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ABSTRACT
Processing of one-dimensional signals for all kinds of appli-
cations is based on the mature theory of signals and systems.
On the other hand, processing methods for acoustical signals
have been developed in quite diverse application fields like
seismic engineering, sonar, audio engineering, and commu-
nication acoustics. Similar techniques and algorithms appear
under different names and with different notation. This short
course tries to unify some of the general concepts of acous-
tical signal processing. First, it covers some basics from
multidimensional signals and systems. By considering the
acoustic wave equation as description of a special multidi-
mensional system, its solutions can be represented in vari-
ous domains regarding time, space, and their associated fre-
quency domains. Spatial descriptions in various coordinate
systems and their corresponding Fourier transforms are dis-
cussed.

1. INTRODUCTION

The theory of one-dimensional signals and systems provides
unifying concepts for entities like convolution, sampling, sig-
nal transformations, transfer functions, correlation, power
spectral density, stability, controllability, observability, and
alike. These entities are defined without connection to cer-
tain applications, but they are highly useful for solving prac-
tical problems in signal processing applications.

Such a statement applies to multidimensional signals and
systems only to a lesser extent. Although equally mature,
the theory is less elegant than its one-dimensional counter-
part. For example, since multidimensional polynomials can-
not be factorized in general, tasks like filter design or stabil-
ity tests are much more tedious than in the one-dimensional
case [8, 15]. Theoretical tools for multidimensional systems
are often application specific, e.g. for image processing,
beamforming, seismics, control of distributed parameter sys-
tems, etc.

Apart from these applications, the emerging field of spa-
tial audio is considered here. In this context, spatial audio
means the processing of acoustic signals that are picked up
by spatially distributed microphones or that serve as driving
signals for spatially distributed loudspeakers. Such arrays
of microphones and loudspeakers have usually some kind
of regular arrangement (e.g. line, planar, circular, spherical
arrays). The number of microphones may be several tens,
the number of loudspeakers in large arrays reaches figures of
many hundreds.

The acoustic signals picked up by microphones and pro-
duced by loudspeakers are a special case of space-time (i.e.
multidimensional) signals, since their behaviour is governed
by the acoustic wave equation. This fact distinguishes the

theoretical foundations for spatial audio from image and
video processing, since the content of images or video sig-
nals is usually not subject to mathematical constraints.

The theory of space-time signal processing has been
considered from various viewpoints. Historically the old-
est application dates back to the 1960s in seismic process-
ing [2,6,14] for the identification of reflecting layers. Micro-
phone array applications triggered the interest in directivity
and beamforming [9, 11, 18]. For audio reproduction with
stereophony and surround sound, any processing and coding
is usally channel related. The creation of the spatial auditory
impression is left to the art and experience of the sound engi-
neer (Tonmeister). The theory of the spatial component has
been neglected until recently [5].

Other spatial reproduction methods are rooted more
deeply in mathematical representations of spatial functions.
For example, recording and reproduction of spatial sound
events with Ambisonics are based on a decomposition into
spherical harmonics. The spatial microphone and loud-
speaker configurations for recording and reproduction are
decoupled by an intermediate signal representation, the so-
called Ambisonics signals.

Wave field synthesis, a related reproduction method, at-
tempts to recreate a sound field in an extended listening area.
Its acoustical and mathematical foundation is the Kirchhoff-
Helmholtz Integral and other integral relations derived from
it. Here, the spatial information is represented by the Green’s
function of the acoustic wave equation.

It appears that the different scientific communities in-
volved in beamforming, acoustic imaging, spatial audio cod-
ing, surround sound, Ambisonics, and wave field synthesis
have so far not strived for a unifying mathematical theory for
their activities. This leaves novices to any of these fields with
little assistance in bridging the gap between two seemingly
different worlds: The world of signal processing based on the
theory of signals and systems with convolution, signal trans-
formations, and correlations as working tools and the world
of acoustics based on physical principles like conservation
laws and balance equations with integral relations (Gauß,
Green) and differential equations as mathematical tools.

This contribution attempts to fill this gap between signal
processing and acoustics by reviewing some basic concepts
from both fields on the basis of the theory of multidimen-
sional signals and systems. A comprehensive presentation
is beyond the scope of this review article, therefore only a
few topics can be highlighted. Sec. 2 lists some foundations
from one-dimensional signals and systems for reference in
the multidimensional case in Sec. 3. Some comments on
sampling are added in Sec. 4.



