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ABSTRACT

Multichannel adaptive filtering is subject to specific problems
emerging from spatio-temporal couplings in the input signals of
the adaptive filter. Transform-domain adaptive filtering (TDAF) de-
couples the input signal of the adaptive filter by a suitably chosen
transformation. In a previous paper, the authors have introduced a
two-stage approach to multichannel TDAF. However, the approach
presented there is based on a sample-by-sample update of thefil-
ter coefficients. In this paper we present a more practical block-
based formulation of multichannel TDAF that is constructedfrom
a combination of frequency-domain adaptive filtering for temporal
decoupling and an unitary transform for spatial decoupling.

1. INTRODUCTION

Telecommunication systems with more than one acoustic transmis-
sion channel are being developed and increasingly used. These sys-
tems aim at providing additional spatial auditory cues to the listener
in contrast to the single channel systems frequently used inthe last
decades. The spatial cues increase the naturalness of the communi-
cation and can facilitate, for instance, the recognition ofspeakers in
a dialogue by their spatial position.
Acoustic echo cancelation (AEC) is required for full-duplex com-
munication in a hands-free communication scenario. The applica-
tion of AEC to such a scenario is illustrated in Fig. 1. The goal of
AEC is to cancel the acoustic echo for the far-end, introduced by
the couplings between the loudspeaker(s) and microphone(s) at the
near-end. In the block diagram of Fig. 1, the echo produced bythe
acoustic couplings between theP loudspeakers and the microphone
in the near-end room is canceled for the far-end by subtracting the
estimate ˆy(n) of the microphone signal from the actual microphone
signaly(n). The signal ˆy(n) is derived by filtering the loudspeaker
signalsxp(n) with finite-impulse response (FIR) filters that model
the acoustic pathshp(n) from the loudspeakers to the microphones.
The estimation of the acoustic pathshp(n) represents a multichan-
nel identification problem. It is well known that this identification
problem is typically ill-conditioned for the multichannelcase if the
far-end signals exhibit spatio-temporal correlations [1].
In advanced adaptation schemes, at least two fundamental ap-
proaches exist to cope with the far-end correlations: (1) decou-
pling of the convolution in the near-end room and (2) decoupling
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Figure 1: Block diagram of multichannel acoustic echo cancelation.

of the input (loudspeaker signal) covariance matrix. The first ap-
proach is applied in frequency-domain adaptive filtering (FDAF),
while the second one is applied in transform-domain adaptive filter-
ing (TDAF).
The authors have introduced a two-stage approach to multichannel
TDAF in [2]. However, the approach presented there was basedon
a sample-by-sample update of the filter coefficients. Block-based
adaptation algorithms are typically computationally lesscomplex
and therefore favorable. In this paper we present a block-based for-
mulation of multichannel TDAF that is constructed from a com-
bination of FDAF for temporal decoupling and TDAF for spatial
decoupling.
We proceed as follows: The next section will introduce the funda-
mental problem of multichannel system identification. Thiswill be
followed by a brief review of TDAF and FDAF before we derive
the block-based TDAF algorithm. Some results computed withthe
proposed algorithm will be shown before concluding the paper.

2. MULTICHANNEL SYSTEM IDENTIFICATION

The estimation of the acoustic pathshp(n) for p = 1,2, . . . ,P repre-
sents a multichannel identification problem. The errore(n) is given
as

e(n) = y(n)−
P

∑
p=1

ĥT
pxp(n) , (1)

where

ĥp = [ĥp,0, ĥp,1, . . . , ĥp,L−1]
T , (2)

xp(n) = [xp(n),xp(n−1), . . . ,xp(n−L +1)]T , (3)

with ĥp,l denoting thel-th coefficient of thep-th channel,L the filter
length andn the time instant. Under the assumption of minimizing
the mean-square error (MSE) the filter coefficients can be found by
solving the multichannel normal equation [1]

Rxx ĥ = rxy , (4)

where thePL× 1 vectorĥ of estimated filter coefficients is given
asĥ = [ĥT

1 , ĥT
2 , . . . , ĥT

P ]T . The matrixRxx denotes the covariance
matrix of the input signalsx(n) andrxy the covariance vector be-
tween the inputx(n) and the microphone signaly(n). ThePL×LP
covariance matrixRxx is defined as

Rxx(n) = Ê {x(n)xT (n)} , (5)

where Ê {·} denotes a suitable approximation of the expectation
operator and thePL × 1 vector x of input signals is given as
x(n) = [xT

