced sound field,D(α0,ω)
the driving signal of the secondary source located at the position
x0 = r0 · [cosα0 sinα0 0]T , andG(α −α0,β ,ω) its spatio-temporal
transfer function.
Note that we assumeG(·) to be rotation invariant with respect to
rotation around thez-axis (we writeG(α − α0,β ,ω) instead of
G(x|x0,ω)) [9]. This requires that all secondary sources have to
exhibit equal spatio-temporal characteristics and have tobe orien-
tated towards the center of the secondary source distribution.
To bound our area of interest to the horizontal plane we set the ele-
vation angleβ in all position vectors toπ

2 in the remainder of this
section.
Equation (6) can be interpreted as a circular convolution and thus
the convolution theorem [9]

P̊m(r,ω) = 2πr0 D̊m(ω) G̊m(r,ω) (7)

and therefore

D̊m(ω) =
1

2πr0

P̊m(r,ω)

G̊m(r,ω)
(8)

featuring the Fourier series expansion coefficientsD̊m(ω), P̊m(r,ω),
andG̊m(r,ω) applies.G̊m(r,ω) are the Fourier series expansion co-
efficients of a secondary source positioned atx0 = [r0 0 0]T with

the expansion center at the origin of the coordinate system.Refer
to Sec. 5 for a detailed treatment.
Note that (7) only holds for two-dimensional sound fields. Since
P̊m(r,ω) and G̊m(r,ω) are generally three-dimensional, (7) only
holds in the horizontal plane (i.e. forβ = π

2 ).
From (8) and (1) we can deduce that

D(α,ω) =
1

2πr0

∞

∑
m=−∞

P̊m(r,ω)

G̊m(r,ω)
eimα

. (9)

We reformulate the spherical harmonics expansion given by equa-
tion (2) by exchanging the order of summations to reveal the Fourier
series expansion coefficients reading

F
(

x|β= π
2
,ω

)

=
∞

∑
m=−∞

eimα×

×
∞

∑
n=|m|

F̆m
n (ω) jn

(ω
c

r
)

√

2n+1
4π

(n−m)!
(n+m)!

Pm
n (0)

︸ ︷︷ ︸

F̊m(r,ω)

. (10)

Introducing the explicit formulation of the Fourier seriesexpansion
coefficientsP̊m(r,ω) andG̊m(r,ω) given by (10) into (9) yields the
explicit driving functionD(α,ω). Analysis of the latter reveals that
the radiusr does not cancel out.r appears both in the numerator as
well as in the denominator in the summation overn in the argument
of the spherical Bessel functionjn

(ω
c r

)
. The driving function is

therefore dependent on the receiver position. We thus have to ref-
erence the reproduced sound field to a specific radius which isthen
the only location where the reproduction is exact. In other positions
inside the receiver area deviations arise as outlined in Sec. 4.
For convenience we reference the reproduced sound field to the cen-
ter of the secondary source array (r = 0). Refer to section Sec. 4 for
a closer look on the properties of the actual reproduced sound field.
At a first stage, settingr = 0 in (9) leads to an undefined expression
of the form0

0 for n 6= 0 since spherical Bessel functions of argument
0 equal 0∀n 6= 0. Application of de l’Hôpital’s rule [12] proves that
the expression is defined forr = 0 and finally yields the driving
functionD2.5D(α,ω) for 21/2-dimensional reproduction as [7]

D2.5D(α,ω) =
1

2πr0

∞

∑
m=−∞

P̆m
|m|(ω)

Ğm
|m|(ω)

eimα
. (11)

Note that the summation overn in (10) reduces to a single addend
with n= |m| [7]. The coefficients̆Pm

n andĞm
n (ω) are defined via (2).

Equation (11) generally only holds for|x| < r0 due to the fact that
the coefficientsP̆m

|m|(ω) andĞm
|m|(ω) are typically derived from in-

terior expansions [9].

