A SHORT REVIEW OF SIGNALSAND SYSTEMSFOR SPATIAL AUDIO

P. Annibale, R. Rabenstein, S. Spors, P. Steffen

Chair of Multimedia Communications and Signal Quality and Usability Lab
Processing, University of Erlangen-Nuremberg Deutsche Telekom Laboratories
Cauerstrae 7, D-91058 Erlangen, Germany Ernst-Reuter-Platz 7, D-10587 Berlin, Germany
email: {annibale,rabenstein,steffl@LNT.de email: sascha.spors@telekom.de

ABSTRACT theoretical foundations for spatial audio from image and
Processing of one-dimensional signals for all kinds of appl Vid€0 processing, since the content of images or video sig-
cations is based on the mature theory of signals and systenflS is usually not subject to mathematical constraints.
On the other hand, processing methods for acoustical signal The theory of space-time signal processing has been
have been developed in quite diverse application fields likeonsidered from various viewpoints. Historically the old-
seismic engineering, sonar, audio engineering, and commaest application dates back to the 1960s in seismic process-
nication acoustics. Similar techniques and algorithm®app ing [2,6, 14] for the identification of reflecting layers. Mie
under different names and with different notation. Thisrsho phone array applications triggered the interest in divégti
course tries to unify some of the general concepts of acousnd beamforming [9, 11, 18]. For audio reproduction with
tical signal processing. First, it covers some basics fromstereophony and surround sound, any processing and coding
multidimensional signals and systems. By considering thés usally channel related. The creation of the spatial augit
acoustic wave equation as description of a special multidiimpression is left to the art and experience of the sound-engi
mensional system, its solutions can be represented in vatieer (Tonmeister). The theory of the spatial component has
ous domains regarding time, space, and their associated frigeen neglected until recently [5].

%ieeply in mathematical representations of spatial funstio

cussed. For example, recording and reproduction of spatial sound
events with Ambisonics are based on a decomposition into
1 INTRODUCTION spherical harmonics. The spatial microphone and loud-

The theory of one-dimensional signals and systems providegpeaker configurations for recording and reproduction are
unifying concepts for entities like convolution, samplisgy- ~ decoupled by an intermediate signal representation, the so
nal transformations, transfer functions, correlationweo called Ambisonics signals.

spectral density, stability, controllability, observtyj and Wave field synthesis, a related reproduction method, at-
alike. These entities are defined without connection to cefrempts to recreate a sound field in an extended listening area
tain applications, but they are highly useful for solvina@r |t acoustical and mathematical foundation is the Kirchhof
tical problems in signal processing applications. Helmholtz Integral and other integral relations deriveshir

Such a statement applies to multidimensional signals angl Here, the spatial information is represented by the Gsee
systems only to a lesser extent. Although equally matureynction of the acoustic wave equation.
the theory is less elegant than its one-dimensional counter . L .

It appears that the different scientific communities in-

part. For example, since multidimensional polynomials-can ved in b formi S . ial audi q
not be factorized in general, tasks like filter design oristab Y0'Ved In beamiorming, acoustic imaging, spatial audio-cod
g, surround sound, Ambisonics, and wave field synthesis

ity tests are much more tedious than in the one-dimensiongl . e .
case [8, 15]. Theoretical tools for multidimensional syste ave SO far not strived for a unifying mathematical theory fo
are often application specific, e.g. for image processin heir activities. This leaves novices to any of these fieldk w
beamforming, seismics, control of distributed parameger s L€ assistance in bridging the gap between two seemingly
tems. etc. different worlds: The world of signal processing based @n th
Apart from these applications, the emerging field of spail€0ry Of signals and systems with convolution, signalgran
formations, and correlations as working tools and the world

tial audio is considered here. In this context, spatial @audi ; . L . X
means the processing of acoustic signals that are picked (@ 2coustics based on physical principles like consermatio
ws and balance equations with integral relations (Gaul3,

by spatially distributed microphones or that serve as dgvi . i i 3
signals for spatially distributed loudspeakers. Suchyarra Green) and differential equations as mathematical tools.

of microphones and loudspeakers have usually some kind This contribution attempts to fill this gap between signal
of regular arrangement (e.g. line, planar, circular, sighér processing and acoustics by reviewing some basic concepts
arrays). The number of microphones may be several tenfrom both fields on the basis of the theory of multidimen-
the number of loudspeakers in large arrays reaches figures sibnal signals and systems. A comprehensive presentation
many hundreds. is beyond the scope of this review article, therefore only a

The acoustic signals picked up by microphones and profew topics can be highlighted. Sec. 2 lists some foundations
duced by loudspeakers are a special case of space-time (ifeom one-dimensional signals and systems for reference in
multidimensional) signals, since their behaviour is goeelr the multidimensional case in Sec. 3. Some comments on
by the acoustic wave equation. This fact distinguishes theampling are added in Sec. 4.



