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ABSTRACT

Sound field reproduction methods like higher order Ambissni
which are based on orthogonal expansions always introdlice- a Y
itation of the spatial bandwidth of the secondary sourceiryi
function. This spatial truncation creates a sweet spot éncémter
of the secondary source distribution. This spot, or rathea,ais
“sweet” both in terms of spatial aliasing artifacts as welimterms )

of accuracy of the desired component of the reproduced welek fi a T
The higher the temporal frequency of the reproduced wave el Te Xc

smaller is the sweet spot. In this paper we show that theitotat x
sweet spot can be moved freely inside the secondary sowstré di
bution. The accuracy of the actual reproduced wave fieldes th
significantly higher in the sweet spot than in the same regidghe
conventional approach.

Fig. 1. The coordinate system used in this paper. The center of the

secondary source distribution coincides with the origithefglobal

] o _ coordinate system. The prinfedenotes quantities belonging to a
Index Terms— Higher order Ambisonics, sweet spot, Fourier |ocal coordinate system with origit. (refer to section 4.1).

series, spatial aliasing

1. INTRODUCTION . . . L
i.e. P(z,y,2,w) = P(z,y,w). The two-dimensional position vec-

Wave field reproduction methods aiming at the reproductieer o tor in Cartesian coordinates is givensas= [z y]”. The Cartesian
an extended receiver area typically employ a high numbeowdd  coordinates are linked to the polar coordinatesavia r cos o and

speakers which surround the receiver area. Due to the mltysicy = r sin . Refer to the coordinate system depicted in figure 1.
properties of practical implementations, artifact-freproduction  The acoustic wavenumber is denotedkbyt is related to the tempo-
can not be achieved. When numerical methods are employed ag| frequency by:? = (%)2 with w being the radial frequency and
e.g. in [1], the reproduction can be optimized with respeettarget  the speed of sound. Outgoing monochromatic plane and cidiid
area commonly referred to asveet spotThe location of this sweet ;. ovas are denoted by 3 7 cos(0pu—a) gng Hé” (£r) respectively,

spot can be chosen with some amount of freedom. However, raume;it, 0pw being the propagation direction of the plane wave. The
ical approaches are computationally expensive and give ldtie imaginary unit is denoted by (j = v/—1).
insight into the properties of the actual reproduced wavd.fie

Analytical approaches are typically significantly benefidioth in
terms of computational complexity as well as in terms of rinte 3. GENERAL FORMULATION
pretability of the results. However, the target area witkpeet to
which the reproduction is optimized is confined to the cenfehe
loudspeaker array. In this paper, we extend the analytimaicach
presented by the authors in [2, 3] such that the sweet spobea
freely positioned inside the secondary source distriloutie. the

In this section, we briefly review the general approach preseby
the authors in [2, 3]. Its physical fundament is the so-chdien-
n Ple source approaciand it can be seen as an analytical formulation
of what is known as higher order Ambisonics. The simple saurc
loudspeaker array). approach for interior problems states that the acoustid fieher-

Note that we do not consider wave field synthesis (WFS) in thi{€d by events outside a volume can also be generated byiawcont
paper. This is due to the fact that WFS as commonly implendente©US distribution of secondary simple sources enclosingghgective

does not exhibit a pronounced sweet spot. It is rather sueh th volume [4].

spatial aliasing is spread over the entire receiver areshigmer ~ AS Stated in section 2, we limit our derivations to two-dirsiemal
frequencies [3]. reproduction for convenience. Furthermore, we assumeisiréod-

tion of secondary sources to be circular. In order to fulfié tequire-
2 NOMENCLATURE ments of the simple source approach and therefore for etrfifae
reproduction, the wave fields emitted by the secondary ssurave

For convenience, we restrict our considerations to twoialpdi- to be two-dimensional. We thus have to assume a continuous ci
mensions. This means in this context that a wave field undecular distribution of secondary line sources positionegeedicular
consideration is independent from one of the spatial coatds, to the target plane (the receiver plane) [4]. Our approachese-



fore not directly implementable since loudspeakers ekhipithe
properties of line sources are commonly not available. Reald

implementations usually employ loudspeakers with closdinets
as secondary sources. The properties of these loudspeakersore
accurately modeled by point sources.

The main motivation to focus on two dimensions is to keep the

mathematical formulation simple in order to illustrate tpeneral
principle of the presented approach. The extension bothreet
dimensional reproduction (i.e. spherical arrays of seaongoint
sources) and to two-dimensional reproduction employinguéar ar-
rangements of secondary point sources is straightforwataan be
found e.g. in [2].

