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ABSTRACT

The theory of analytical approaches for sound field synthesis like wave field synthesis, nearfield compensated
higher order Ambisonics, and the spectral division method requires continuous distributions of secondary
sources. In practice discrete loudspeakers are employed and the synthesized sound field is corrupted by a
number of artifacts due to this discretization. This paper presents a theoretical investigation of the properties
of the loudspeakers which are required in order to suppress such spatial aliasing artifacts. It is shown that
the employment of such loudspeakers is not desired since the suppression of spatial aliasing comes by the
cost of an essential restriction of the reproducible spatial information when practical loudspeaker spacings
are assumed.

1. INTRODUCTION

Wave field synthesis (WFS) [1, 2], nearfield compen-
sated higher order Ambisonics (HOA) [3], and the
spectral division method (SDM) [4] are the three
best known analytical methods for sound field syn-
thesis. While WFS bases on the Rayleigh integrals
or the Kirchhoff-Helmholtz integral respectively, it
constitutes an implicit solution to the underlying
physical problem. HOA and SDM employ explicit
solutions of the synthesis equation.

In theory, any source-free sound field can be syn-
thesized by any of above mentioned methods inside
the secondary source distribution provided that the
latter is continuous and that it encloses the receiver
volume [5]. For non-enclosing continuous geometries
such as circles or lines systematic deviations from the
desired sound field arise [6].

The requirement of a continuous distribution of sec-
ondary sources can not be implemented in practice
with today’s available technology but arrangements
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of discrete loudspeakers have to be used. Typi-
cally, these loudspeakers are assumed to exhibit an
omnidirectional spatio-temporal transfer function,
e.g. [1, 3]. As a consequence a number of consid-
erable distortions of the spatial structure of the syn-
thesized sound field arise above a given temporal
frequency. These artifacts are commonly referred to
as spatial aliasing.

Approaches such as [7, 8, 9, 10] allow for a consider-
ation of the radiation characteristics of the involved
secondary sources so that their desired properties in
terms of spatial aliasing may be investigated.

Based on the examples of two specific secondary
source geometries – linear and circular distributions
– this paper investigates what properties of the driv-
ing function in combination with the properties of
the employed secondary sources – or loudspeakers in
practical implementations – can prevent such spa-
tial aliasing. The study is theoretical and exclu-
sively qualitative. We emphasize that the findings
are not restricted to a specific synthesis method but
reflect the general physical restrictions of discrete
loudspeaker arrays.

The paper starts with a short qualitative review of
the discretization of continuous time-domain signals.
As outlined in [11], this facilitates the later interpre-
tation of the results of the spatial discretization since
it allows for establishing links to the well-known pro-
cess of time-domain discretization.

2. EXCURSION: DISCRETIZATION OF TIME-

DOMAIN SIGNALS

Assume a purely real continuous time-domain signal
s0(t) with temporal spectrum S0(ω). The forward
Fourier transform of s0(t) may be defined as [12]

S0(ω) =

∞
∫

−∞

s0(t) e−iωt dt . (1)

The according inverse Fourier transform is then
given by

s0(t) =
1

2π

∞
∫

−∞

S0(ω) eiωt dω , (2)

An example of a possible spectrum |S0(ω)| is illus-
trated in Fig. 1(a). |S0(ω)| is symmetric with respect
to ω = 0 since we assume s0(t) to be purely real.

In order that s0(t) can be stored in a digital system
it is discretized in time at sampling frequency fs,
i.e. with the constant sampling interval ∆T = 1

fs
[12,

13].

It can be shown that the temporal spectrum S0,S(ω)
of a time-discrete signal s0,S(t) is given by repeti-
tions of period ωs = 2πfs of the temporal spectrum
S0(ω) of the initial continuous signal [12]. This cir-
cumstance in illustrated in Fig. 1(b). Note that it
is assumed for convenience that s0(t) is bandlim-
ited such that its energy is exclusively contained at
frequencies below fn = fs

2 . fn is termed Nyquist
frequency [12].