1 ,xT
2 , . . . ,xT

P ]T . ThePL×1 covariance vectorrxy(n) =

Ê {x(n)y(n)}. The covariance matrixRxx is composed fromL×L
sub-matrices that are given asRpq = Ê {xp(n)xT

q (n)} for p,q =
1,2, . . . ,P. Typically, these are assumed to be Toeplitz matrices.
The generalization to multiple microphones and consequently
multiple-input multiple-output (MIMO) systems in the near-end
room is straightforward. It can be shown that the resulting nor-
mal equation for the MIMO case can be decomposed into a series



of independent multiple-input single-output (MISO) normal equa-
tions [1] for each microphone channel. Hence, the consideration of
a MISO system in the near-end room is sufficient in the contextof
this work.
The solution of the normal equation (4) is subject to numerical prob-
lems when the covariance matrixRxx is ill-conditioned. It can be
shown that this is the case when spatio-temporal correlations exist
between the loudspeaker signalsxp(n).

3. A TWO-STAGE APPROACH TO MULTICHANNEL
TDAF

Transform-domain adaptive filtering (TDAF) is a technique that
performs the filter adaptation in a transform domain. In the ideal
case, the far-end signals will be decorrelated by a suitablychosen
transformation. The ideal transformation can be deduced from the
covariance matrixRxx(n) and is data-dependent in general. TDAF
has originally been introduced for the single channel case [3]. In
a previous paper [2] we have proposed multichannel TDAF, based
on a two-step decoupling of the covariance matrix. The approach is
briefly reviewed in the following.

3.1 Spatio-temporal decoupling

The spatio-temporal decoupling consists of two steps: (1) temporal
decoupling using a discrete Fourier transform (DFT) based trans-
formation and (2) a spatial decoupling using a unitary transform.
Assuming stationary signalsxp(n) and the correlation method to es-
timate the covariance matrix, the sub-matricesRpq exhibit Toeplitz
structure [4]. These assumptions hold well for typical signals. For
large block lengths (L → ∞) the matricesRpq become equivalent
to circulant matrices [5]. Circulant matrices can be diagonalized by
the DFT

Rxx = FSxx F
H , (6)

whereF denotes aPL × LP block-diagonal matrix whose diago-
nal blocks are composed fromL×L DFT matricesFL. Frequency
domain quantities are underlined. The elements of the (normal-
ized) DFT matricesFL are given asfnm = 1/

√
L · e− j2πnm/L for

n,m = 0,1, . . . ,L−1. The block-matrixSxx is composed from the
L×L diagonal matrices

Spq = diag{s(0)
pq ,s(1)

pq , . . . ,s(L−1)
pq } , (7)

where the elementss(ν)
pq for ν = 0,1, . . . ,L−1 are given by the DFT

of the first column ofRpq. The frequency bin is denoted asν.
In order to achieve further spatial decoupling, the matrixSxx has to
be reordered such that all spatial couplings for one frequency bin
are combined into submatricesS(ν). Formally, this can be reached
by a suitably chosen permutation matrixAL. The submatricesS(ν)

can then be diagonalized by application of the spectral theorem.
Combining all described steps, the covariance matrixRxx can be
expressed as

Rxx = FALUL T
xx

UH
L AT

L FH (8)

in terms of the diagonal matrixT
xx

which is composed from the
spatio-temporal eigenvalues ofRxx. These eigenvalues can be
linked to the spatio-temporal correlation coefficients of the input
signalsxp(n) [2].
TheLP×PL matrixUL denotes a block-diagonal matrix composed
from theP×P submatricesU(ν) constructed from the singular vec-
tors of S(ν). Note, that the desired decoupling of the covariance
matrix has been achieved by a set of suitably chosen unitary trans-
forms. This favorable property is beneficial for mathematical rear-
rangements in the algorithm.

3.2 Multichannel TDAF

Introducing Eq. (8) into the normal equation (4) and exploiting the
unitarity of the transform matrices yields the transformednormal

equation
T

xx
UH

L AT
L FHĥ

︸ ︷︷ ︸

ĥ

= UH
L AT

LFHrxy
︸ ︷︷ ︸

t
xy

, (9)

whereĥ andt
xy

denote the transformed vector of filter coefficients

ĥ and the transformed covariance vectorrxy, respectively. Since
T

xx
is diagonal, the normal equation (4) has been decomposed by

the transformations into a series of scalar equations.
The solution of the normal equation (9) involves the inversion of
the diagonal matrixT