3.1. Derivation of the secondary source driving function

The reproduction equation for a continuous circular distibn of
secondary line sources and with radiysentered around the origin
of the coordinate system is given by

27T

/D(ao,w) GZD(X — Xo,w) T0 dao 5
0

P(x,w) (1)

wherexo = 7o - [cos ag sin aO]T. P(x,w) denotes the reproduced
wave field, D (a0, w) the driving function for the secondary source
situated atxo, and Gap(x — xo,w) its two-dimensional spatio-
temporal transfer function.
A fundamental property of (1) is its inherent non-uniquenasd
ill-posedness [5]. l.e. in certain situations, the soluti® undefined
and so-callectritical or forbidden frequenciesrise. The forbid-
den frequencies are discrete and represent the resonahtles o
cavity under consideration. However, there are indicatithrat the
forbidden frequencies are only of minor relevance when tialc
implementations are considered [4].
Equation (1) constitutes a circular convolution and thenefthe
convolution theorem

P, (r,w) = 2719 Dy (w) Gu(r,w) 2)
applies [6].7, (r,w), D, (w), andG, (r, w) denote the Fourier series
expansion coefficients d?(x, w), D(«, w), andGap (x — [ro 0]7)*.

whereby.J, (-) denotes the-th order Bessel function [4].
From (2) and (5) we can deduce that

D) = 5o G((: )) ®)
_ 1 Pw)-J (%) ;
210 Gy (w) - Ju (1) )

For J, (£r) # 0 the Bessel functions in (7) cancel out directly.
WhereverJ, (£r) = 0 de I'Hopital's rule [7] can be applied to
proof that the Bessel functions also cancel out in thesescdlses
making D, (w) and therefore als® (o, w) independent from the
receiver position.

Introducing the result into (4) finally yields the secondanurce
driving function D(ao,w) for a secondary source situated at posi-
tion x reproducing a desired wave field with expansion coefficients
P, (w) reading

8)

whereby we omitted the indéxin o, for convenience.

We assume monopole line sources in the remainder of thisr pape
for convenience. The two-dimensional free-field Greeniscfion
Gap(x — x0,w) representing the spatio-temporal transfer function
of a secondary source at positign is then the zero-th order Hankel
function of second kindZ{® (£ |x — xo|) [4].

Equation (8) can be verified by inserting it into (1). Aftetrisduc-

ing the Fourier series expansion of the secondary source figlds
according to (4), exchanging the order of integration antrea-
tion, and exploitation of the orthogonality of the circukarmonics
e’¥® [4] one arrives at the Fourier series expansion of the d#sire
wave field, thus proving perfect reproduction. Note howehat the
coefficients P, (w) respectivelyG,, (w) are typically derived from
interior expansions. This implies that the desired wave fiebnly
correctly reproduced inside the secondary source disiwiou

3.2. Properties of the reproduced wave field

For the theoretic continuous secondary source distributioy wave
field which is source-free inside the secondary sourceiligton

The Fourier series expansion coefficieAtsr, w) of a two-dimensionalcan be perfectly reproduced apart from the forbidden freges

function F'(x,w) can be obtained via [4]

F,(r,w) = % F(x,w)e 7" da (3)
0
The functionF'(x, w) can then be synthesized as
> Bi(rw) e 4)

v=—00

For propagating wave fields the coefficieﬂots(n w) can be decom-

posed as
w
_T) 7
&

Ey(r,w) = F,(w)J, < (%)

INote that the coefficients’,, (r,w) as used throughout this paper assume

that the secondary source is situated at the positios 7o, « = 0) and is
orientated towards the coordinate origin.

(refer to section 3.1).

Real-world implementations of audio reproduction systevitisal-
ways employ a finite number of discrete secondary sourcess Th
spatial discretization constitutes spatial sampling adilts in spa-
tial aliasing. In this section, we briefly review the conseges of
spatial sampling. A thorough treatment can be found in [3, 8]

It can be shown that the angular sampling of the driving fiamcte-
sults in repetitions of the angular spectrum of the contirsudriving

function D, (w) [8]

Y Dutnr(w) ©)

nN=-—00

when L equiangular sampling points (i.e. loudspeakers) are taken
Equation (2) states that the angular spectrum of the repestiwave

field P, (r,w) is equal to the angular spectrum of the driving function
D, (w) weighted by the angular spectrum of the secondary sources

G, (r,w). Note that all angular spectra are taken with respect to the
expansion around the origin of the global coordinate system



In order to yield the angular spectruﬁl,s(n w) of the wave field
reproduced by a discrete secondary source distributiensplectral
repetitions given by (9) have to be introduced into (2). Thsecof

n = 0 then describes the desired component of the reproduced wa

field. The cases ofy # 0 describe additional components due to
sampling. Note that these additional components can notdided.

