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ABSTRACT

Wave field synthesis (WFS) is a well established high-resolution spatial sound reproduction technique. Typi-
cal WFS systems aim at the reproduction in a plane using loudspeakers enclosing the plane. This constitutes
a so-called 2.5-dimensional reproduction scenario. It has been shown that a spectral correction of the re-
produced wave field is required in this context. For WFS this correction is known as pre-equalization filter.
The derivation of WFS is based on a series of approximations of the physical foundations. This paper in-
vestigates on the consequences of these approximations on the reproduced sound field and in particular on
the pre-equalization filter. An exact solution is provided by the recently presented spectral division method
and is employed in order to derive an improved WFS driving function. Furthermore, the effects of spatial
sampling and truncation on the pre-equalization are discussed.

1. INTRODUCTION

Wave Field Synthesis (WFS) is a well established
high-resolution spatial sound reproduction tech-
nique [1]. It aims at synthesizing the sound field
of a desired acoustic scene within a given listening
area.
The original theory of WFS considers the reproduc-
tion in a planar listening area using a linear dis-
tribution of loudspeakers (loudspeaker array). It is
assumed that the reproduction in a plane only is

suitable for most applications. Typical implementa-
tions of WFS systems surround the listening area by
piecewise linear or curved loudspeaker arrays. The
original theory has been extended in various aspects
for this purpose. In this paper we will focus on the
traditional concept covering a linear distribution of
loudspeakers.
The foundations of WFS are given by the first
Rayleigh integral. This integral states that a con-
tinuous planar distribution of appropriately driven
point sources (secondary sources) is suitable to syn-
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thesize any desired sound field within one of the
half-spaces bounded by the plane. However, the re-
production in a plane using a linear loudspeaker ar-
ray is not directly covered by the Rayleigh integral.
In WFS, a solution to this problem has been devel-
oped by applying a series of approximations to the
Rayleigh integral. This results in a driving signal
for the loudspeakers that can be split into an loud-
speaker position independent pre-equalization filter
and a loudspeaker position dependent weighting and
delaying of the pre-filtered input signal. However,
this approach relies on the validity of the applied
approximations and may not be feasible for all situ-
ations.
This paper investigates various theoretical and prac-
tical aspects in this context and summarizes known
results. We will restrict the main findings to linear
arrays. However, most of the results will also hold
for curved arrays. A previous study by [2] derived
a number of findings for the pre-equalization filter
of WFS on the basis of numerical simulations. We
will complement and extend this study by utilizing
an exact solution to the reproduction problem as ba-
sis for the analysis of the traditional WFS solution.
Furthermore, an improved driving signal has been
derived that overcomes some of the shortcomings of
WFS.
This paper is organized as follows: We first review
the theory of sound field synthesis on basis of the
Rayleigh integrals in Section 2. This will serve as a
basis for a short review of the traditional deriva-
tion of the driving signals in WFS, as presented
in Section 3. Special attention will be drawn to the
conditions under which the applied approximations
are valid. Section 4 introduces the spectral division
method (SDM) which serves as a reference solution
to the considered reproduction problem. The driv-
ing signal for a virtual point source is derived, as well
as, the connections of the SDM to WFS. The accu-
racy of WFS is then evaluated in Section 5 consid-
ering critical parameters and scenarios. It is shown
that WFS exhibits a number of shortcomings than
can be improved by a novel driving signal. Prac-
tical realizations of WFS systems are realized by a
finite number of loudspeakers. This implies a spa-
tial sampling and truncation of the continuous sec-
ondary source distribution assumed so far. The well
documented sampling theory for linear WFS sys-
tems is reviewed in Section 6 and the consequences
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Fig. 1: Geometry underlying the derivation of WFS
and the SDM. The reproduction of a virtual point
source placed at xps using a linear distribution ∂V

of secondary point sources located on the x-axis is
considered. The yellow area V denotes the listening
area, the z-axis points out of the illustration plane.

on the pre-equalization filter are discussed. Simi-
lar considerations follow for the discussion of spatial
truncation in Section 7. Finally, a number of con-
clusions are drawn for the practical aspects of the
pre-equalization filter in Section 8.

2. THEORY OF SOUND FIELD SYNTHESIS

The following section introduces in brief the theory
of sound field synthesis for linear/planar loudspeaker
arrays. For a more detailed treatment refer to [3, 4,
5, 6].

2.1. The Rayleigh Integrals

Without loss of generality, the geometry depicted in
Fig. 1 will underly the considerations of this paper.
The acoustic pressure P (x, ω) within the half-space
V is given by the first Rayleigh integral [7]

P (x, ω) =

2

∫∫ ∞

−∞

∂

∂n
P (x0, ω)G0,3D(x|x0, ω) dx0dz0 , (1)

where ω = 2πf denotes the angular frequency, x0 =
[x0 0 z0]

T denotes a position on the xz-plane, x =
[x y z]T with y > 0 a position within V and n =
[0 1 0]T the normal vector of the xz-plane. The
abbreviation ∂

∂n
denotes the directional gradient in

direction of the normal vector n. For the specialized
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geometry used in this paper ∂
∂n

P (x0, ω) is given by

∂

∂n
P (x0, ω) =

∂

∂y
P (x, ω)

∣

∣

∣

x=x0

. (2)

The tree-dimensional free-field Green’s function
G0,3D(x|x0, ω) is given as

G0,3D(x|x0, ω) =
1

4π

e−j ω

c
|x−x0|

|x − x0|
, (3)

where c denotes the speed of sound. Equation (3)
can be interpreted as the pressure field generated by
an acoustic point source placed at the position x0.
The Rayleigh integral (1) states that the pres-
sure within V is uniquely given by integrating the
weighted Green’s function over the xz-plane. The
weight is given by the gradient of the pressure in
direction of the normal vector n evaluated on the
xz-plane. Hence, if we aim at synthesizing the pres-
sure of a given virtual source S(x, ω) within V we
can place a continuous distribution of point sources
(secondary sources) on ∂V which are weighted,
i.e. driven, by the directional gradient of the virtual
source ∂