4. REPRODUCED SOUND FIELD

We yield the actual sound field reproduced by the circular secondary
source distribution by inserting (11) in (6) as [7]

P2.5D(x,ω) =
∞

∑
n=0

n

∑
m=−n

P̆m
|m|(ω)

Ğm
n (ω)

Ğm
|m|(ω)

Rm
n (x,ω)

∀ r < r0 . (12)

Note thatP̆m
|m|(ω) are the coefficients of the desired sound field.

Refer to [7] for a simulation of a virtual plane wave reproduced by
a continuous circular distribution of secondary monopole sources.
It can be observed that the reproduced sound field indeed exhibits
perfectly plane wave fronts. However, the reproduced soundfield
experiences an amplitude decay of approximately 3dB with each
doubling of the distance to the secondary source distribution along
the propagation direction of the virtual plane wave. This amplitude
decay is a typical artifact of 21/2-dimensional reproduction.
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Figure 1: The coordinate systems used in this paper. Primed quantities belong to a local coordinate system at positionx
′
0 = [r0 0 0]T (see

text). The dash-dotted line indicates the secondary sourcedistribution.

5. INCORPORATION OF THE SECONDARY SOURCE
DIRECTIVITY COEFFICIENTS

As outlined in Sec. 3, the coefficients̆Gm
|m|(ω) apparent in the driv-

ing function (11) describe the spatio-temporal transfer function of a
secondary source which is positioned atx0 = [r0 0 0]T and orien-
tated towards the center of the coordinate system (which coincides
with the center of the secondary source distribution). The expansion
center is the origin of the coordinate origin. This follows directly
from the convolution theorem (7).
However, typical loudspeaker directivity measurements such as [13]

yield the coefficientsĞ′m
′

n′ (ω) (see below) of an expansion of the
loudspeaker’s spatio-temporal transfer function around the acousti-
cal center of the loudspeaker denoted byx

′
0. The acoustical center

of a loudspeaker is referred to as the position of the latter in the re-
mainder. For convenience, we assume in the following that the loud-
speaker under consideration is positioned atx

′
0 = x0 = [r0 0 0]T

and is orientated towards the origin of the global coordinate system.

We term the coefficients̆G′m
′

n′ (ω) secondary source directivity coef-
ficients.
We establish a local coordinate system with origin atx0 and whose
axes are parallel to those of the global origin (refer to Fig.1). Then
the spatio-temporal transfer functionG(x′,ω) of the considered
loudspeaker can be described as (refer to (2))

G(x′
,ω) =

∞

∑
n′=0

n′

∑
m′=−n′

Ğ′m
′

n′ (ω) Sm′
n′ (x

′
,ω) (13)

with respect to the local coordinate system. Note that

x
′ = x

′(x) = x+∆x , (14)

with ∆x = [−r0 0 0], ∆r = r0, ∆α = π, and∆β = π
2 .

In the remainder of this section we demonstrate how the coefficients
Ğm
|m|(ω) required by the secondary source driving function (11)

can be yielded from a measurement of the directivity coefficients

Ğ′m
′

n′ (ω) by applying appropriate translation operations.
From [14] we know that the translation of the singular part
Sm′

n′ (x
′
,ω) of the expansion (13) results in

Sm′
n′ (x+∆x,ω) =

∞

∑
n=0

n

∑
m=−n

(S|R)mm′
nn′ (∆x,ω) Rm

n (x) . (15)

The notation(S|R) indicates that the translation represents a change
from a singular basis expansion to a regular basis expansion[9, 14].