It is possible to perfectly reconstruct the initial
time-domain signal s0(t) from the discretized sig-
nal s0,S(t) if certain assumptions are met: When is
s0(t) is appropriately bandlimited, the spectral rep-
etitions of the discretized signal do not leak into the
baseband, i.e. into the region −fn < f < fn. By
applying an appropriate lowpass filter, the contin-
uous time-domain signal s0(t) can be perfectly re-
constructed as indicated in Fig. 1(c). The transfer
function of a possible filter is indicated by the dot-
ted line marked “FA” in Fig. 1(b). The filter “FA”
is also referred to as reconstruction filter or interpo-
lator. Ideally, FA exhibits a perfectly flat frequency
response of amplitude 1 in its passband.

Two circumstances lead to a corrupted reconstruc-
tion of s0(t): [12]

1. If the passband of the reconstruction filter is
wider than 2fn = fs like that of the filter whose
transfer function is marked FB in Fig. 1(b), then
the spectral repetitions are not perfectly sup-
pressed in the reconstruction. This type of error
is generally referred to as reconstruction error.

2. If s0(t) exhibits energy above fn the spectral
repetitions leak into the baseband, overlap, and
interfere. Refer to Fig. 2 for a sketch. It is
not possible to separate the baseband from the
discretized signal and the reconstruction is cor-
rupted by aliasing.
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f
fn−fn

|S0(ω)|

(a) Magnitude |S0(ω)| of the spectrum of the continuous-time
signal.

f
fn fs−fn−fs

FA

FB

|S0,S(ω)|

(b) Magnitude |S0,S(ω)| of the spectrum of the discrete-time
signal.

f

|S0,A(ω)|

(c) Magnitude |S0,A(ω)| of the reconstructed spectrum using
filter A from Fig. 1(b). Reconstruction is perfect.

f

|S0,B(ω)|

(d) Magnitude |S0,B(ω)| of the reconstructed spectrum using
filter B from Fig. 1(b). The reconstruction of signal s0(t)
suffers from artifacts.

Fig. 1: Sampling of a purely real bandlimited time-
domain signal s0(t).

The reconstruction S0,S,rec(ω) from the time-discrete
representation S0,S(ω) can be represented in tempo-
ral frequency domain as [12]

S0,S,rec(ω) = S0,S(ω) · FA(ω) , (3)

whereby FA(ω) denotes the transfer function of the
reconstruction filter. If the bandwidth of S0(ω) and
the properties of the reconstruction filter FA(ω) are
according then S0,S,rec(ω) = S0(ω) and the recon-
struction is perfect.

Fig. 3 illustrates the signal flow in the process of
sampling a continuous time-domain signal s0(t) and
reconstructing the signal s0,S,rec(t) from the time-

f
fn−fn

|S0(ω)|

(a) Magnitude of the spectrum of the continuous-time signal.

f
fn fs−fn−fs

|S0,S(ω)|

(b) Magnitude |S0,S(ω)| of the spectrum of the discrete-time
signal.

Fig. 2: Sampling of a signal exhibiting energy above
fn.

discrete representation s0,S(t) via an interpolation
using a lowpass filter with transfer function FA(ω).

s0(t)

∆T

s0,S(t)
FA(ω)

s0,S,rec(t)

Fig. 3: Schematic of the process of discretization
and reconstruction of the continuous time-domain
signal s0(t). FA(ω) denotes the transfer function of
the reconstruction filter.

3. SPATIAL DISCRETIZATION

The following subsections consider the spatial dis-
crectization for two selected geometries: linear sec-
ondary source distributions (Sec. 3.1) and circular
secondary source distributions (Sec. 3.2) synthesiz-
ing virtual plane waves. These are the geometries
which are most frequently implemented in prac-
tice [14].

Note that we do not concentrate on a specific
method such as WFS, NFC-HOA, SDM, or other an-
alytical or numerical approach. We perform purely
qualitative considerations which hold for any of the
mentioned methods. We do not present an explicit
mathematical treatment since this would have to be
very detailed and might thus distract the interpreta-
tion of the fundamental components. Since the un-
derlying physical problem is the same for all methods
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for a given secondary source geometry the deduced
findings hold qualitatively for any sound field syn-
thesis method including numerical approaches such
as [15, 16].