xx
containing the spatio-temporal eigenvalues

of Rxx. If one or more of these are zero or close to zero this will
be subject to numerical problems. It was shown in [2] that these
eigenvalues are linked to the spatio-temporal correlations in the far-
end signals and that strong correlations lead to eigenvalues that are
(close to) zero. One benefit of TDAF is that a regularization can be
performed spatially and temporally frequency-bin selective.
The derived transformations have been applied straightforwardly to
the recursive-least squares (RLS) algorithm in [2]. The formula-
tion is based on a sample-by-sample update of the filter coefficients.
However, for a practical implementation block-based algorithms are
favorable. The presented two-step approach to multichannel TDAF
allows the utilization of known frequency domain techniques like
frequency domain adaptive filtering (FDAF) for the temporalde-
coupling. After a brief review of generalized FDAF in the next
section, a combination of TDAF and FDAF will be developed in
Section 5.

4. FREQUENCY-DOMAIN ADAPTIVE FILTERING

This section presents a brief review of generalized FDAF [6,7].
FDAF is essentially based on a block formulation of the identifi-
cation problem. This block formulation is derived by combining
L consecutive samples into blocks, formulating the error signal (1)
in terms of blocks and minimizing the error. For this purpose, the
convolution operation in (1) is reformulated in terms of a matrix
operation, where the input signals are combined into a matrix with
Toeplitz structure. A Toeplitz matrix can be transformed into a cir-
culant matrix by doubling its size. This concept is a fundamental
building block of FDAF where the circulant matrix is then diago-
nalized by the DFT. This results in an overlap save formulation of
the convolution by incorporating window functions.
The concept of generalized multichannel FDAF is closely linked
to TDAF in the sense that it also aims at temporal decoupling.It
is well known that the Fourier transformation diagonalizeslinear
time-shift invariant systems. FDAF employs the DFT for temporal
decoupling of the near-end system. It can be shown [6] that this
leads also to an approximate temporal decoupling of the covariance
matrix Rxx. This is due to fact that the DFT only approximately
decouples the covariance matrix for the finite blocksize in practical
implementations [5].

4.1 Algorithm

The time-domain block error signale(m) for a block length ofL
samples is defined as

e(m) = [e(mL),e(mL +1), . . . ,e(mL +L−1)]T , (10)

wherem denotes the block index. The microphone signaly(m) is
defined in a similar fashion ase(m). In order to derive an algorithm
that requires only DFTs of size 2L, the error and microphone signals
are zero padded before transformation into the frequency domain

e′(m) = F2L

[

01×L,eT (m)
]T

, (11)

and similarly for the microphone signal. The loudspeaker signals in
the frequency domain are given as

Xp(m) = diag{F2L[xp(mL−L), . . . ,xp(mL +L−1)]T} , (12a)

X(m) = [X1(m), . . . ,XP(m)] . (12b)



The generic FDAF algorithm for MISO systems can then be sum-
marized as follows [7]

S(m) = λS(m−1)+(1−λ )XH(m)G1X(m) , (13a)

K(m) = (1−λ )S−1(m)XH (m) , (13b)

e′(m) = y′(m)−G2X(m)ĥ
′
(m−1) , (13c)

ĥ
′
(m) = ĥ

′
(m−1)+G3K(m)e′(m) , (13d)

whereλ denotes the forgetting factor and̂h
′
(m) the zero padded

vector of estimated filter coefficients which is defined as

ĥ
′
(m) = G10

2LP×LPĥ
′
(m) , (14)

whereG10
2LP×LP denotes a window matrix that performs the zero

padding. It is defined as follows

G10
2LP×LP = Bdiag{G10

2L×L, . . . ,G10
2L×L} , (15a)

G10
2L×L = F2L[IL×L,0L×L]TF−1

L . (15b)

In the FDAF algorithm the finite block length is explicitly accounted
for by the constraint matricesG1, G2 andG3. These are defined
as

G1 = G2 = F2LBdiag{0L×L,IL×L}F−1
2L , (16a)

G3 = Bdiag{G10
2L×2L , . . . ,G10

2L×2L} , (16b)

G10
2L×2L = F2LBdiag{IL×L,0L×L}F−1

2L . (16c)

The frequency domain algorithm given by (13) provides the op-
timal solution of the normal equation (4). The formulation can
be extended straightforwardly to include partitioned impulse re-
sponses [6]. Partitioning improves the performance in the context of
nonstationary signals and time-varying near-end system. It also al-
lows to improve the delay in a practical implementation. ForK = L
partitions, this algorithm is equivalent to the time domainRLS al-
gorithm.
Based on the generic FDAF algorithm a number of special casesand
approximations can be derived that lead to most known algorithms
and efficient algorithms [6, 7]. One frequently applied approxima-
tion, that is relevant in the context of this paper, will be discussed in
the following.