∂n
S(x0, ω). The weights of the secondary

sources are also termed as driving signal in this con-
text.
The driving signal for the reproduction of a virtual
point source located at position xps = [xps yps zps]

T

with yps < 0 is given as two times the directional
gradient of (3)

Dps(x0, ω) =
1

2π
Ŝps(ω)

yps

|x0 − xps|
×

(

1 + j ω
c |x0 − xps|

|x0 − xps|

)

e−j ω

c
|x0−xps|

|x0 − xps|
, (4)

where Ŝps(ω) denotes the spectrum of the virtual
source (e. g. the input signal).
The same principles as outline above can also be ap-
plied to two-dimensional wave propagation scenar-
ios. The transition from three- to two-dimensions
can be performed by assuming that the field is con-
stant in one of the coordinates [7]. Here, we will
assume that the field shows no dependence in the z-
coordinate. The two-dimensional equivalent of the
first Rayleigh integral is then given as [7]

P (x, ω) =

2

∫ ∞

−∞

∂

∂n
P (x0, ω)G0,2D(x|x0, ω) dx0 , (5)

where x0 = [x0 0 0]T and x = [x y 0]T with y > 0.
The two-dimensional Green’s function is given by [7]

G0,2D(x|x0, ω) =
j

4
H

(2)
0 (

ω

c
|x − x0|) , (6)

where H
(2)
0 (·) denotes the zeroth-order Hankel func-

tion of second kind. Equation (6) can be interpreted
as the pressure field generated by an acoustic line
source. The driving signal for the reproduction of a
virtual line source can be derived as

Dls(x0, ω) =

1

2

jω

c
Ŝps(ω)

yls

|x0 − xls|
H

(2)
1 (

ω

c
|x0 − xls|) . (7)

Equation (5) states that two-dimensional reproduc-
tion can be realized by a continuous distribution
of appropriately driven line sources perpendicular
to the reproduction plane. Note, that both the
three-dimensional Rayleigh integral (1) and its two-
dimensional variant (5) are unique. The reproduced
sound field consequently matches the desired virtual
source exactly within V .

2.2. 2.5-dimensional Reproduction

WFS and other sound field synthesis methods aim
at the reproduction of a virtual acoustic scene in a
plane only. Ideally this plane is leveled with the
listeners ears. This constitutes essentially a two-
dimensional reproduction scenario. From a phys-
ical point of view, according to the previous sub-
section, the natural choice for the characteristics of
secondary sources used for two-dimensional repro-
duction would be line sources. However, it is desir-
able to use point sources as secondary sources since
these can be realized in practice reasonably well by
conventional loudspeakers. Using point sources as
secondary sources for the reproduction in a plane
results in a dimensionality mismatch, therefore such
methods are often termed as 2.5-dimensional repro-

duction. It is well known that 2.5-dimensional WFS
suffers from artifacts [5, 8] in the reproduced sound
field. Most prominent are amplitude and spectral
errors in this context.
It is not straightforward to derive a driving function
for 2.5-dimensional reproduction. Different tech-
niques can be used here, resulting in different prop-
erties of the reproduced sound field. We first review
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the traditional formulation of WFS in Section 3, fol-
lowed by the derivation of an alternative solution
using the spectral division method in Section 4.

3. WAVE FIELD SYNTHESIS

The theory of WFS has initially been developed for
linear distributions of loudspeakers [6, 9] and has
later on been extended to arbitrarily shaped loud-
speaker distributions [10, 3]. The traditional the-
ory of WFS is based on an approximation of the
Rayleigh integral (1) to the 2.5-dimensional repro-
duction scenario.

3.1. Traditional Formulation

Starting point is the three-dimensional Rayleigh in-
tegral (1). This is specialized by introducing the
driving function of a virtual point source as given
by (4) and assuming that the virtual source and the
listener are located in the xy-plane. This results in

P (x, ω) =
1

2π
Ŝps(ω)×

∫∫ ∞

−∞

yps

|x′
0 − xps|

(

1 + j ω
c |x′

0 − xps|
|x′

0 − xps|

)

×

e−j ω

c
|x′

0−xps|
|x′

0 − xps|
1

4π

e−j ω

c
|x−x

′

0|
|x − x′

0|
dz0dx0 , (8)

with x′
0 = [x0 0 z0]

T , x = [x y 0]T and xps =
[xps yps 0]T . The inner integral over z0 is approx-
imated using the stationary phase method. This
method provides an approximate solution of oscilla-
tory integrals and is linked to the method of steepest
descent. We will not go into the details of calculat-
ing the approximation to (8). Refer to [5, 7] for a
detailed treatment. We are rather interested in the
conditions under which the method is accurate. The
required condition is

ω

c
(|x′

0 − xps| + |x − x′
0|) ≫ 1 . (9)

Hence, the approximation will be accurate for high
frequencies and/or for large distances of the virtual
source or the listener to the secondary source dis-
tribution. The approximation of the inner integral

results in [5]

P (x, ω) ≈

Ŝps(ω)

√

j ω
c

2π

∫ ∞

−∞

√

|x − x0|
|x0 − xps| + |x− x0|

×

yps

|x0 − xps|
e−j ω

c
|x0−xps|

√

|x0 − xps|
1

4π

e−j ω

c
|x−x0|

|x − x0|
dx0 , (10)

with x0 = [x0 0 0]T . The last term in the integral
can be identified as the field of a secondary point
source, the remaining terms as its driving signal.
However, the driving signal depends on the listener
position x, which is not desired. This dependency is
removed by applying a further stationary phase ap-
proximation. The condition for this approximation
is

ω

c
(|x0 − xps| + |x − x0|) ≫ 1 . (11)

Hence, the approximation will again be accurate for
high frequencies and/or for large distances of the vir-
tual source or the listener to the secondary source
distribution. However, note that the distance are
measured in the xy-plane now. The second approx-
imation results in [5]

P (x, ω) ≈ Ŝps(ω)

√

j ω
c

2π

√

y

y − yps
×

∫ ∞

−∞

yps

|x0 − xps|
e−j ω

c
|x0−xps|

√

|x0 − xps|
1

4π

e−j ω

c
|x−x0|

|x − x0|
dx0 .