In order to further investigate the properties of the wavel fiepro-
duced by a discrete secondary source distribution, we loestecdtose

a sample scenario. For convenience, we assume a distribotio

L = 56 secondary monopole line sources reproducmg a monochrda) SeCOﬂdafy source transfer

matic plane wave with propagation directiég, = <. In this case
Go(w) = 2HD (7o) and P, (w) = j e 9" [4, 9.

The Fourier coefficient®), (w) of the continuous driving function
for the above described scenario are illustrated in figuiog. 2{ can
be seenthab, (w) is not bandlimited with respect to the angular fre-

is not artificially limited, the angular repetitions ovegsland inter-
fere

In order to avoid such overlapping and interference of therspl
repetitions, the angular bandwidth of the continuous dgviunc-
tion can be limited as

P,(w)
Gy (w)

jua

Dy (e,

: (10)

PR~

271’7’0

wherebyN = £=1 when a discrete distribution of an odd number
L of secondary sources is considered and accordingly for é&ven
Strictly spoken, when (10) is applied spatial aliasing isvented
since no spectral overlaps occur. However, since the $sgté-
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(d) Continuous driving function
‘f)c,l,(w)‘ for a desired wave
field spatially band-limited

around the expansion center
xc= (1, 7), M =12.

20 40

(c) Continuous dr|V|ng function
‘f)c,y (w)‘ for a desired wave

field spatially band-limited
around the expansion center
xc = (1,0), M = 12.

Fig. 2. Absolute values of the Fourier coefficients with respeth&
expansion around the origin of the global coordinate syst&ime
black dotted lines indicate the interval of one spectrattiéipon due

trum G, (r,w) of the secondary sources is not bandlimited, spatiato spatial samplingkro = 50 corresponds tg & 2700 Hz.

repetitions of the driving function will always be reproguac Refer
to figure 2(a). Although this is rather a reconstruction ef8pit is
commonly also referred to as spatial aliasing. We do so akimel
the remainder for convenience.

The band-limitation according to (10) keeps the center efgbc-
ondary source setup free of aliasing artifacts [3]. Howeesra
consequence of this spectral band-limitation, the sphaadwidth
of the desired component of the reproduced wave field is aiso |
ited. The energy of the desired component of the reproducae w
field concentrates around the center of the secondary sdistcibu-
tion especially for high temporal frequencies. Comparerég(a)
and 3(b). l.e., wave fields with high temporal frequency eahtan
not be reproduced farther away from the array center thamtaice
critical distance with such a spatially bandlimited driyifunction.
In other words, the above described approach of sound fipld+e
duction exhibits a pronounced sweet spot in the center obdoe
ondary source distribution both in terms of spatial aligsantifacts
as well as in terms of accuracy of the desired component ofethe
produced wave field.

Note that increasing the spatial bandwidth of the drivingction
does indeed increase the spatial bandwidth of the desiragaoent
of the reproduced wave field. However, it also significamiyreases
spatial aliasing.

4. MOVING THE SWEET SPOT

It will be shown in the following that the system inherent stvepot
can be moved by limiting the spatial bandwidth of the desweste

4.1. Limiting the spatial bandwidth of the desired wave field
with respect to a given expansion center

The desired wave fiel®(x,w) can be expanded around any arbi-
trary expansion centex.. With (4) and (5) and wherP(x,w) is
bandlimited with bandwidti2)/ + 1 aroundxc, this expansion is
given by

M w o,
Z P.(w)J, <E7'/) et

p=—M

P]u (x,w) = (11)

r’ anda’ denote the position coordinates with respect to a local co-
ordinate system whose origin is-at and whose axes are parallel to
those of the global coordinate systemrianda. Refer to figure 1.
Note thatr’ = r'(x) anda’ = o' (x).

However, for the calculation of the driving function (10) wexjuire

the coefficients®, (w) with respect to the expansion around the ori-
gin of the global coordinate system. We therefore introdheead-
dition theorem for cylinder harmonics [9] into (11) to yield

PIRACOEE
XZP

p=—M

Py (x,w) =

Vo (Crc> “iv-mwee (19)

=P, m(w)

field P(x,w) with respect to an expansion center other that the cen-

ter of the secondary source distribution. The sweet spot to-
cides with this new expansion center.