4.2 Approximations

As discussed for TDAF in Section 3.1, the submatricesRpq of Rxx
are assumed to be Toeplitz. The same holds when doubling the
block-size, as performed in FDAF. However, the DFT only diago-
nalizes Toeplitz matrices in the limiting case forL → ∞. The re-
sulting submatrices ofS(m) will contain off-diagonal elements in
practical implementations with finite block lengths. As a result, the
frequency domain covariance matrixS(m) is not exactly (block-
wise) diagonal in general. Hence, computing the inverse in (13b)
results in a high computational complexity.
Approximating the constraint matrixG1 by G1 = I/2 results in a
blockwise diagonal structure ofS(m). It has been shown in [6] that
this approximation provides good results for sufficiently large block
lengthsL.

5. BLOCK-BASED MULTICHANNEL TDAF

In order to derive a block-based algorithm for multichannelTDAF
both block-based FDAF and the concept of TDAF are combined
in the following. The two stage approach to TDAF presented in
Section 3 separates the temporal decoupling from the spatial de-
coupling. Hence, FDAF can be utilized for temporal decoupling
combined with the concept of spatial decoupling from TDAF. For
this purpose the eigenvalue decomposition of TDAF is introduced
into (13). It will be assumed in the following thatG1 = I/2. The
generalization is straightforward as will be discussed later.

5.1 Algorithm

As for the TDAF approach introduced in Section 3, a reordering
of the covariance matrix is desirable that combines the spatial cou-
plings for one frequency bin into sub-matrices. This can be achieved
in the framework of FDAF by post multiplying the frequency do-
main signal matrixX(m) by a 2LP×2LP permutation matrix

A = [1i j] , (17)

composed fromP × 2L submatrices fori = 1, ...,2L, j = 1, ...,P
where1i j denotes a submatrix which contains a one at position
(i, j) and zeros at all other positions. The reordering of the sig-
nal matrixX(m) results in a reordering of the covariance matrix.
The reordered covariance matrix is a block diagonal matrix com-
posed fromP× P matrices representing the spatial couplings for
one of the 2L frequency bins. As for the sample-by-sample TDAF
concept this allows a bin-wise eigenvalue decomposition. Hence,
the concepts outlined in Section 3 can be introduced into theFDAF
algorithm.
Introducing the eigenvalue decomposition of the covariance matrix

S(m) = AU(m)T(m)UH(m)AT (18)

for the block indexm andm−1 into (13a) together withG1 = I/2,
and utilizing the unitarity of the spatial transformationU yields

T(m) = λUH(m)U(m−1)T(m−1)UH(m−1)U(m)+

1
2
(1−λ )XH (m)X(m) , (19)

where
X(m) = X(m)AU(m) (20)

denotes the matrix of transformed far-end signals. The multiplica-
tion of the reordered signal matrixX(m)A by the singular matrix of
U(m) can be interpreted as filtering the far-end signals, where the
MIMO filter is given by the singular vectors ofS(m). Hence, the
desired decoupling can be achieved by filtering the far-end signals.
The update equation (19) for the transformed covariance matrix
T(m) contains combinations of singular matrices from the actual
and the previous block index. This combination can be interpreted
as a transformation ofT(m−1) from the previous eigenspace to the
actual one. This transformation is required for an exact formulation
since the spatial eigenvectors are not constant from one block to the
next one in general.
Introducing (18) and (20) into Eq. (13b) results in the following
relation for the Kalman gain

K(m) = (1−λ )T−1(m)XH(m) , (21)

where
K(m) = UH (m)ATK(m) (22)

denotes the transformed Kalman gain. Furthermore introduc-
ing (20) into the error signal of FDAF (13c) reads

e′(m) = y′(m)−G2X(m)UH (m)U(m−1)ĥ
′
(m−1) , (23)

where the transformed filter coefficients are defined as

ĥ
′
(m−1) = UH(m−1)AT ĥ

′
(m−1) . (24)

Finally introducing (24) and (22) into (13d) yields the coefficient
update as

ĥ
′
(m) = UH(m)U(m−1)ĥ

′
(m−1)+G̃3K(m)e′(m) , (25)

where the constraint̃G3 is given as

G̃3 = UH (m)ATG3AU(m) . (26)