2. ONE-DIMENSIONAL SIGNALSAND SYSTEMS FT  Us(w) = [ ug(t)ei@tdt
To show the connections between one- and multidimensional .

signals and systems, this section briefly recalls some basig-g Oe(p) = 1 [ Ge(t)e 1m/Tol gt
facts from the one-dimensional case. For simplicity, time- To 0
dependent signals are assumed. The selection of fur_ldamerbTFT UQ = S u (n)e~in@ (Q = wT)
tals given here serves as reference for the correspondilhg mu == o
tidimensional counterparts. No derivations and not evén re o M in(2m/M
erences are given, since all standard textbooks on signals a PFT  Ua(H) = nzoud(n)e In(2ra/M)
systems cover this material. — w

< Uc(s) = [uc(t)eStdt

0

2.1 One-Dimensional Signals

The various forms of one-dimensional signals can be classi- Table 1: Fourier type and Laplace signal transformations
fied in continuous-time and discrete-time signals, in pido
and non-periodic signals, and in their corresponding repre
sentations in the time and frequency domain. They are con-
nected by their respective Fourier-type transforms andhéy t
operations of sampling and periodization. :
Sampling and periodization are described most concisely U(t) <o S > Uy(n)
by a train of Dirac impulse8&(t) with unit distance :

c(w) <P(-:-_riogizitiog Ud (Q)
A A

G{
—
C

II(t) = i 5(t—k). )

K=—00

Sampling a continuous-time signad(t) with t € R at the _
time instants = nT with the time step siz& gives a discrete- el(t) < Sampling n)
time signal (sequencel)(n) = uc(nT) with the indexn € Z. ¢ d
This process is described by a multiplication with an impuls

train Figure 1: Relations between 1D signal representations.
1 i o <———> Periodization
Ue(t) 11T (?) - > U(ma(t—nT). @) D . Sampling
— Transformation

On the other hand, nearly arbitrary continuous-time signal
Uc(t) may be turned into periodic continuous-time signals

c(t) with periodT, by convolution with an impulse train  gynamic analysis with impulse responses and transfer func-

tions.
ﬁc(t)zuc(t)*im (i) . (3) Phasors are eigenfunctions of one-dimensional LTI-
T \To systems and have the form
In a similar fashion, an arbitrary sequenag(n) can be Ugg(t) — it (4)
N .

turned into a periodic sequenag(ri). The front face of the

cube in Fig. 1 shows these four types of signals and theifhe response to a phasor is also a phasor with a complex am-

relations by sampling and periodization. litude factorH the complex frequency response, see
For each type of signal there is a corresponding tran ig. 2. (@), P g y resp '

formation from the time into the frequency domain: Fourier
transform (FT), Fourier series (FS), Discrete time Fourier _
transform (DTFT), and Discrete Fourier transform (DFT) as el —~ H(w) = H(w,)e/“!
listed in Table 1. The respective inverse transformatioes a
not shown, but the one-sided Laplace transform has been
added for comparison. These four frequency domain repeigure 2: Steady state analysis: Response of an LTI-system
resentations are shown in the back face of the cube. to a phasor.
Here, continuous and discrete signals as well as periodic

and non-periodic signals along with their frequency domain  gqr the dynamic analysis, the one-sided Laplace trans-
counterparts fit nicely in one cube. These relations are morg,m allows the consideration of initial conditions andiiop
involved for multidimensional signals. vides a well-defined region of convergence. The response

to arbitrary input signalsic(t) can be expressed either in
22 1D Systems the time domain by a convolution with the impulse response
The most important class of systems for one-dimensiondi.(t) of the LTI-system or in the frequency domain by a mul-
signal processing are linear and time-invariant systeris (L tiplication with its transfer functiorHc(s). The respective
systems). They allow an easy transition between time anduantities in the time and frequency domain as related by the
frequency domain. There are two different widely used analtLaplace transform as shown in Fig. 3. Similar relations hold
ysis methods, the steady state analysis with phasors and tf@ discrete-time LTI systems with the z-transform.




The complex transfer functiokic(s) can be obtained u(t,x) OFB. d(t, k) u(t,x) OFE. d(t, k)
from the impulse responde(t) or from knowledge about

the structure of the system. Depending on the type of system, FT‘E FTt(\: zi J’f
this knowledge is expressed by an ordinary or partial differ N _ -
ential equation or by a combination with other LTI building U(@,x) =, U(w,k) U(sx) =, U(sk)

blocks, e.g. delay elements.
Figure 4: Fourier and Laplace transforms in time and space.