2. ONE-DIMENSIONAL SIGNALS AND SYSTEMS

To show the connections between one- and multidimensional
signals and systems, this section briefly recalls some basic
facts from the one-dimensional case. For simplicity, time-
dependent signals are assumed. The selection of fundamen-
tals given here serves as reference for the corresponding mul-
tidimensional counterparts. No derivations and not even ref-
erences are given, since all standard textbooks on signals and
systems cover this material.

2.1 One-Dimensional Signals

The various forms of one-dimensional signals can be classi-
fied in continuous-time and discrete-time signals, in periodic
and non-periodic signals, and in their corresponding repre-
sentations in the time and frequency domain. They are con-
nected by their respective Fourier-type transforms and by the
operations of sampling and periodization.

Sampling and periodization are described most concisely
by a train of Dirac impulsesδ (t) with unit distance

X(t) =
∞

∑
κ=−∞

δ (t −κ) . (1)

Sampling a continuous-time signaluc(t) with t ∈ R at the
time instantst = nT with the time step sizeT gives a discrete-
time signal (sequence)ud(n) = uc(nT) with the indexn∈ Z.
This process is described by a multiplication with an impulse
train

uc(t)
1
T

X

( t
T

)

=
∞

∑
n=−∞

ud(n)δ (t −nT) . (2)

On the other hand, nearly arbitrary continuous-time signals
uc(t) may be turned into periodic continuous-time signals
ůc(t) with periodT0 by convolution with an impulse train

ůc(t) = uc(t)∗
1
T0

X

(

t
T0

)

. (3)

In a similar fashion, an arbitrary sequenceud(n) can be
turned into a periodic sequence ˚ud(n). The front face of the
cube in Fig. 1 shows these four types of signals and their
relations by sampling and periodization.

For each type of signal there is a corresponding trans-
formation from the time into the frequency domain: Fourier
transform (FT), Fourier series (FS), Discrete time Fourier
transform (DTFT), and Discrete Fourier transform (DFT) as
listed in Table 1. The respective inverse transformations are
not shown, but the one-sided Laplace transform has been
added for comparison. These four frequency domain rep-
resentations are shown in the back face of the cube.

Here, continuous and discrete signals as well as periodic
and non-periodic signals along with their frequency domain
counterparts fit nicely in one cube. These relations are more
involved for multidimensional signals.

2.2 1D Systems

The most important class of systems for one-dimensional
signal processing are linear and time-invariant systems (LTI
systems). They allow an easy transition between time and
frequency domain. There are two different widely used anal-
ysis methods, the steady state analysis with phasors and the

FT Uc(ω) =
∞
∫

−∞
uc(t)e− jωt dt

FS Ůc(µ) =
1
T0

T0
∫

0
ůc(t)e− j(2πµ/T0)t dt

DTFT Ud(Ω) =
∞
∑

n=−∞
ud(n)e− jnΩ (Ω = ωT)

DFT Ůd(µ) =
M
∑

n=0
ůd(n)e− jn(2πµ/M)

L Ūc(s) =
∞
∫

0
uc(t)e−st dt

Table 1: Fourier type and Laplace signal transformations
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Figure 1: Relations between 1D signal representations.
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dynamic analysis with impulse responses and transfer func-
tions.

Phasors are eigenfunctions of one-dimensional LTI-
systems and have the form

uc0(t) = ejω0t . (4)

The response to a phasor is also a phasor with a complex am-
plitude factorH(ω0), the complex frequency response, see
Fig. 2.

ejω0t // H(ω) // H(ω0)e
jω0t

Figure 2: Steady state analysis: Response of an LTI-system
to a phasor.

For the dynamic analysis, the one-sided Laplace trans-
form allows the consideration of initial conditions and it pro-
vides a well-defined region of convergence. The response
to arbitrary input signalsuc(t) can be expressed either in
the time domain by a convolution with the impulse response
hc(t) of the LTI-system or in the frequency domain by a mul-
tiplication with its transfer functionHc(s). The respective
quantities in the time and frequency domain as related by the
Laplace transform as shown in Fig. 3. Similar relations hold
for discrete-time LTI systems with the z-transform.