For ease of illustration, we do not explicitly state
the mathematical details behind the presented sim-
ulations. All examples have been published in detail
and the interested reader is referred to the indicated
literature.

For convenience, spatial discretization is modeled
by a discretization of the corresponding secondary
source driving function. Thus, a continuous dis-
tribution of secondary sources is assumed which is
driven at discrete points (at those points where loud-
speakers are located). The essential benefit of this
approach is the fact that all mathematical relations
between the involved quantities established in the
initial theoretical derivations are valid and can be
exploited.

Frequently, strong parallels between spatial dis-
cretization and time-domain discretization summa-
rized in Sec. 2 will be established. However, as will
be shown, the treatment of spatial discretization is
more complex due to the higher number of dimen-
sions involved.

The examples treated in the following sections em-
ploy spatial sampling intervals which are typically
found in practice [14].

3.1. Linear Secondary Source Distributions

We will start the treatment of spatial discretization
with the example of sampling of a continuous linear
distribution of secondary sources. Fig. 4 illustrates
the considered geometrical setup.

For a continuous linear distribution the synthesized
sound field S(x, ω) is given by [1, 4, 17]

S(x, ω) =

∞
∫

−∞

D(x0, ω) · G(x − x0, ω) dx0 , (4)

with x = [x y z]T and x0 = [x0 0 0]T . D(x0, ω) de-
notes the driving function for the secondary source
located at x0 = [x0 0 0]T and G(x−x0, ω) its spatio-
temporal transfer function. The secondary source
distribution from (4) is then discretized with con-
stant sampling interval ∆x.

x

y

z

Fig. 4: Illustration of the setup of a linear sec-
ondary source distribution situated along the x-axis.
The secondary source distribution is indicated by the
grey shading and has infinite extent.

While spectral repetitions due to time discretization
where identified in temporal frequency domain in
Sec. 2, it has been shown in [4, 11, 18, 19] that the
spatial discretization of the driving function D(x, ω)
in above example leads to repetitions of period 2π

∆x

of the spatial spectrum D̃(kx, ω). This circumstance
is illustrated exemplarily for the synthesis of a vir-
tual temporally broadband plane wave with a prop-
agation direction at angle θpw = 3

8π to the posi-
tive x axis and inside the horizontal plane in Fig. 5.
The depicted driving function was obtained using
SDM [4, 6]. The WFS driving function is essentially
similar.

The according pair of spatial Fourier transforms may
be defined as [5]

D̃(kx, ω) =

∞
∫

−∞

D(x, ω) eikxx dx , (5)

and

D(x, ω) =
1

2π

∞
∫

−∞

D̃(kx, ω) e−ikxx dkx . (6)

It can be shown that (4) can be reformulated in spa-
tial frequency domain as [11]

S̃(kx, y, z, ω) = D̃(kx, ω) · G̃(kx, y, z, ω) . (7)
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Recall that we model the discretization of the sec-
ondary source distribution by a sampling of the driv-
ing function D(x, ω). For a spatially discrete distri-
bution (7) can thus be written as

S̃S(kx, y, z, ω) = D̃S(kx, ω) · G̃(kx, y, z, ω) , (8)

whereby D̃S(kx, ω) denotes the sampled driving
function.
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which is composed of D̃(kx, ω) (Fig. 5(a)) plus
repetitions thereof. ∆x = 0.2 m

Fig. 5: Qualitative illustration of the driving func-
tion for a linear secondary source distribution in or-
der to synthesize a virtual plane wave of propagation
direction θpw = 3

8π. The values are clipped as indi-
cated by the colorbars.