(12)

The strength of the secondary sources, as given
by (12), depends still on the distance y of the listener
to the secondary source distribution. However, this
dependence turns into a constant factor under the
assumption that the reproduction shall be correct
on a reference line parallel to the secondary source
distribution with distance yref. The traditional driv-
ing function for WFS is then given by [5]

DWFS(x0, ω) =

Ŝps(ω)

√

j ω
c

2π

√

yref

yref − yS

yps

|x0 − xps|
e−j ω

c
|x0−xps|

√

|x0 − xps|
.

(13)
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3.2. The Pre-Equalization Approach

Inverse Fourier transformation of the driving sig-
nal (13) yields

dWFS(x0, t) = s(t) ∗ h(t)∗
√

yref

yref − yS

yps

|x0 − xps|3/2
δ(t − |x0 − xps|

c
) , (14)

where ∗ denotes convolution and δ(·) the Dirac delta
function. h(t) denotes the inverse Fourier transfor-
mation

h(t) = F−1

{

√

jω

2πc

}

, (15)

which is independent from the secondary source po-
sition x0. Hence, the driving function for traditional
WFS can be computed by

• filtering the signal of the virtual source s(t) with
the filter h(t), and

• weighting/delaying this pre-filtered signal.

This scheme is efficient with respect to computa-
tional complexity since the weighting/delay opera-
tion can be implemented by a delay line and con-
sequently only one convolution per virtual source
is required. In the context of WFS the filter h(t)
is termed as pre-equalization filter. It is evident
from (15) that this pre-equalization filter is a linear-
phase 3dB/Octave high-pass (HP) filter.
The driving function of traditional WFS has been
derived by applying two consecutive approxima-
tions. When the assumptions underlying these ap-
proximations are not met, deviations will occur
which might also have an influence on the pre-
equalization filter. The focus of this paper is to in-
vestigate the constraints of the pre-equalization ap-
proach. An exact solution of the reproduction prob-
lem given by the spectral division method will be
used for this purpose.

4. SPECTRAL DIVISION METHOD

The spectral division method, presented in [11, 4],
utilizes a formulation of the sound reproduction
problem in the spatio-temporal Fourier domain. It is
applicable to planar and linear secondary point/line
source distributions. It has been shown that it
is equivalent to the formulation in terms of the

Rayleigh integrals for two- and three-dimensional re-
production.
For the comparison with WFS we will focus on the
2.5-dimensional problem. The following section out-
lines the basic theory, derives the driving function
for a virtual point source and links the findings to
the traditional formulation of WFS.

4.1. Basic Concept

The sound field reproduced by a linear distribution
of secondary point sources is given by

P (x, ω) =

∫ ∞

−∞

D(x0, ω)G0,3D(x−x0, ω)dx0 . (16)

Equation (16) constitutes a spatial convolution of
the driving function with the field of the secondary
sources along the x-axis. Hence, the convolution
theorem [12] of the Fourier transformation can be
utilized. Applying a spatial Fourier transformation
with respect to the x-coordinate to Eq. (16) yields

P̃ (kx, y, ω) = D̃(kx, ω) G̃0,3D(kx, y, ω) , (17)

where kx denotes the wavenumber in x-direction and
G̃0,3D(kx, y, ω) the spatial Fourier transformation of
G0,3D(x − 0, ω). Quantities in the spatial Fourier
domain are indicated by a tilde. For sound repro-
duction, the reproduced sound field should match
the desired sound field P (x, ω) = S(x, ω) within the
listening area. According to (17), the driving func-
tion D̃(kx, ω) is then given as the spectral division

D̃(kx, ω) =
S̃(kx, y, ω)

G̃0,3D(kx, y, ω)
. (18)

Hence, both the spectrum of the desired sound field
and of the secondary sources have to be known.
The spatial Fourier transformation of the Green’s
function G0,3D(x − x0, ω) with respect to x can be
derived from [13] as

G̃0,3D(kx, y, ω) =
{

− j
4H

(2)
0

(√

(ω
c )2 − k2

x y
)

, |kx| <
∣

∣

ω
c

∣

∣

1
2π K0

(√

k2
x − (ω

c )2 y
)

,
∣

∣

ω
c

∣

∣ < |kx|
, (19)

where H
(2)
0 (·) denotes the zero-th order Hankel func-

tion of second kind and K0(·) the zero-th order
modified Bessel function of second kind [14]. Note
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that (19) is valid only for y > 0. The spectrum of
the secondary sources (19) consists of two parts: a
traveling contribution for |kx| <

∣

∣

ω
c

∣

∣ and an evanes-

cent contribution for
∣

∣

ω
c

∣

∣ < |kx|.
Evanescent waves are waves which exhibit no phase
variation in at least one spatial dimension and decay
exponentially in these directions [7]. They emerge
from solutions of the acoustic wave equation which
exhibit at least one imaginary wave number.