The complex transfer functionHc(s) can be obtained
from the impulse responsehc(t) or from knowledge about
the structure of the system. Depending on the type of system,
this knowledge is expressed by an ordinary or partial differ-
ential equation or by a combination with other LTI building
blocks, e.g. delay elements.

uc(t) // hc(t) // uc(t)∗hc(t) = yc(t)

L
◦
|

• L
◦
|

• L
◦
|

•

Uc(s) // Hc(s) // Uc(s)Hc(s) = Yc(s)

Figure 3: Dynamic analysis: Convolution and transfer func-
tion.

This short review of one-dimensional signals and systems
has introduced the basic notation and serves as a reference for
the multidimensional case.

3. MULTIDIMENSIONAL SIGNALS AND SYSTEMS

Only a subset of the theory of multidimensional signals and
systems is considered here. At first, the multidimensional
variables are restricted to the time and space coordinates.
Secondly, only acoustical quantities are of interest, i.e.all
signals have to obey the acoustic wave equation. Until further
notice all variables are continuous and non-periodic, i.e.the
multidimensional counterpart of the top-left edge of Fig. 1is
considered. The subscript c is omitted for simplicity.

3.1 Multidimensional Signals

The multidimensional signals considered here depend on
time and space. WhenN = 1,2,3 is the number of spatial
dimensions, then these signals have areN + 1-dimensional
or short(N + 1)D signals. To show the different nature of
time and space variables explicitly, these space-time signals
are denoted byu(t,x), wherex is the vector of space vari-
ables. ForN = 3, its elements arex = [x, y, z]T.

With respect to the time variable, the Laplace transform
L and the Fourier transform FTt from Table 1 can be applied
to u(t,x). A subscriptt has been added to FTt to distinguish
it from the Fourier transform FTx with respect to the space
variable

ũ(t,k) = FTx{u(t,x)} =
∫

u(t,x)e− jkT
x dx (5)

with the vector of spatial frequencies (wave numbers)k =
[kx, ky, kz]

T. The tilde denotes functions in the spatial fre-
quency domain.

The Laplace transformL and Fourier transforms FTt
and FTx can be applied in four different orders as shown
in Fig. 4. This figure expands the top-left edge in Fig. 1 to
space-time signals.

3.2 Multidimensional Systems

For considering spatial audio in the context of multidimen-
sional signals and systems, only one system is of paramount
interest: the mechanism of acoustic wave propagation. Its
physical properties are well understood and usually formu-
lated in terms of partial differential equations. Under some
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◦
|

• FTt
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•
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◦—• Ũ(ω ,k)

u(t,x) FTx

◦—• ũ(t,k)

L
◦
|

• L
◦
|

•

Ū(s,x) FTx

◦—•
˜̄U(s,k)

Figure 4: Fourier and Laplace transforms in time and space.

admissible simplifications, it can be described by the so-
called acoustical wave equation [3,10,17,18]

∂ 2u(t,x)

∂ t2 −c2∆u(t,x) = v(t,x), (6)

where∆ is the Laplace operator consisting of the second or-
der derivatives calculated along each spatial dimension. As a
physical quantityu(t,x) corresponds to sound pressure. The
excitation termv(t,x) describes sources of acoustical energy.

3.2.1 Wave Propagation in Source Free Media

At first the propagation of waves in a source free medium
is investigated. Setting the source termv(t,x) in (6) to zero
yields the corresponding autonomous behavior. To this end,
usually an approach is chosen which resembles the steady
state analysis shown in Fig. 2. For one-dimensional systems,
the phasor from (3) is the kernel of the Fourier transform (s.
Table 1). Its counterpart for space-time systems is chosen as
the combination of the kernels of FTt and FTx as

u0(t,x) = ej(ω0t+k
T
0x) . (7)

Due to the periodicity of the complex exponential function
in (7), alsou0(t,x) is periodic both in time and space

u0(t,x) = u0(t +T0, x+λ0n0) , (8)

with T0 =
2π
ω0

, λ0 =
2π
k0

, k0 = |k0|, andn0 =
1
k0

k0 .

(9)

3.2.2 Harmonic Plane Waves

The multidimensional phasoru0(t,x) solves the wave equa-
tion only for certain combinations between the angular fre-
quencies in time and space,ω0 andk0. Inserting (7) into (6)
gives

[

k2
0−

(ω0

c

)2
]

u0(t,x) = 0 and thus ω0 = ±ck0 . (10)

The acoustic wave equation enforces this close tie between
ω0 andk0. It is also called thedispersion relation.