When (8) is represented schematically as in Fig. 6,
its similarity to (3) (Fig. 3) becomes evident: The

D(x, ω)

∆x

DS(x, ω)
G̃(kx, y, z, ω)

SS(x, ω)

Fig. 6: Schematic of the process of spatial dis-
cretization with linear secondary source distribu-
tions.

desired signal – the synthesized sound field SS(x, ω)
– is given by a quantity which exhibits repetitions in
the according (spatial) frequency domain – DS(x, ω)
– and which is weighted by another function G(x, ω).

G(x, ω), the spatio-temporal transfer function of
the employed loudspeakers, can thus be inter-
preted as the analogon to the interpolator denoted
FA(ω) in the time discretization example depicted
in Fig. 3 [11]. More explicitly, G(x, ω) interpolates
the discrete driving function into continuous space.

Above established analogy allows to directly deduce
the two prerequisites which have to be fulfilled in
order that the synthesized sound field SS(xω) is not
corrupted by discretization artifacts:

1. The spectral repetitions in D̃S(kx, y, z, ω) may
not leak into the baseband (refer to Fig. 2).

2. The spatio-temporal transfer function
G̃(kx, y, z, ω) of the secondary sources has
be spatially lowpass such that it suppresses
the spectral repetitions apparent in Fig. 5(b)
(compare to Fig. 1(b) and 1(c)).

The spectral repetitions of the driving function for a
virtual plane wave do leak into any chosen baseband
for certain temporal frequencies and thus cause spa-
tial aliasing as illustrated in Fig. 5(b). Therefore,
simple lowpass filtering can not isolate the base-
band1. Fig. 5(a) can thus be identified as the anal-
ogon to Fig. 2(a), and Fig. 5(b) as the analogon to
Fig. 2(b) in the time-domain discretization example
from Sec. 2.

In order to prevent the leakage, a spatial bandlim-
itation with a suitably chosen passband between
kx = ±15 rad

m is applied on the driving function

1Actually, spatial bandpass filtering is capable of isolating
the initial driving function since the spectral repetitions do
not overlap. For simplicity, this option is not considered.
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of D̃(kx, ω) (Fig. 5(a)) plus repetitions thereof.
∆x = 0.2 m

Fig. 7: Qualitative illustration of the bandlimited
driving function for a linear secondary source distri-
bution in order to synthesize a virtual plane wave
of propagation direction θpw = 3

8π. The values are
clipped as indicated by the colorbars.

D̃(kx, ω) to yield a spatial lowpass driving function
D̃lp(kx, ω). The latter is illustrated in Fig. 7(a).
Note that due to the bandlimitation all energy above
approximately 2200 Hz is suppressed2. Fig. 7(b) il-

2In order to retain the temporal information above this
frequency one could also transfer all energy of the driving
function into the interval of −15 rad

m
< kx < 15 rad

m
. How-

ever, this would cause a propagation direction of the plane
wave which is dependent on the temporal frequency f above
2200 Hz.

lustrates the spectral repetitions due to discretiza-
tion.

3.1.1. Monopole loudspeakers

As mentioned in Sec. 1, the literature on sound field
synthesis typically assumes that the employed loud-
speakers are monopoles. The spatio-temporal trans-
fer function G̃0(kx, y, z, ω) of a monopole depicted
in Fig. 8(a) does obviously not fulfill requirement 2
stated above over the entire possible range of tem-
poral frequencies f .

Fig. 9(b) shows the evaluation of (8) in this case:
The spectral repetitions are weighted and become
negligible in certain regions but still considerable
undesired energy persists in S̃(kx, y, z, ω) even with
bandlimitation applied on the driving function.
Note that Fig. 9(b) is yielded by multiplying each
point in Fig. 5(b) with the corresponding point in
Fig. 8(a).

For comparison, S̃(kx, y, z, ω) for a continuous sec-
ondary source distribution – thus perfectly free of
discretization artifacts – is depicted in Fig. 9(a).