4.2. Derivation of Driving Function

The spatial Fourier transformation of a virtual point
source (3) is required for the calculation of the driv-
ing function using (17). It can be derived in a similar
way as (19) by applying suitable substitutions. It is
given as

S̃(kx, y, ω) = Ŝps(ω)ejkxxps×
{

− j
4H

(2)
0

(√

(ω
c )2 − k2

x (y − yps)
)

, |kx| <
∣

∣

ω
c

∣

∣

1
2π K0

(√

k2
x − (ω

c )2 (y − yps)
)

,
∣

∣

ω
c

∣

∣ < |kx|
,

(20)

for yps < 0. Introducing (20) and (19) into (17)
yields the driving function for the SDM. However,
it is evident from (20) that the driving function de-
pends on the distance y of the listener to the sec-
ondary source distribution. Perfect reproduction
can only be achieved on a (reference) line with dis-
tance yref. Hence, the driving function for the SDM
is finally given by

D̃SDM(kx, ω) = Ŝps(ω) ejkxxps×

×











H
(2)
0 (

√
( ω

c
)2−k2

x
(yref−yps))

H
(2)
0 (

√
( ω

c
)2−k2

x
yref)

, |kx| <
∣

∣

ω
c

∣

∣

K0(
√

k2
x
−( ω

c
)2 (yref−yps))

K0(
√

k2
x
−( ω

c
)2yref)

,
∣

∣

ω
c

∣

∣ < |kx|
. (21)

It is straightforward to show that the reproduction
is perfect on the reference line, by introducing (21)
together with (19) into (17). Hence, Eq. (21) pro-
vides the exact solution for 2.5-dimensional repro-
duction and therefore this solution can be used as
a reference to evaluate WFS. The driving function
of WFS (13) is not given in the spatio-temporal fre-
quency domain. For the sake of comparison it would
be desirable to derive an inverse Fourier transforma-
tion of (21). However, the analytical treatment is
not straighfoward. We will show in the next sec-
tion how a reasonable approximation of the driving
function (21) can be used instead.

4.3. Approximation of the Driving Function

The SDM driving function (21) can be approximated
by replacing the Hankel and modified Bessel function
by their large-argument approximations [14]

D̃SDM(kx, ω) ≈ Ŝps(ω)

√

yref

yref − yps
×

ejkxxps

{

ej
√

( ω

c
)2−k2

x
yps , |kx| <

∣

∣

ω
c

∣

∣

e
√

k2
x
−( ω

c
)2yps ,

∣

∣

ω
c

∣

∣ < |kx|
. (22)

The approximation of the SDM driving function
given by (22) holds for

√

∣

∣

∣
(
ω

c
)2 − k2

x

∣

∣

∣
yref ≫ 1 , and (23a)

√

∣

∣

∣
(
ω

c
)2 − k2

x

∣

∣

∣
(yref − yps) ≫ 1 . (23b)

Hence, for large distances of the reference line to
the secondary source distribution (yref ≫ 1) and for
large distances of the reference line to the virtual
point source ((yref − yps) ≫ 1). In order to un-
derstand the restrictions in terms of the temporal
ω and spatial frequency kx both the solution (21)
and its approximation (22) are compared for criti-
cal parameters. Figure 2 shows the magnitude of
the normalized difference between the exact and ap-
proximated driving function for a virtual source close
to the secondary source distribution. The difference
was normalized to the absolute value of the exact
solution (21). It can be seen that the approximation
of the spatio-temporal spectrum of the driving func-
tion is quite accurate.
The inverse Fourier transformation of the approxi-
mated driving function (22) can be derived as

DSDM(x0, ω) = Ŝps(ω)
1

2

√

yref

yref − yps
j
ω

c
×

yps

|x0 − xps|
H

(2)
1 (

ω

c
|x0 − xps|) . (24)

Interestingly this constitutes an amplitude corrected
version of the driving function for a virtual line
source (7) as derived for two-dimensional reproduc-
tion based on the Rayleigh integral.
A further large-argument approximation of the Han-
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Fig. 2: Normalized difference (magnitude) between
the spectrum of the exact (21) and the approximated
driving function (22) (xps = [0 − 0.1]T m, yref =
1 m).

kel function in (24) yields

DSDM(x0, ω) ≈

Ŝps(ω)

√

j ω
c

2π

yps

|x0 − xps|

√

yref

yref − yps

e−j ω

c
|x0−xps|

√

|x0 − xps|
,

(25)

where the condition underlying this approximation
is

ω

c
|x0 − xps| ≫ 1 . (26)

Equation (25) is equal to the traditional WFS driv-
ing function (13). Hence, there is a direct link be-
tween the SDM and WFS. It can be concluded that
WFS constitutes an approximation of the exact so-
lution (21) given by the SDM. The SDM can be used
as reference for WFS in order to investigate the con-
sequences of the applied approximations.
The approximations used to derive the WFS driv-
ing function with the SDM are quite different from
the ones used in WFS. The first condition (23) has
shown to be quite accurate for reasonably chosen
reference distances yref. The second approxima-
tion (25) is only fulfilled if the virtual point source
is not too close to the secondary source distribu-
tion. Hence, it can be expected that the WFS driv-

ing function shows inaccuracies for such situations.
A comparison of both approaches is presented in the
next section.

5. COMPARISON OF WFS AND SDM

This section compares WFS and SDM with the aim
to evaluate the effects of the approximations used in
WFS. Condition (11) can be understood as a projec-
tion of condition (9) onto the xy-plane. Hence, for
listeners and sources located in this plane both con-
ditions will provide similar results. In oder to rea-
sonably fulfill condition (11), the following require-
ments have to be met

1) high frequencies ω, and/or

2a) large distances of the virtual source from the
secondary source distribution, or

2b) large distances of the listener (reference line)
from the secondary source distribution.