The derived block-based TDAF algorithm will be summarized in
the following. Equation (19) is in principle only required for the
derivation, since the transformed covariance matrixT(m) is directly
given by the eigenvalue decomposition. The following equations
constitute the TDAF algorithm

S(m) = λS(m−1)+
1
2
(1−λ )XH(m)X(m) , (27a)

T(m) = UH (m)ATS(m)AU(m) , (27b)

K(m) = (1−λ )T−1(m)XH (m) , (27c)

e′(m) = y(m)−G2X(m)GU ĥ
′
(m−1) , (27d)

ĥ
′
(m) = GU ĥ

′
(m−1)+G̃3K(m)e′(m) , (27e)

where
GU = UH (m)U(m−1) . (28)

The algorithm defined by Eq. (27) constitutes a combination of the
concepts of FDAF and TDAF. The decoupling of the covariance ma-
trix is performed in a two-step approach. The DFT is used for tem-
poral decoupling and an eigenvalue decomposition for spatial de-
coupling. The temporal decoupling is performed in a very efficient
manner by applying FDAF. The required DFTs can be realized effi-
ciently by the fast Fourier transform (FFT). For an exact spatial de-
coupling, an eigenvalue decomposition has to be performed.How-
ever, the derived formulation allows also to use a generic MIMO
filtering of the far-end signals with the potential of findingefficient
approximations of the exact solution.
The following section will briefly discuss variants of the baseline
algorithm.

5.2 Variants

The block-based TDAF algorithm (27) requires to compute theco-
variance matrixS(m) in order to derive the transformationU(m) of
the far-end signals. An alternative is to derive the transformation di-
rectly fromXH(m)X(m) and to formulate a recursive update of the
decoupled covariance matrixT(m). The eigenvalue decomposition
of XH(m)X(m) is given as

XH(m)X(m) = AU(m)T̃(m)UH(m)AT . (29)

Hence, we can define the transformed far-end signals similarto the
derivation of TDAF, as given in the previous section by (20).These
transformed signals can then be introduced into the derivation of
FDAF as given in [7]. The resulting transformed covariance matrix
is given as

T(m) = λGUT(m−1)GH
U +(1−λ )T̃(m) , (30)

which can be combined straightforwardly with (27c)-(27e).How-
ever, the matrixGU is different in this case

GU = UH(m)AT G10
2LP×LPBUL(m)×

×UL(m−1)BT (G10
2LP×LP)HAU(m−1) , (31)

where the permutation matrixB is defined in [7]. The constraint
matrix GU for both variants of the algorithm considers the transi-
tion of the eigenspaces ofS(m) over time. The matrixGU takes
the spatial changes in the far-end signals into account. This is due
to the two-step approach to spatio-temporal decoupling of the far-
end signals applied in the presented TDAF approach. For spatially
(quasi) stationary signals (i.e.,U(m) ≈ U(m−1)) this matrix can
be approximated quite well byGU = I for both variants. Note, that
under this approximation both variants of the block-based TDAF
algorithm are equivalent. The approximation ofGU is also reason-
able for situations where the forgetting factorλ is chosen close to
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Figure 2: Block diagram of TDAF algorithm (adapted from [7]).

one.
In theory, the number of eigenvalues for one frequency bin which
are not zero is given by the number of independent active sources
in the far-end room. The other eigenvalues are zero or in practice
close to zero. Hence, these eigenvalues and the associated eigen-
channels can be neglected for the adaptation. This technique is also
known as reduced rank TDAF. The application of a so-called thin
eigenvalue decomposition computing only some of the eigenvalues
provides the potential to lower the computational complexity.
The derivation of the block-based TDAF algorithm is so far based
on the assumption that the constraintG1 is approximated byG1 =
I/2. This assumption allows the bin-wise computation of the eigen-
value decomposition. However, the TDAF framework is also appli-
cable when this constraint is not approximated. The singular vectors
and values of the reordered covariance matrix have then to becom-
puted by considering the entire 2LP× 2LP matrix, which may be
computationally very demanding in practice.

5.3 Implementation

Some of the matrices in the formulation (27) of the TDAF algo-
rithm exhibit sparse or diagonal structures giving the potential for
optimization in a practical implementation. Figure 2 illustrates a
block-diagram of the algorithm exploiting these structures. Due to
the frequency-domain formulation provided by FDAF all operations
can be performed efficiently in a bin-wise (scalar) fashion.How-
ever, the matricesU(m) and the constraintsG3 andGU constitute
MIMO systems. If the constraintsG3 andGU are approximated
by identity matrices, then the multichannel identificationproblem
is reduced toP decoupled SISO identification problems within the
transform domain.