3.1.2. The anti-aliasing loudspeaker

Using the approach from [10] allows for the analyt-
ical and exact employment of secondary sources –
or loudspeakers – with a complex spatio-temporal
transfer function as the one depicted in Fig. 8(b).
The latter constitutes a theoretical spatio-temporal
transfer function which does suppress the spectral
repetitions in the considered situation – thus an anti-
aliasing secondary source. It was obtained from the
monopole G̃0(kx, y, z, ω) depicted in Fig. 8(a) by set-
ting selected parts of G̃0(kx, y, z, ω) to zero. More
explicitly,

G̃anti-alias(kx, y, z, ω) =
{

G̃0(kx, y, z, ω) for |kx| < 15 rad
m

0 elsewhere
, (9)

whereby kpw,x denotes the kx component of the
propagation vector kpw of the virtual plane wave.

The result of an evaluation of (8) with
G̃anti-alias(kx, y, z, ω) is shown in Fig. 9(c). Com-
parison with Fig. 9(a) shows that synthesis free of
discretization artifacts is achieved. However, the
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Fig. 8: Selected possible spatio-temporal transfer
functions of the secondary sources; The values are
clipped as indicated by the colorbars.

required spatial bandlimitedness of the driving func-
tion results in a similarly bandlimited synthesized
sound field and thus no energy above 2200 Hz.

The sound field emitted but such an anti-aliasing
loudspeaker is illustrated in Fig. 10 for a monochro-
matic input signal. It can be seen that such a loud-
speaker has a limited primary radiation angle. Thor-
ough inspection of Fig. 10 reveals that, at the con-
sidered frequency of f = 2000 Hz, the sound field
contains two wave fronts with are straight inside the
horizontal plane and propagate into two different di-
rections. This circumstance suggests that such a
loudspeaker exhibits a considerable – if not infinite
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Fig. 9: Synthesized sound field in spatial frequency
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Fig. 10: Sound field inside the horizontal plane
emitted by a loudspeaker with a transfer function
given by (9) with nominal location at the coordi-
nate origin and when driven with a monochromatic
signal of f = 2000 Hz;

– spatial extent. As may be deduced from Fig. 8(b),
the sound field emitted but such an anti-aliasing
loudspeaker is very similar to that of a monopole
below approximately 700 Hz. The primary radia-
tion angle gets narrower with increasing frequency.

A discussion of methods to achieve such a spatially
lowpass spatio-temporal transfer function in practice
can be found in [11].

Typically, loudspeaker radiation characteristics are
illustrated in polar diagrams. This approach is not
useful in the current situation since polar diagrams
represent far-field characteristics and can thus not
account for the spatial extent of a loudspeaker. We
therefore waive the presentation of an according po-
lar diagram.

3.1.3. Summary

The theoretical requirements for an anti-aliasing
loudspeaker for linear secondary source distributions
suggest that such a loudspeaker exhibits consider-
able spatial extent. The latter might as well have to
be infinite. If such a loudspeaker exists, its employ-
ment is not desired since it can act only as anti-
aliasing loudspeaker when the desired sound field
is spatially appropriately bandlimited. The latter
circumstance prevents the synthesis of certain com-
binations of temporal frequency f and propagation

direction of the synthesized sound field.

3.2. Circular Secondary Source Distributions

For a circular secondary source distribution of radius
R which is located inside the horizontal plane and
centered around the origin of the coordinate system,
the synthesis equation is given by [20]

S(x, ω) =

2π
∫

0

D(α0, ω) · G(x − x0, ω) R dα0 , (10)

with x0 = R [cosα0 sinα0 0]T . Refer to Fig. 11. α

denotes the azimuth.

x

y

z

R

Fig. 11: Circular secondary source distribution of
radius R in the horizontal plane and centered around
the coordinate origin.

The spatial discretization takes place along a cir-
cular contour with constant angle ∆α between the
sampling points. The number L of sampling points
is finite and the relation ∆α · L = 2π has to be ful-
filled.

The appropriate spatial frequency domain of inter-
est is the Fourier series expansion coefficients of the
quantities under consideration. The according for-
ward and backward transforms are given by [5]

D̊m(ω) =
1

2π

2π
∫

0

D(α, ω) e−imα dα (11)

and

D(α, ω) =

∞
∑

m=−∞

D̊m(ω) eimα (12)

exemplarily for the driving function D(α, ω).