The following subsection discusses the effect of the
applied approximations with respect to these as-
sumptions. The requirements 1) and 2a) are most
critical in the context of sound reproduction, since
2b) can be fulfilled reasonably well when considering
typical wave lengths in acoustics. We will use the ap-
proximated SDM driving function (24) as reference,
since a closed form solution of the driving function
is available. Remember that the applied approxima-
tion has shown to be accurate (see Fig. 2).

5.1. Reproduced Wave Field

Assuming that the listener has a reasonable dis-
tance to the secondary sources, the approximations
used for the derivation of WFS will be most crit-
ical for low frequencies and virtual sources placed
closely to the secondary source distribution. Fig-
ure 3 shows the synthesized sound fields for WFS
and the approximated SDM driving function. A
monochromatic virtual point source with a rather
low frequency of fps = 200 Hz and a position xps =
[0 − 0.1]T m close to the secondary source distribu-
tion was simulated. While the curvature of the wave-
fronts look correct for both methods, some slight de-
viations in the amplitude can be observed for WFS
in Fig. 3(a). Further simulations have shown that
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Fig. 3: Sound field reproduced by WFS and SDM (xps = [0 − 0.1]T m, yref = 1 m, fps = 200 Hz). The
dashed line indicates the reference line.
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AES 128th Convention, London, UK, 2010 May 22–25

Page 8 of 17



S.Spors AND J.Ahrens Pre-equalization in WFS

−2 −1 0 1 2
−4

−3

−2

−1

0

1

x −> m

A
m

pl
itu

de
 −

>
 d

B

 

 

point source
WFS
SDM

(a) along reference line (y = yref)

0 1 2 3 4
−20

−15

−10

−5

0

5

10

y −> m

A
m

pl
itu

de
 −

>
 d

B

 

 
point source
WFS
SDM

(b) along y-axis (x = 0)

Fig. 5: Amplitude distribution of WFS and SDM (xps = [0 − 1]T m, yref = 1 m, fps = 200 Hz).

these effects get less prominent for higher frequen-
cies or larger distances of the virtual source to the
secondary source distribution.

5.2. Amplitude Distribution

We now investigate the amplitude distribution in
the reproduced sound fields. It is known that WFS
and other sound reproduction methods like higher-
order Ambisonics (HOA) and also the SDM show
amplitude deviations for the reproduction of plane
waves in 2.5-dimensional scenarios [15, 16, 4]. For
WFS and SDM, as considered here, the amplitude
distribution should be correct on the reference line.
Figure 4 shows the amplitude distribution for WFS
and SDM along the reference line and additionally
along the y-axis for the situation shown in Fig. 3.
WFS shows some slight deviations in the amplitude
distribution along the reference line in Fig. 4(a).
However, no major amplitude deviations can be ob-
served along the y-axis. This is quite interesting
since amplitude errors are present in this direction
for the reproduction of a plane wave in WFS and
the SDM [3, 4]. This does not seem to be case for
virtual sources close to the secondary source distri-
bution. A possible explanation is that only a short
part of the secondary source distribution is driven
with an considerable level. Hence, this part approx-
imately has the characteristics of an acoustic point

source.
Figure 5 shows the amplitude distributions for a vir-
tual source position yps = 1 m behind the secondary
source distribution, thus at a considerably larger dis-
tance from the secondary source distribution than in
the scenario discussed above. Here, the amplitude
distribution along the reference line is, as expected,
correct for WFS and the SDM. The amplitude dis-
tribution along the y-axis shown in Fig. 5 shows the
typical amplitude deviations for 2.5-dimensional re-
production. Both, WFS and the approximated SDM
perform similar in this scenario. The reasons for
these deviations seem to be essentially linked to the
2.5-dimensional nature of the problem.

5.3. Spectral Properties

So far, we considered the reproduction of monochro-
matic signals. Now, the (broadband) spectral prop-
erties of WFS in the context of its approximations
is investigated. As outlined above, low frequencies
and virtual sources close to the secondary source dis-
tribution are critical scenarios for the occurrence of
deviations. Figure 6 shows the magnitude frequency
response for a listener at position x = [0 1]T m in
front of the virtual source placed at different dis-
tances to the secondary source distribution. The
SDM has a flat frequency response for the most crit-
ical case yps = −0.01 m and also for all other cases
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WFS and the approximated SDM driving function
for different distances of the virtual source (xps =
[0 yps]

T m, yref = 1 m).

shown for WFS. However, WFS shows severe devia-
tions from the ideal frequency response. This holds
especially for the close virtual source positions. The
deviations degrease for increasing frequency. Both
findings are in accordance with the conditions un-
der which the approximations used for WFS hold.
Note, that loudspeaker arrays are typically not used
for the reproduction below about 100 Hz. Hence,
the shown deviations get critical for virtual sources
which are positioned closer than about 10 centime-
ters to the secondary source distribution.
Figure 7 shows the magnitude frequency response of
the WFS and the SDM driving functions for the sec-
ondary source at x0 = 0 m. The pre-equalization in
the driving function for WFS (13) does not depend
on the virtual source position. It has a constant
high-pass character with 3dB per Octave. How-
ever, the SDM driving function shows a clear de-
pendency on the virtual source distance to the sec-
ondary source distribution. The closer the virtual
source is to the secondary source distribution the
more the high-pass character is flattened out for the
lower frequencies. Again the results are in accor-
dance with the approximations used in traditional
WFS.
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Fig. 7: Frequency response (magnitude) of the
WFS and the approximated SDM driving function
for different distances of the virtual source (xps =
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T m , yref = 1 m) for a secondary source at
x0 = 0 m.