Inserting (15) in (13) and re-ordering of the sums reveals the general
form of Ğm

n (ω) as

G(x,ω) =
∞

∑
n=0

n

∑
m=−n

Rm
n (x)×

×
∞

∑
n′=0

n′

∑
m′=−n′

Ğ′m
′

n′ (ω)(S|R)mm′
nn′ (∆x,ω)

︸ ︷︷ ︸

= Ğm
n (ω)

. (16)

From the driving function (11) we can deduce that we do not need
all coefficientsĞm

n (ω) but onlyĞm
|m|(ω)

Ğm
|m|(ω) =

∞

∑
n′=0

n′

∑
m′=−n′

Ğ′m
′

n′ (ω)(S|R)mm′
|m|n′ (∆x,ω) . (17)

This facilitates the translation because the sectorial translation co-
efficients(S|R)mm′

|m|n′ (∆x,ω) are easier to calculate than the tesseral

coefficients(S|R)mm′
n n′ (∆x,ω) [14]. The sectorial translation coeffi-

cients can be computed recursively from combinations of theinitial
value [14]

(S|R)0m′
0n′ (∆x,ω) =

√
4π Sm′

n′ (∆x,ω) =

= (−1)m′

√

(2n′ +1)
(n′−m′)!
(n′ +m′)!

h(2)
n′

(ω
c

r0

)

Pm′
n′ (0) (18)

via the recursion formulae (24) and (25).
It can be shown that the sectorial translation coefficients are of the
form

(S|R)mm′
|m|n′ (∆x,ω) =

|m|
∑
l ′=0

cl ′,m′,n′,mh(2)
n′−|m|+2l ′

(ω
c

r0

)

Pm′−m
n′−|m|+2l ′(0) ,

(19)
wherebycl ′,m′,n′,m is a real number derived from (18), (24), (25),
and (26).
All factors in (19) are always different from zero except for
Pm′−m

n′−|m|+2l ′(0) which exhibits zeros wherevern′−|m|+2l ′+m′−m

is odd [15]. The latter is equivalent to the case ofn′+m′ being odd.
To take account for this we modify the summations in (17) as

Ğm
|m|(ω) =

∞

∑
n′=0

n′

∑
k′=0

Ğ′2k′−n′

n′ (ω)(S|R)m, 2k′−n′

|m|, n′ (∆x,ω) . (20)



This reveals that only the coefficients̆G′2k′−n′

n′ (ω) have to be known
or measured in order to compute the directivity filter.
Refer to [8] for a simulation of a virtual plane wave reproduced by
a continuous distribution of highly directional secondarysources. It
can be observed that the desired sound field is indeed perfectly re-
produced. Note that the simulation shows a purely two-dimensional
scenario. For the present 21/2-dimensional problem, the repro-
duced sound field differs from the desired one as mentioned insec-
tion Sec. 4.

6. PROPERTIES OF THE DIRECTIVITY FILTER

6.1 General

As evident from (20), each modem of the directivity filter is given
by a summation over the product of the secondary source directivity
coefficients and the translation coefficients. The translation coeffi-
cients can be implemented via infinite impulse response filter (IIR)
design approaches such as performed in [16]. Alternatively, the dig-
ital implementation can be obtained via an appropriate sampling of
the analytical mathematical expression (20) which resultsthen in a
finite impulse response (FIR) representation.
Due to the fact that the secondary source directivity coefficients are
typically yielded from measurements and are modeled as FIR fil-
ters, e.g. [13], we propose to also apply the FIR approach on the
translation coefficients.
In order that the driving function (11) is defined, neither mode
Ğm
|m|(ω) of the directivity filter may exhibit zeros. From (17) it can

be seen that each mode of the directivity filter is given by a sum-

mation over all directivity coefficients̆G′2k′−n′

n′ (ω) multiplied by

the according sectorial translation coefficient(S|R)m, 2k′−n′

|m|, n′ (∆x,ω).
The translation coefficients are linear combinations of spherical
Hankel functions of the same argument but of different orders (refer
to (19)). Spherical Hankel functions of different orders are linearly
independent [15]. Thus, since spherical Hankel functions do not ex-
hibit zeros, a linear combination of spherical Hankel functions and
therefore also the translation coefficients do not exhibit zeros either.
The fact whether the directivity filters are defined is essentially de-
pendent on the properties of the secondary source directivity coeffi-