6. RESULTS

A typical multichannel AEC application scenario will be considered
in the following to illustrate the properties of the developed TDAF
algorithm.
The simulated geometrical setup consists of a near-end roomwith
size 6×6×3 meters containing two loudspeakers (P = 2) and one
microphone. The near-end room was acoustically modeled by the
image source method with an acoustic reflection factor at thewalls
of ρ = 0.9. The loudspeakers and the microphone are located at a
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(b) Normalized misalignment.

Figure 3: Simulation results for the proposed multichannelTDAF
algorithm for two different regularization strategies.

height of 1.5 meters. The position of the loudspeakers is[2.8,5] m
and[3.2,5] m, and of the microphone[5,2] m.
The signal of a male speaker was fed equally to both loudspeak-
ers (phantom source stationary in center). The loudspeakersig-
nals were pre-processed by a nonlinearity [1] in order to cope for
the non-uniqueness problem. Noise with a level of approximately
−50 dB with respect to the echo was added to the microphone sig-
nals, in order to simulate microphone and other noise sources at the
near-end.
The algorithm was implemented in MATLAB, as depicted by Fig.2.
The filter length was chosen asL = 4096 at a sampling rate of
fs = 44.1 kHz. In order to illustrate the effect of selective regu-
larization in the eigenspace, two regularization strategies have been
implemented: (1) both spatial and temporal frequency-bin selective
regularization and (2) only temporal frequency-bin selective regu-
larization. The latter shows a similar performance as a straightfor-
ward implementation of FDAF. The dynamic regularization scheme
introduced in [6] has been used for both strategies.
Figure 3(a) shows the echo return loss enhancement (ERLE) for
the simulated scenario. It can be seen that the algorithm converges
fast and provides a good amount of echo attenuation (in dB) that
is bounded by the near-end noise. The spatio-temporal frequency-
bin selective regularization shows better results than thetemporal
frequency-bin regularization. Figure 3(b) shows the normalized
misalignment. Again the spatio-temporal frequency-bin selective
regularization performs better. Note, that the proposed TDAF algo-
rithm, unlike multichannel FDAF, provides inherently the possibil-
ity for this beneficial regularization strategy.

7. CONCLUSION

This paper presents a block-based reformulation of the sample-by-
sample multichannel TDAF approach introduced in [2]. Its two-
stage approach to spatio-temporal decoupling has been exploited in
order to perform the temporal decoupling efficiently by the FDAF
algorithm in combination with an eigenvalue decompositionto cope
for the spatial couplings. In contrast to a sample-by-sample up-
date the presented block-based approach benefits from the compu-
tational savings of the FDAF algorithm. The results show that the
resulting algorithm performs well in a typical multichannel AEC
scenario. One benefit of the proposed adaptation scheme, working
in the eigenspace of the far-end signal covariance matrix, is the pos-
sibility of selective regularization in that eigenspace. The benefit of
this regularization was demonstrated in Section 6. The block-based
TDAF algorithm is formally equivalent to wave-domain adaptive
filtering (WDAF) developed by the authors in [7]. This link isquite
interesting since WDAF is based on decoupling of the near-end sys-
tem by a singular value decomposition (SVD). The only formaldif-
ference between the TDAF and the WDAF algorithm, besides the
MISO/MIMO formulation, is the matrixGU which accounts for
the change of the eigenspace over time. Since for the derivation of
WDAF (like for FDAF) it is assumed that the near-end room acous-
tics is time-invariant this matrix does not show up there explicitly.
The formulations of WDAF and multichannel TDAF, as presented
by the authors, are based on transforming (filtering) the far-end sig-
nals in order to overcome fundamental problems of the multichan-
nel identification problem. The transformations are linkedto the
eigenspace of the near-end system or the covariance matrix of the
far-end signals. The formulations of the algorithms are also appli-
cable for generic MIMO filters. This opens up the potential tofind
efficient approximations of these transformations. The basic con-
cept of TDAF also has a strong relation to blind source separation
(BSS). The BSS algorithms based on second-order statisticstry to
find a demixing system that diagonalizes the covariance matrix of
the demixed signals. The transformationU can also be interpreted
as demixing system in this context, since the goal is to provide in-
dependent signals to the adaptive filters.
In the future, further work is planned on the detailed analysis of the
properties of the presented multichannel TDAF algorithm.
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