5.4. Conclusions

The previous three subsections investigated the
properties of WFS in scenarios where the approx-
imations used in its derivation are not fulfilled. It
was shown that the spatial structure of the repro-
duced sound field and the amplitude distribution are
considerably impaired. However, the spectral prop-
erties of WFS for the synthesis of virtual sources
positioned close to the secondary source distribution
show severe degradations. These degradations will
most likely be audible as coloration of the virtual
source. The derived results might no be too crit-
ical for the synthesis of stationary virtual sources
since one could take care that the positions are con-
fined to a reasonable distance. However, the syn-
thesis of a moving virtual source that crosses the
secondary source distribution in WFS may result in
unsatisfactory results. The results indicate that the
pre-equalization used in WFS has to be improved in
such situations in oder to avoid coloration.

6. SPATIAL SAMPLING OF SECONDARY

SOURCE DISTRIBUTION

The findings presented so far were based upon the
assumption of a continuous secondary source distri-
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bution. In practice, the secondary source distribu-
tion is realized by loudspeakers placed at spatially
discrete positions. This section reviews the influence
of this spatial sampling on the reproduced sound
field and draws conclusions for the pre-equalization
approach as used in WFS. We will follow the theoret-
ical framework presented in [17]. Note, the effects of
sampling on the pre-equalization approach in WFS
have also been discussed e. g. in [2, 18].

6.1. Spatial Sampling of Secondary Source Dis-

tribution

As for time-domain sampling, the discretization of
the secondary source distribution is modeled by spa-
tial sampling of the driving function. The sampling
of the driving function D(x, ω) is described by mul-
tiplication with a series of spatial Dirac functions at
the positions of the loudspeakers. For an equidistant
spacing this is given by

DS(x, ω) = D(x, ω) · 1

∆x

∞
∑

µ=−∞

δ(x − ∆xµ) , (27)

where DS(x, ω) denotes the sampled driving function
and ∆x the distance between the sampling positions.
These positions are indicated in Fig. 1 by the dots
•. Applying a spatial Fourier transformation to (27)
results in [19]

D̃S(kx, ω) = 2π

∞
∑

η=−∞

D̃(kx − 2π

∆x
η, ω) . (28)

Equation (28) states that the spectrum D̃S(kx, ω) of
the sampled driving function is given as a superpo-
sition of shifted continuous spectra D̃(kx − 2π

∆xη, ω)
of the driving function. Introducing the spectrum of
the sampled driving function into (17) results in the
spectrum P̃S(kx, y, ω) of the sound field reproduced
by a spatially discrete secondary source distribution
in the wavenumber domain.

P̃S(kx, y, ω) =

2π G̃(kx, y, ω)

∞
∑

η=−∞

D̃(kx − 2π

∆x
η, ω) . (29)

6.2. Qualitative Analysis

We consider the approximated driving function of
the SDM (24) and its spatio-temporal spectrum (22)

for a qualitative analysis of the influence of spatial
sampling. The spatio-temporal spectrum of the sec-
ondary sources is given by (19).
Figure 8 illustrates, on a qualitative level, the con-
struction of the spectrum of the reproduced sound
field, as given by (29). The dark gray areas de-
note the propagating parts of the driving function
D̃S(kx, ω) and the secondary sources G̃(kx, y, ω), re-
spectively, the light gray areas their evanescent con-
tributions. Only the propagating parts of the spatio-
temporal spectra of the driving function DS(x, ω)
and the secondary sources G̃(kx, y, ω) are bandlim-
ited for a fixed frequency ω. The evanescent parts
are not bandlimited but decay rapidly. Four differ-
ent types of overlaps between the spectrum of the
sampled driving function and the secondary source
can be identified. It was shown in [17] that the over-
laps of the spectra of the propagating contributions
of the driving function and the secondary sources are
the dominant contribution to the reproduced sound
field. Hence, we will only consider these.
It is evident from (28) that spatial sampling may
lead to spectral overlaps in the driving function and
hence to spatial aliasing. The frequencies fal,η above
which these overlaps of the propagating parts of the
sampled driving function DS(x, ω) occur are given
as

fal,η = η
c

2∆x
, (30)

where η denotes the index of the spectral overlap
as given in (28). The spatial aliasing frequency fal

of a particular setup is given by setting η = 1. The
spectral overlaps in the sampled driving function are
weighted by the spectrum of the secondary sources
(see Fig. 8). Consequently, the contributions which
lie within the propagating parts of the spectrum of
the secondary sources will be present in the repro-
duced sound field. This will lead to spatial sampling
artifacts in the reproduced sound field if the virtual
source has contributions above the spatial aliasing
frequency fal.
It is evident from Fig. 8 that the spectral overlaps
in DS(x, ω) will add energy to the reproduced sound
field above the spatial aliasing frequency fal. This
can be concluded also from Parseval’s theorem [12].
This property has influence on the frequency re-
sponse of a WFS system and has to be considered
for the pre-equalization as discussed in the next sub-
section.
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traditional WFS driving function (xps = [0 −1]T m,
yref = 1 m, ∆x = 0.20 m).

6.3. Consequences for Pre-equalization

Figure 9 shows the frequency response of a WFS
system using a spatially discrete distribution of sec-
ondary sources with a typical spacing of ∆x =
0.20 m. The traditional WFS driving function (13)
was used for the simulation. The spatial aliasing fre-
quency is fal ≈ 860 Hz for the chosen setup. The in-
crease of the magnitude response above the aliasing
frequency due to the spatial sampling of the driv-