A closer look atu0(t,x) under the restriction (10) shows
that

u0(t,x) = const for n
T
0x±ct = const. (11)

For each of the two signs, (11) describes a plane in space
which propagates with the speedc in the direction of the nor-
mal vectorn0. Thereforeu0(t,x) is called aplane waveor
due to its complex exponential nature also aharmonic plane
wave. Physics-oriented texts sometimes emphasize the anal-
ogy to monofrequent light by the designationmonochromatic
plane wave.



3.2.3 General Plane Waves

Harmonic plane waves are very special solutions of the wave
equation. Mainly they serve as building blocks for more gen-
eral solutions. These are obtained by summing harmonic
plane waves with different frequency dependent weighting
factorsG(ω0). This process is conveniently described by an
inverse Fourier transform as

u(t,x) =
1

2π

∫

G(ω0)u0(t,x)dω0 = g(t +
1
c
n

T
0x) (12)

whereg(t) = FT−1
t {G(ω)}. Due to the form of its argument,

u(t,x) is also a plane wave. Its wave form is no longer har-
monic; instead it is an arbitray function of timeg(t). This
wave form may be observed at a fixed point in space, e.g. by
recording with a microphone.

The Fourier transform of the plane waveu(t,x) with re-
spect to time is given by

U(ω ,x) = G(ω)ej ω
c n

T
0x . (13)

The delay term indicates the timet0 = 1
cn

T
0x until the wave

front reaches the pointx.
Spatial Fourier transformation of (13) gives (compare

Fig. 4)

Ũ(ω ,k) = FTx{U(ω ,x)} = G(ω)δ
(

k−
ω
c
n0

)

(14)

since FTx{ejkT
0x} = δ

(

k−k0

)

. Here, δ denotes a mult-
dimensional Dirac function; for a thorough introduction
see [4].

The Dirac function in (14) restricts the values of the
space-time spectrum̃U(ω ,k) to those values ofω for which
the argument of the Dirac function is zero. This statement
is again the dispersion relation (10), now valid for all space-
time frequencies simultaneously. Fig. 5 illustrates the be-
haviour ofŨ(ω ,k) for one dimension in space (i.e. (1+1)D),
i.e. x = x andk = k. In this case, the possible directions
of the normal vectorn0 correspond to the scalar values±1.
Therefore the spectrum̃U(ω ,k) takes the valuesG(ω0) only
for ω0 = ±k0c (s. (10)) and is zero elsewhere.

Note that it is important to distinguish between the fre-
quency variablesω andk, which span the whole (1+1)D fre-
quency plane, and the restricted valuesω0 = ±k0c for which
solutions of the wave equation exist.

3.2.4 Response to Source Functions

When source functions are present (v(t,x) 6= 0) then an
equivalent to the dynamic analysis from Sec. 2.2 is necessary.
The excitation functionv(t,x) acts as an input andu(t,x) is
the output signal. But also initial values and – if present –
boundary conditions can act as inputs.

As a simple (1+1)D example consider a problem with-
out source term but with the initial valuesu(0,x) = v(x) and
u̇(0,x) = 0. Starting from the wave equation in the form (dots
and primes denote time and space derivatives, respectively)

ü(t,x)−c2u′′(t,x) = 0 , (15)

Laplace transformation for the time variable gives

s2Ū(s,x)−c2Ū ′′(s,x) = sv(x) (16)
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Figure 5: Frequency-domain representation in thek-ω-plane.
Thek- andω axes are labeled in multiples ofπ. The waves
travelling in both directions are assumed to be the same.

and spatial Fourier transformation results in an algebraicre-
lation

s2 ˜̄U(s,k)+(ck)2 ˜̄U(s,k) = sṽ(k) . (17)

It can be solved for the the transform of the solution˜̄U(s,k)

˜̄U(s,k) = ˜̄G(s,k)ṽ(k) (18)

with the two-dimensional transfer function

˜̄G(s,k) =
s

s2 +(ck)2 . (19)

This transfer function description of the response to an initial
value in the space-time frequency domain is shown in the
lower right corner of Fig. 6. The remaining entries show
the corresponding representations in the other domains from
Fig. 4.