Ue(t) —= he(t) = uc(t) *he(t) = ye(t)
0 o 0 admissible simplifications, it can be described by the so-
Ze Ze Ze called acoustical wave equation [3,10,17,18]
Uc(s) — He(s) = Uc(9)Hc(s) = Ye(s) d2u(t,x
% — 2Au(t, x) = v(t,x), (6)
Figure 3: Dynamic analysis: Convolution and transfer funcWhereA is the Laplace operator consisting of the second or-
tion. der derivatives calculated along each spatial dimensicra A

physical quantity(t,x) corresponds to sound pressure. The
This short review of one-dimensional signals and systemexcitation termv(t, x) describes sources of acoustical energy.

has introduced the basic notation and serves as a refe@nce f o )
the multidimensional case. 3.2.1 Wave Propagation in Source Free Media

At first the propagation of waves in a source free medium
3. MULTIDIMENSIONAL SIGNALSAND SYSTEMS s investigated. Setting the source tev(h x) in (6) to zero

Only a subset of the theory of multidimensional signals and/i€!ds the corresponding autonomous behavior. To this end,
systems is considered here. At first, the multidimensionasually an approach is chosen which resembles the steady
variables are restricted to the time and space coordinate3at€ analysis shown in Fig. 2. For one-dimensional systems
Secondly, only acoustical quantities are of interest, a. '€ phasor from (3) is the kernel of the Fourier transform (s.
signals have to obey the acoustic wave equation. Untiléarth 1able 1). Its counterpart for space-time systems is chosen a
notice all variables are continuous and non-periodic,the. the combination of the kernels of Fand FT, as
multidimensional counterpart of the top-left edge of Figs 1 . Ty

considered. The subscript ¢ is omitted for simplicity. Up(t, x) = &l (%t o) (7

- . . Due to the periodicity of the complex exponential function
3.1 Multidimensional Signals in (7), alsou,(t,x) is periodic both in time and space
The multidimensional signals considered here depend on

time and space. WheN = 1,2, 3 is the number of spatial Up(t,x) = Ug(t+ To, x +Agny) (8)
dimensions, then these signals have Mr¢ 1-dimensional

or short(N + 1)D signals. To show the different nature of ) T 21T 1

time and space variables explicitly, these space-timeatign ~ With To=—, Ag= —, kg = |kg|, andny= ~k,.
are denoted by(t,x), wherex is the vector of space vari- & ko ko ©)

ables. FoN = 3, its elements are = [x, y, Z".

With respect to the time variable, the Laplace transforng.2.2 Harmonic Plane Waves
¢ and the Fourier transform Trom Table 1 can be applied
tou(t,x). A subscript has been added to Fio distinguish
it from the Fourier transform KT with respect to the space
variable

The multidimensional phasag(t,x) solves the wave equa-
tion only for certain combinations between the angular fre-
quencies in time and spaag, andk,. Inserting (7) into (6)
gives

G(t,k) = FT{u(t,x :/u t,x g kT gy 5 2
(LK) tult:x)} (&) ©) [kﬁ—(%) ] Up(t,x) =0 andthus w,==+ck,. (10)
with the vector of spatial frequencies (wave numbérs}
[k«, ky, k7. The tilde denotes functions in the spatial fre- The acoustic wave equation enforces this close tie between
guency domain. wy, andky. Itis also called thelispersion relation
The Laplace transfornZ and Fourier transforms T A closer look atuy(t,x) under the restriction (10) shows
and FT; can be applied in four different orders as shownthat

in Fig. 4. This figure expands the top-left edge in Fig. 1 to
spacge-time signgls. P P ¢ g Up(t,x) = const for nix+ct=const  (11)

- . For each of the two signs, (11) describes a plane in space
32 Multidimensional Systems which propagates with the speeth the direction of the nor-

For considering spatial audio in the context of multidimen-mal vectorn,. Thereforeu,(t,x) is called aplane waveor
sional signals and systems, only one system is of paramoudue to its complex exponential nature alsleamonic plane
interest: the mechanism of acoustic wave propagation. Itwave Physics-oriented texts sometimes emphasize the anal-
physical properties are well understood and usually formuegy to monofrequent light by the designatimonochromatic
lated in terms of partial differential equations. Under som plane wave



3.2.3 General Plane Waves

Harmonic plane waves are very special solutions of the wav
equation. Mainly they serve as building blocks for more gen:
eral solutions. These are obtained by summing harmoni
plane waves with different frequency dependent weighting =+
factorsG(wy,). This process is conveniently described by an
inverse Fourier transform as

u(t,x) = %T/G(wb)uo(t,x)dwo =g(t+ %ngx) 12)

whereg(t) = FT; 1{G(w)}. Due to the form of its argument, K
u(t,x) is also a plane wave. Its wave form is no longer har-
monic; instead it is an arbitray function of tinggt). This
wave form may be observed at a fixed point in space, e.g. by
recording with a microphone.