ing function is clearly visible. Figure 9 shows ad-
ditionally the magnitude response of a 3dB per Oc-
tave high-pass filter starting at the spatial aliasing
frequency. The increase in the magnitude response
conforms roughly to this slope. Further simulations
(not shown here) with smaller and larger sampling
intervals ∆x showed a similar HP behavior with a
slope of roughly 2...4 dB per Octave depending on
the parameters.
The pre-equalization in WFS compensates for the in-
herent low-pass (LP) character of a linear array [20]
by pre-filtering with a 3dB per Octave HP filter.
However, spatial sampling of the secondary source
distribution adds energy above the spatial aliasing
frequency. This leads approximately to a 3dB per
Octave increase in the magnitude response.
It can be concluded from the above considerations
and results that the pre-equalization used in WFS
(and also for the approximated SDM) should only
be applied below the spatial aliasing frequency of
the particular setup. Above the spatial aliasing fre-
quency less or even no pre-equalization is required.
Although this result is known in the community
some implementations of WFS do not cope for this
fact. This results typically in strong coloration of
the virtual source.
It is interesting to note, that reproduction systems
like higher-order Ambisonics were the spatial band-
width of the driving function is limited and hence
no spatial aliasing occurs in the driving function do
not show an HP behavior for a spatially discrete sec-
ondary source distribution [21].
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7. TRUNCATION OF SECONDARY SOURCE

DISTRIBUTION

Practical realizations of WFS will not only be built
from spatially discrete secondary sources but also
from a finite number of these. Up to now it was
assumed that the secondary source distribution is
of infinite length, in practice it will be of finite
length. This constitutes a spatial truncation of the
secondary source distribution. The influence of this
truncation on the frequency response and hence the
pre-equalization of WFS will be discussed in the re-
mainder of this section. Note, similar results have
also been derived e. g. in [2, 18].

7.1. Truncated Driving Function

Truncation can be modeled by multiplying the sec-
ondary source driving function D(x0, ω) with a suit-
able window function w(x0) [22]

Dtr(x0, ω) = w(x0) D(x0, ω) . (31)

A secondary source distribution with finite length L

can be modeled by a rectangular window function.
In this case, the window function w(x0) is given by
the rect-function [12]

w(x) = rect
( x

L

)

=

{

1 , if |x| ≤ L
2 ,

0 , otherwise ,
(32)

for L > 0. Incorporating w(x0) into Eq. (16) yields
the sound field Ptr(x, ω) reproduced by a truncated
linear array.
Spatial Fourier transformation of (31) yields the
spectrum of the truncated driving function as

D̃tr(kx, ω) =
1

2π
w̃(kx) ∗kx

D̃(kx, ω) (33)

where ∗kx
denotes convolution with respect to the

spatial frequency kx and w̃(kx) the spatial Fourier
transform of w(x). The spatial Fourier transforma-
tion of the rectangular window w(x) with respect to
the x-variable is given as

w̃(kx) = L
sin(kx

2 L)
kx

2 L
= L sinc(

kx

2
L) . (34)

The effects of truncation on the reproduced sound
field for virtual point sources have been discussed
e. g. in [17, 5]. Although an analytic solution for the

synthesized sound field of a truncated driving func-
tion for a virtual point source has not been achieved
so far, some general results could be derived by in-
vestigating the involved functions. These will be
summarized briefly below.
The truncation of the secondary source distribution
leads to a limited listening area [22, 9, 17]. The
resulting listening area, for a given position of the
virtual source, can be approximated quite well by
simple geometric means. This approximation states
that a virtual point source will be reproduced almost
correctly in a wedge in front of the array which is
bounded by the lines through the virtual source’s po-
sition and the end-points of the secondary source dis-
tribution. Some truncation artifacts will be present
within the listening area also, which can be limited
by applying other window functions (tapering) to
the driving function [22]. It has also been derived
in [17, 23] that truncation has influence on the spa-
tial aliasing frequency. Truncation may lead to an
increased aliasing frequency.
In this paper we are interested in the effect that trun-
cation has on the frequency response of the overall
system and on the pre-equalization used in WFS.
The next section will discuss this influence on a
qualitative level using results from numerical sim-
ulations.

7.2. Qualitative Analysis

In order to avoid the effects of the traditional WFS
driving function in the low-frequency region for
nearby virtual sources (see Fig. 6) the approximated
SDM driving function (24) has been used for the
simulations. Furthermore, a continuous secondary
source distribution and a rectangular window func-
tion w(x) have been assumed. Figure 10 shows the
magnitude frequency response for a listener position
x = [0 1]T m for different lengths L of the secondary
source distribution. The chosen listener position is
within the listening area for all chosen lengths L. It
can be observed from Fig. 10 that truncation leads
to an attenuation of low frequencies (HP character-
istic). Especially the response for L = 0.01 m is al-
most similar to the frequency response of the SDM
driving function for yps = −1 m shown in Fig. 7.
This becomes evident when considering that the cho-
sen aperture is very close to a single secondary point
source which has a flat frequency response. When
increasing the length L the low frequency character-
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Fig. 10: Frequency response (magnitude) of the re-
produced sound field at position x = [0 1]T m for
the approximated SDM driving function for differ-
ent lengths L of the secondary source distribution
(xps = [0 − 1]T m, yref = 1 m).

istics for the given listener position becomes close to
the desired flat frequency response. For L = 10 m
almost no deviations can be observed. The slope of
the HP is approximately 3 dB per Octave for the
other lengths.
Note that the frequency response due to truncation
is listener position dependent. However, within the
listener area for a given virtual source position only
minor deviations from the results shown in Fig. 10
will occur. Outside of the listening area further de-
viations besides the ones shown in Fig. 10 will be
present. However, we only aim at correct reproduc-
tion within the listening area.