cientsĞ′2k′−n′

n′ (ω) (refer also to Sec. 6.2).
It has to be noted that the calculation of spherical Hankel functions
of high orders and large arguments (i.e. high frequencies orlarge
radii of the secondary source contour) requires high numerical pre-
cision. Due to the fact that the directivity filter can be pre-computed
there are no performance issues in the calculation.
Secondary source directivity coefficients yielded from measure-
ments of real loudspeakers do not per se result in well-behaved driv-
ing functions. Therefore (preferably frequency dependent) regular-
ization such as in [1] has to be applied in order to yield a realizable
solution. Contrary to conventional multichannel regularization, the
presented approach allows for independent regularizationof each
modem of the directivity filter. Thereby, stable modes need not be
regularized while the regularization of individual unstable modes
can be assumed to be favorable compared to conventional regular-
ization of the entire filter.

6.2 Causality

Spherical Hankel functions of second kind are explicitly given
by [14]

h(2)
n′

(ω
c

r0

)

= i n′+1 e−i ω
c r0

ω
c r0

n′

∑
f ′=0

(n′ + f ′)!
f ′(n′− f ′)!

(
1

2i ω
c r0

) f ′

. (21)

The exponential term in (21) is independent of the ordern′ and can
be factored out in (20). The exponential term represents a delay in
time domain whose duration equals the propagation durationfrom
a secondary source to the center of the secondary source contour.
Since the exponential term appears in the numerator of the driving

function (11) it turns into an anticipation. In order that the driving
function stays causal, this anticipation has to be compensated by an
appropriate pre-delay.
Furthermore, the secondary source directivity coefficients

Ğ′2k′−n′

n′ (ω) are generally not minimum phase. The inversion then
leads to a filter of infinite length which can not be implemented
with an FIR approach. A lack of the minimum phase property can
also result in acausal components of the inverse filter. These have
to be compensated for via amodeling delay. Such a modeling
delay is simply an additional delay imposed on the driving function
in order to make acausal components causal. Alternatively,the
secondary source directivity coefficients can be approximated by
minimum phase filters [17].

7. MEASUREMENT OF THE DIRECTIVITY
COEFFICIENTS

In this section we investigate the measurement of the spatio-
temporal transfer function of a loudspeaker which allows toapply
the presented approach. Since we want to compensate only for
the horizontal radiation characteristics of the involved secondary
sources, we assume that a measurement of the horizontal partof the
secondary source’s spatio-temporal transfer function is sufficient

in order to yield the desired coefficients̆G′2k′−n′

n′ (ω). We therefore
assume a circular horizontal arrangement of pressure microphones
of radius r ′ref whose center coincides with the position of the
loudspeaker to be measured.
The Fourier series expansion coefficients

G̊′
m

(

r ′|r ′=r ′ ref,β
′|β ′= π

2
,ω

)

of the horizontal component of

the spatio-temporal transfer function of the loudspeaker can be
determined from the microphone signals via [9]

G̊′
m

(

r ′|r ′=r ′ ref,β
′|β ′= π

2
,ω

)

=

=
1

2πr0

2π∫

0

G
(

x
′|r ′=r ′ ref,β ′= π

2
,ω

)

e−imα ′
dα ′

. (22)

The pressureG
(

x
′|r ′=r ′ ref,β ′= π

2
,ω

)

is yielded directly from the

microphone signals. The integral in (22) then has to be approx-
imated by an appropriate summation of the measurement points.
For convenience, we assume that the microphone spacing is so
close that no considerable spatial aliasing occurs.
By exploiting relation (10), the measured coefficients
G̊′

m
(
r ′ = r ′ref,β ′ = π

2 ,ω
)

can be decomposed as

G̊′
m

(

r ′|r ′=r ′ ref,β
′|β ′= π

2
,ω

)

=

=
∞

∑
n′=|m′|

Ğ′m
′

n′ (ω)

√

2n′ +1
4π

(n′−m′)!
(n′ +m′)!