The Fourier transform of the plane wawé, x) with re-
spect to time is given by

igure 5: Frequency-domain representation irktle-plane.
hek- andw axes are labeled in multiples af The waves
travelling in both directions are assumed to be the same.

o T and spatial Fourier transformation results in an algelneic
U(w,x) =G(w)e co* . (13)  Ilation

The delay term indicates the timg= ZnJx until the wave LU (s k) + (ck)2U (s,k) = s(k) . (17)

front reaches the point. -
Spatial Fourier transformation of (13) gives (comparelt can be solved for the the transform of the solutib(s, k)

Fig. 4)

o U(s.k) = G(s K(K) (18)
Ulw.k) = FT.{U(w,x)} = G(w)o (k B Eno) (14) with the two-dimensional transfer function
. - s
since FT{elkox} = 3 (k—kg). Here, & denotes a mult- G(s, k) = R (19)
dimensional Dirac function; for a thorough introduction &+ (ck)
see [4]. This transfer function description of the response to araini

The Dirac function in (14) restricts the values of theyg\ye in the space-time frequency domain is shown in the
space-time spectrui(w, k) to those values ob for which |oer right corner of Fig. 6. The remaining entries show

the argument of the Dirac function is zero. This statemenfne corresponding representations in the other domains fro
is again the dispersion relation (10), now valid for all spac Fig. 4.

time frequencies simultaneously. Fig. 5 illustrates the be

haviour ofU (w, k) for one dimension in space (i.e. (1+1)D), N N N

ie. x —xandk — k. In this case, the possible directions U(t,X) =gt x) ¥v(x) o  UGlt,k) = §(t,k)¥(k)

of the normal vecton, correspond to the scalar valugd. &0 o

Therefore the spectrutl(w, k) takes the value&(ay,) only . .

for w, = £kyc (s. (10)) and is zero elsewhere. T -y X FTx T ey o
Note that it is important to distinguish between the fre- UsX)=Clsx)*v(X)  o2e U(sk) =GC(s k(K

quency variablesy andk, which span the whole (1+1)D fre- Fi 6 | lati ith luti d

quency plane, and the restricted Valu%S: ikOC for which igure 6: Input-output relations with convolution and gan

solutions of the wave equation exist. fer functions. Spatial convolution is denoted 3éay

N

3.2.4 Response to Source Functions
When source functions are presemft(x) # 0) then an  g(t,x) = %5(x—ct)+%5(x+ct) FTx. §(t,k) = coqckt)

o—e
equivalent to the dynamic analysis from Sec. 2.2 is necgssar o o
The excitation functiov(t,x) acts as an input ang(t, x) is L4 L
the output signal. But also initial values and — if present — _ - s
L . 1 FT, e
boundary conditions can act as inputs. G(s,X) = x e SX/c ST, G(s k) F1 (K2

As a simple (1+1)D example consider a problem with-
out source term but with the initial valu X) = v(x) and
0(0,x) = 0. Starting from the wave equaﬁﬁoﬁ ir)1 theg‘o)rm (dotSFigur_e 7: Multidimensional tran_sfer functions and Green’s
and primes denote time and space derivatives, respegtivelyfunction.g(t,x) andgt, k) are valid fort > 0.

(i(t,x) — 2’ (t,x) =0, (15) The various forms of the transfer functi(s,k) after
) ) ) . inverse Fourier and/or Laplace transformation are shown in
Laplace transformation for the time variable gives Fig. 7. For an intepretation considgt, x) in the space-time

_ — domain. Itis theGreen’s functiorof this initial-value prob-
SU(s,X) —c?U"(s,X) = sUx) (16)  lem. Performing the spatial convolution wikt, x) in the top



left corner of Fig. 6 gives the so-calleiAlembert solution on the decomposition into spherical harmonics, while wave
in terms of forward and backward travelling waves startingfield synthesis uses Green’s functions. The link to geometri
att=20 cal acoustics (e.g. mirror image sources, ray and beam trac-
ing) is provided by the decomposition into plane waves,einc
u(t,x) = }v(x— ct) + }v(x— ct), t>0. (20) the normal direction may be interpreted as an acoustical ray
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