7.3. Consequences for Pre-equalization

The results in the previous subsection have shown
that truncation has influence on the frequency re-
sponse within the listening area. The results have
been deduced from numerical simulations performed
with the approximated driving function from the
SDM. However, for virtual sources that have a rea-
sonable distance to the secondary source distribution
these results will also be valid in the context of WFS.
Ideally, the transfer function from the virtual source
to a listener should be flat. However, for truncated
secondary source distributions the magnitude fre-

quency response shows a more or less prominent
HP character. Since this property of the transfer
function is similar for listener positions within the
listening area it can be corrected for by adjusting
the pre-equalization filter. According to the derived
results, the 3dB per Octave pre-equalization filter
should only be applied in the frequency range where
the frequency response of the truncated WFS sys-
tem is almost flat (see Fig. 10). Unfortunately up
to now no closed form solution for the sound field
produced by a truncated secondary source distribu-
tion exists that could be used to determine an exact
solution for the pre-equalization filter.
It is interesting to note that in WFS truncation
seems to have an similar effect like virtual sources
positioned close to the secondary source distribu-
tion. This can be seen when comparing figures 10
and 6. This seems to be an effect of the ampli-
tude factor in the driving function (13). For vir-
tual sources positioned close to the secondary source
distribution most of the energy in the driving func-
tion will be concentrated to a short area of the sec-
ondary source distributions. This essentially consti-
tutes a truncation of the secondary source distribu-
tion. However, this effect seems to be compensated
for by the approximated driving function (24) of the
SDM so that the resulting frequency response is flat.
For WFS systems with a bend or closed secondary
source contour, the secondary sources which con-
tribute to the synthesis of a particular virtual point
source have to be selected in a sensible way [24].
For moving virtual sources the active parts of the
secondary source distribution might hence change
over time. If the length of the active secondary
source contour changes the pre-equalization has to
be adapted to this situation in order to avoid col-
oration of the virtual source.
There is an interaction between truncation and spa-
tial aliasing [17]. Truncation may lead to an in-
creased spatial aliasing frequency. Hence, both trun-
cation and spatial sampling have to be considered in
the design of the pre-equalization filter.

8. CONCLUSIONS

The paper presented a detailed analysis of the pre-
equalization approach used in WFS. The traditional
driving signal of WFS is derived from an approx-
imation of the first Rayleigh integral specialized to
2.5-dimensional reproduction. The approximation is
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performed by applying the stationary phase method.
The resulting driving signal can be split into a pre-
equalization filter and a secondary source position
dependent weight and delay of the pre-filtered vir-
tual source signal. However, this solution is only
accurate within the limits imposed be the assump-
tions used for the stationary phase method. In oder
to investigate the accuracy of the traditional WFS
approach an alternative solution has been used, the
SDM. The SDM provides the exact solution to the
2.5-dimensional reproduction problem. The analysis
of the traditional WFS approach revealed artifacts
for

• low temporal frequencies, and/or

• virtual sources placed close to the secondary
source distribution, and

• listeners located close to the secondary source
distribution.

The artifacts that have been observed in such situ-
ations were slight deviations in the sound field (see
Fig. 3(a) and Fig. 4(a)) and major deviations in the
desired flat frequency response (see Fig. 6). Loud-
speaker arrays are typically not used for frequencies
below 100 Hz. The spectral deviations will hence
become critical in terms of audible coloration for vir-
tual sources having a distance of less than 50 cm to
the secondary source distribution.
It was shown that the driving signal derived from
the SDM does not exhibit these problems. However,
no inverse Fourier transformation could be derived
straightforwardly for the spatio-temporal spectrum
of the exact solution provided by the SDM (21). It
was shown that a reasonable approximation of the
spatio-temporal spectrum of the driving function al-
lows to derive an quite accurate driving function
in the space-frequency domain. Interestingly, this
approximated SDM driving function is the ampli-
tude corrected driving function for two-dimensional
reproduction using the Rayleigh integral. The ap-
proximated SDM driving function (24) provides the
desired flat frequency response for virtual sources
placed close to the secondary source distribution.
Hence, this driving function can be used as an im-
proved replacement of the traditional WFS driving
function. However, efficient implementations have
to be developed.

Besides the inherent limitations given by the approx-
imations used for the derivation of WFS, two other
practical issues have to be considered: spatial sam-
pling and truncation of the secondary source distri-
bution. It has been shown that the sampling process
lead to an increase in energy for frequencies above
the spatial aliasing frequency. As a consequence, the
frequency response of the reproduced sound field will
exhibit an high-pass character. Interestingly, this
approximately results in a compensation of inherent
low-pass character of a linear array. When taking
this into the account, the pre-equalization filter used
for WFS should at least have the following charac-
teristics

1. 3 dB per Octave high-pass below the spatial
aliasing frequency, and

2. flat frequency response above the spatial alias-
ing frequency.

Entirely discarding the pre-filter will result in a low-
pass character below the spatial aliasing frequency
of the WFS system. This typically results in a muf-
fled sound. Applying the high-pass over the entire
frequency response (discarding the flat part) will re-
sult in a high-pass character of the resulting system.
It was further shown that spatial truncation of the
secondary source distribution leads to a poor fre-
quency response in the low frequency region (see
Fig. 10). Regarding the typical frequency range of
loudspeaker arrays, truncation will become critical
for lengths L < 0.75 m of the secondary source dis-
tribution. Truncation leads to a HP characteristic of
around 3dB per Octave. Hence, this effect could be
accounted for in the pre-equalization filter by pre-
scribing a flat frequency response for the low fre-
quencies.
An alternative to the analytically derived pre-
equalization filter is to measure or simulate the re-
produced sound field of a particular setup and com-
pute appropriate filters for the synthesis of a desired
virtual source [25, 2]. Typically, databases of virtual
source types and positions are constructed which are
then used for the synthesis of virtual sources at any
desired position. The benefit of such an approach is
that most of the effects discussed above are inher-
ently covered. The drawbacks are that the measure-
ments are limited to a particular setup and the com-
putational complexity. Furthermore, such methods
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cannot be applied to the physically correct synthe-
sis of moving virtual sources including the Doppler
effect [26].
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