u(t,x) = g(t,x)
x
∗ v(x) FTx

◦—• ũ(t,k) = g̃(t,k)ṽ(k)

L
◦
|

•
◦
|

• L

Ū(s,x) = Ḡ(s,x)
x
∗ v(x) FTx

◦—•
˜̄U(s,k) = ˜̄G(s,k) ṽ(k)

Figure 6: Input-output relations with convolution and trans-

fer functions. Spatial convolution is denoted by
x
∗.

g(t,x) = 1
2δ (x−ct)+ 1

2δ (x+ct) FTx
◦—• g̃(t,k) = cos(ckt)

L
◦
|

•
◦
|

• L

Ḡ(s,x) = 1
2ce−s|x|/c FTx

◦—•
˜̄G(s,k) =

s
s2 +(ck)2

Figure 7: Multidimensional transfer functions and Green’s
function.g(t,x) andg̃(t,k) are valid fort ≥ 0.

The various forms of the transfer function̄̃G(s,k) after
inverse Fourier and/or Laplace transformation are shown in
Fig. 7. For an intepretation considerg(t,x) in the space-time
domain. It is theGreen’s functionof this initial-value prob-
lem. Performing the spatial convolution withg(t,x) in the top



left corner of Fig. 6 gives the so-calledd’Alembert solution
in terms of forward and backward travelling waves starting
at t = 0

u(t,x) =
1
2

v(x−ct)+
1
2

v(x−ct), t ≥ 0 . (20)

This simple example shows the relation between multidimen-
sional transfer functions and the Green’s functions approach
for describing physical effects.

So far, a Cartesian spatial coordinate system has been
adopted. Using polar or spherical coordinates leads to signals
which are non-periodic in the radial direction and periodicin
the angular direction(s). Then the periodic coordinates can
be expanded into Fourier series (see Fig. 1) to obtain modal
representations bycircular harmonicsor spherical harmon-
ics. See [12] for two-dimensional case.

4. SAMPLING OF SOUND FIELDS

Up to now, a continuous representation of the acoustic wave
fields was considered. For practical systems employing digi-
tal signal processing appropriate sampling of the sound field
is required. Both temporal and spatial sampling has to be
considered. We will focus on spatial sampling, since time
domain sampling is covered by the traditional theory of one-
dimensional signals (see Sec. 2.1). The sampling of multidi-
mensional sound fields is not straightforward since the nature
of acoustic fields and the underlying coordinate system has
to be considered. However, this also opens up the potential
for sophisticated solutions.

A first approach to sample a field would be to place mi-
crophones in an equidistant Cartesian grid in the area of in-
terest. If evanescent contributions are neglected, two sam-
pling positions per wave length are suitable for accurate rep-
resentation. However, sound fields can be sampled more
efficiently. The Rayleigh integrals or in the general case
Kirchhoff-Helmholtz integrals [17] state that the sound field
to be captured can be characterized by measurements taken
on the boundary of the area of interest. This principle is fre-
quently used in linear, planar and cylindrical and spherical
microphone arrays. However, the underlying coordinate sys-
tem implies major differences in the sampling strategy and
the resulting sampling artifacts. For linear and planar micro-
phone arrays refer e.g. to [1,7], for cylindrical arrays to [16]
and for spherical arrays to [13].

5. CONCLUSIONS

This paper gave a short review of multidimensional systems
theory as applied to signals that are solutions of the wave
equation. It has been shown that many concepts from acous-
tics (dispersion relation, plane waves, d’Alembert solution,
Green’s functions) follow directly by rigorous application of
well-known signal transformations, once the acoustic wave
equation is accepted as the description of a multidimensional
system. The combination of time and space, continuous
and discrete signal representations, various spatial coordinate
systems, and their respective signal transformations gener-
ates a wealth of possibilites that could only be touched upon.

Different application fields have adopted their favourite
representations. Spatial signal processing with line arrays
of microphones usually relies on plane wave representations.
Spatial recording and reproduction with Ambisonics is based

on the decomposition into spherical harmonics, while wave
field synthesis uses Green’s functions. The link to geometri-
cal acoustics (e.g. mirror image sources, ray and beam trac-
ing) is provided by the decomposition into plane waves, since
the normal direction may be interpreted as an acoustical ray.
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