Eq. (10) can be reformulated in Fourier series ex-
pansion coefficients domain as

S̊m(r, ω) = 2πR D̊m(ω) G̊m(r, ω) . (13)
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Again, we model the discretization of the secondary
source distribution by a discretization of the driving
function. Eq. (13) is then given by

S̊m,S(r, ω) = 2πR D̊m,S(ω) G̊m(r, ω) . (14)

As with linear secondary source distribution in (8),
(14) exhibits an essential similarity to (3). Eq. (14)
is illustrated in Fig. 13.

With circular secondary source distributions spec-
tral repetitions with respect to the spatial frequency
(or angular frequency) m in the spatial spectrum
D̊m(ω) of the driving function due to sampling have
been identified [21]. This circumstance is illustrated
in Fig. 12 which shows a plane wave driving function
obtained using the approach from [20].

It can be seen in Fig. 12(b) that D̊m(ω) is not band-
limited and the repetitions do overlap so that the
baseband can not be isolated. Fig. 12(a) can thus be
identified as the analogon to Fig. 2(a), and Fig. 12(b)
can be identified as the analogon to Fig. 2(b) in the
time-domain discretization example from Sec. 2.

Overlapping is avoided by applying a bandlimit M

on the driving function so that

D̊m(ω) = 0 ∀ m > M (15)

with

M ≤

{

L
2 − 1 for even L
L−1

2 for odd L
. (16)

whereby L denotes the number of loudspeakers.
Note that a bandlimitation according to (16) is in-
tuitively applied in HOA [3, 6] where it is termed
order limitation. In WFS, typically no bandwidth
limitation is applied [6].

As illustrated in Fig. 14, a bandlimitation according
to (15) does indeed avoid the overlap of the repeti-
tions.

Fig. 14(a) is the analogon to Fig. 1(a), and Fig. 14(b)
is the analogon to Fig. 1(b) in the time-domain dis-
cretization example from Sec. 2.

3.2.1. Monopole loudspeakers

G̊m,0(ω) of a monopole is depicted in Fig. 16(a). It
is obviously not capable of suppressing the undesired
spectral repetitions.
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is composed of D̊m(ω) (Fig. 12(a)) plus repetitions
thereof. L = 56 loudspeakers are assumed.

Fig. 12: Qualitative illustration of the driving func-
tion for a circular secondary source distribution in
order to synthesize a virtual plane wave of given
propagation direction. The values are clipped as in-
dicated by the colorbars.
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Fig. 13: Schematic of the process of spatial dis-
cretization with circular secondary source distribu-
tions.
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(b) Discrete driving function D̊m,S(ω) which is com-

posed of D̊m(ω) (Fig. 14(a)) plus repetitions thereof.
L = 56 loudspeakers are assumed.

Fig. 14: Qualitative illustration of a driving func-
tion like in Fig. 12 but with a spatial bandwidth
limitation according to (15) with M = 27 applied.

3.2.2. The anti-aliasing loudspeaker

By using the approach from [9], secondary sources
with complex radiation characteristic can be em-
ployed in an analytical and exact manner.

The spatio-temporal transfer function
G̊m,anti-alias(ω) of a theoretical – repetition-
suppressing – anti-aliasing loudspeaker is depicted
in Fig. 16(b). It was obtained from a monopole

transfer function G̊m,0(ω) via

G̊m,anti-alias(ω) =

{

G̊m,0(ω) for m ≤ M

0 elsewhere
. (17)

Note that (17) describes a spatial lowpass filter.
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Fig. 15: Sound field inside the horizontal plane
emitted by a loudspeaker with a transfer function
given by (17) with nominal location at x0 = [R 0 0]T

with R = 1.5 m and when driven with a monochro-
matic signal of f = 2000 Hz; The black cross indi-
cates x0.