For plane wave®, (w) = j e 710w,

To reproducePa (x, w), the expansion coefficient3, (w) are in-



troduced into (10). Therefore, two spatial bandlimitati@ne appar-
ent:

When comparing figures 3(c) and 3(d) to the application otthe
ventional driving function illustrated in figure 3(b), it mde seen

(A) Pu(x,w) is bandlimited with respect to an expansion aroundthat due to the wider bandwidth of the driving function, thegmsed
Xc. The bandlimit is denoted by/. From (12) it can be deduced approach indeed enables the reproduction of the desired field
that Py (x,w) nevertheless exhibits infinite spatial bandwidth with in locations where the conventional approach fails to doT$e re-

respect to an expansion around the coordinate origin.

production can thus be optimized with respect to a givenemqtatlly

(B) The driving functionDx (e, w) (equation (10)) is bandlimited dynamic - target area.

with respect to an expansion around the coordinate oridie. ban-

dlimit is denoted byN. The desired component of the reproduced

wave field is bandlimited in both senses.

-1.5] e XAX BN e e

= -1 ) 1 2
x — [m]
(a) Conventional approach.
fpw = 1000 Hz. The spatial

bandlimitisN = 27.

z — [m]
(b) Conventional approach.
fpw = 2000 Hz. The spatial
bandlimitisN = 27.

2 2

x —>0 [m]

(€) fpow = 2000 Hz. Presented
approach with expansion center
xc = (1,0). The spatial
bandlimits areV = 56 and
M = 12.

(d) fpw = 2000 Hz. Presented
approach with expansion center
xc = (1, 7). The spatial
bandlimits areV = 56 and

M =12.

Fig. 3. Wave fields reproduced by a circular distribution/of= 56
discrete loudspeakers and with raditus = 1.5 m reproducing a
plane wave with propagation directiépy = 37’“ The marks indi-
cate the positions of the secondary sources.

4.2. Spatial aliasing properties

The spatial bandwidth limitation introduced in section #ads to
favorable spatial aliasing properties as described insthision.

In figures 2((3) and 2(d) it can be seen that the energy of tha-ang
lar spectrumDc ., (w) of the continuous proposed driving function is [3]

distributed such that either (l) the spectral repetitions tb spatial
sampling overlap only in regions of low energy (refer to fiem(c)
and 3(c)) or (Il) the overlaps of the spectral repetitionsndb lead
to interference of high energy components (refer to figu(d¥ @d
3(d)). This enables the application of a driving functio®) With
a bandlimit V' significantly higher thanVv = % in the conven-
tional approach and therefore leads to a higher spatiaiviiatia of
the desired component of the reproduced wave field with ofittle
amount of aliasing. Two examples of the application of treppsed
driving function are shown in figures 3(c) and 3(d). It can bers
that sweet spots form around the expansion cestensarked by the
small circles. Outside the sweet spots strong deviatiamm the de-
sired wave field arise. Like in the conventional approach,siiveet
spots get smaller with increasing temporal frequency ofrépeo-
duced wave field.

5. CONCLUSIONS

In this paper we presented an analytical approach to soulddréie
production with a movable sweet spot. Conventional aradytp-
proaches inherently exhibit a static sweet spot in the ceaftéhe
secondary source distribution. The farther away the recésvfrom
the center of the secondary source distribution, the lessrate is

the desired component of the reproduced wave field and the mor

spatial aliasing artifacts are present.

When the wave field to be reproduced is spatially bandlimiteti
respect to the expansion around an arbitrary point insidestt-
ondary source distribution, then the spatial bandwidthhef $ec-
ondary source driving function can be significantly highart in
the conventional approach while spatial aliasing is séptdow. As
a consequence, the desired wave field can be reproducedtioloe
where the conventional approach fails to do so. A sweet sgotib
terms of accuracy of the desired component of the reprodwesd
field as well as in terms of spatial aliasing artifacts is tedaround
the expansion center with respect to which the wave field teebe
produced is bandlimited. Inside this sweet spot the reptiolu is
significantly more accurate than in the conventional apgro®ut-
side the sweet spot the reproduced wave field can deviategbiro
from the desired one. This is the case for both the convesitias
well as for the proposed approach.

It could not be clarified within the scope of this paper, howl e
presented approach performs in terms of accuracy companeatt
merical methods like [1]. However, its entirely analytichlaracter
suggests that it is significantly beneficial in terms of cotapanal
complexity. Furthermore, it allows for an analytical intigation of
the properties of the actual reproduced wave field. The géphys-
ical limitations of the involved loudspeaker setups candteined
no matter if the latter are driven by analytical or numerioaithods.
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