Pm′
n′ (0)

︸ ︷︷ ︸

= Ḡ′m′
n′ (ω)

h(2)
n′

(ω
c

r ′ref

)

.

(23)

Again the factorPm′
n′ (0) is apparent which is zero wherevern′ +m′

is odd.
The right hand side of (23) constitutes an expansion of

G̊′
m

(

r ′|r ′=r ′ ref,β
′|β ′= π

2
,ω

)

over spherical Hankel functions of

fixed argument but different degreesn′. However, we are not aware
that a method is readily available that allows to analytically extract

the coefficientsĞ′m
′

n′ (ω) via (23) from the circular microphone array
measurements. Numerical methods such as [18] can be employed.
However, their accuracy and limitations have not been investigated
in detail.



It can therefore not be clarified in the scope of this paper whether
a horizontal measurement is sufficient for the retrieval of the coef-
ficients Ğ′2k′−n′

n′ (ω) or whether a three-dimensional measurement
such as in [13] is necessary.

8. CONCLUSIONS

An approach for sound field reproduction employing circularar-
rangements of secondary sources was presented. It was focused
on the general properties of the resulting secondary sourcedriving
function when non-omnidirectional secondary sources are used. In
order that the presented approach is applicable the spatio-temporal
characteristics of the employed secondary sources have to be in-
variant with respect to rotation around the center of the secondary
source arrangement. In other words, all secondary sources have to
exhibit equal radiation characteristics and have to be orientated to-
wards the center of the secondary source arrangement.
Preliminary measurements of the ELAC 301 loudspeakers which
are employed in the loudspeaker system installed at Deutsche
Telekom Laboratories indicate that only very little variation in the
spatio-temporal characteristics are apparent within different loud-
speakers of the same model. This indicates that the presented ap-
proach is indeed applicable when all loudspeakers are of thesame
model. However, the investigation of resulting errors whensuch
variation in the spatio-temporal characteristics of the secondary
sources is apparent or when secondary sources are not properly po-
sitioned and orientated could not be included in the presentpaper.
It was shown that only a subset of the spherical harmonics coeffi-
cients of the loudspeaker directiviy have to be known. We assumed
that these directivity coefficients are precisely known. This requires
high resolution measurements of the coefficients in order toassure
that no considerable spatial aliasing occurs. These measurements
can be assumed to be less complex than in the conventional compen-
sation approaches which require to measure the entire loudspeaker
array (refer to Sec. 1).
It also advisable that the radius of the microphone array is not too
different from the radius of the secondary source contour under
consideration. The presented approach implicitly includes an ex-
trapolation of the microphone array measurements to the radius of
the secondary source contour. The restrictions of extrapolation of
such spatially discrete data when spatial aliasing is apparent is not
known.
Due to the fact that each spatial mode of the directivity filter can be
pre-computed offline, it is likely that the precision requirements can
be met. Future work includes an error analysis as described above.
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Appendix: Recursion formulae for singular-to-regular sectorial
translation [14]

For m≤ 0:

b−|m|−1
|m|+1 (S|R)

−|m|−1,m′

|m|+1,n′ (∆x,ω) =

= bm′
n′ (S|R)

−|m|,m′+1
|m|,n′−1 (∆x,ω)−b−m′−1

n′+1 (S|R)
−|m|,m′+1
|m|,n′+1 (∆x,ω) ,

(24)

for m≥ 0:

b−m−1
m+1 (S|R)m+1,m′

m+1,n′ (∆x,ω) =

= b−m′

n′ (S|R)m,m′−1
m,n′−1 (∆x,ω)−bm′−1

n′+1 (S|R)m,m′−1
m,n′+1 (∆x,ω) , (25)

with

bm
n =







√
(n−m−1)(n−m)
(2n−1)(2n+1) for 0≤ m≤ n

−
√

(n−m−1)(n−m)
(2n−1)(2n+1)

for −n≤ m< 0

0 for |m| > n .

(26)