The sound field emitted but such a loudspeaker is
illustrated in Fig. 15. Note that the loudspeaker is
not located in the coordinate origin but at x0 =
[R 0 0]T with R = 1.5 m. It is questionable that
such a sound field can be generated by a loudspeaker
which negligible spatial extent.

The consequence of the employment of loudspeakers
with G̊m,anti-alias(ω) is the fact the the synthesized
sound field SS(x, ω) is spatially bandlimited to order
M . As illustrated in Fig. 17(a) this does not have a
considerable impact at lower temporal frequencies.
However, the bandlimitedness of SS(x, ω) concen-
trates the energy of the latter around the center of
the secondary source distribution for higher frequen-
cies as shown in Fig. 17(b). Note that this concentra-
tion of energy is independent from the propagation
direction of the virtual plane wave.

3.2.3. Summary

As with linear secondary source distributions, the
anti-aliasing loudspeaker for circular distributions
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(b) Theoretical anti-aliasing loudspeaker as defined
by (17) with M = 27

Fig. 16: 20 log10
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; The values are clipped

as indicated by the colorbars.

might exhibit a considerable spatial extent. Again,
the employment of such a loudspeaker is not desired
in practice since it essentially restricts the spatial
extent of the synthesized sound field.

The fact that spatial repetitions due to discretiza-
tion of a bandlimited driving function lead to a more
balanced distribution of energy in the synthesized
sound field when the repetitions are not suppressed
has also been referred to as friendly aliasing [22].
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(a) f = 1000 Hz
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Fig. 17: Sound field synthesized by a discrete dis-
tribution of L = 56 anti-aliasing loudspeakers for
different frequencies. The marks indicate the nom-
inal locations of the loudspeakers. The values are
clipped as indicated by the colorbars.

4. CONCLUSIONS

Theoretical considerations on the anti-aliasing loud-
speaker for sound field synthesis were presented
based on the examples of linear and circular sec-
ondary source distributions. The strong analogies
between spatial discretization and time-domain dis-
cretization of a continuous signal were exploited in
order to facilitate the interpretation of the situa-
tion. The spatio-temporal transfer function of the
employed loudspeakers was identified as the interpo-
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lator which interpolates the discrete driving function
into continuous space.

The most basic required property of an anti-aliasing
loudspeaker was found to be a spatio-temporal
transfer function with limited spatial bandwidth.
The specific spatial frequency domain to be con-
sidered depends on the geometry of the secondary
source distribution under consideration. For lin-
ear distributions the spatio-temporal transfer func-
tion of the anti-aliasing loudspeaker has to be ban-
dlimited with respect to wavenumber domain. For
circular distributions, the corresponding spatial fre-
quency domain is the Fourier series coefficients do-
main.

Theoretically, considerable spatial discretization ar-
tifacts can be avoided when a loudspeaker spacing of
a few millimeters can be achieved. However, such a
spacing is not feasible in practice. Loudspeakers are
typically placed with a spacing of 10 to 20 cm. As
a consequence, the spatial passband of the spatio-
temporal transfer function of the anti-aliasing loud-
speaker has to be so narrow that the reproducible
spatial information is essentially restricted. For cir-
cular secondary source distributions the required
bandwidth limitation concentrates the energy of the
synthesized sound field around the center of the dis-
tribution; for linear distributions the possible prop-
agation directions of the synthesized sound field are
restricted above a given temporal frequency.

We emphasize that the presented treatment reflects
the general physical restrictions of discrete loud-
speaker arrays and not the restrictions of a specific
synthesis method. The findings hold qualitatively
for any method be it analytical or numerical.

Note finally that the term anti-aliasing loudspeaker
is strictly spoken not suitable for the loudspeakers
presented. The aliasing – i.e. the leakage of spec-
tral repetitions into the baseband – is prevented
by an appropriate bandwidth limitation of the driv-
ing function. The presented loudspeakers are rather
suitable interpolators of the discretized driving func-
tion since they suppress the spectral repetitions.
However, the term spatial aliasing tends to be gen-
erously applied on all types of spatial discretization
artifacts so that we occasionally also do so for con-
venience.
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