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ABSTRACT

We present an analytical approach targeting the physical reproduc-

tion of sound fields by means of linear distributions loudspeakers.

Unlike with conventional analytical approaches like wave field syn-

thesis, the employed loudspeakers are not required to be omnidirec-

tional. The approach does not compensate for loudspeaker properties

which deviate from certain assumptions but it rather allows for the

explicit consideration of these properties within some limits which

are outlined.

Index Terms— spatial Fourier transform, wave field synthesis,

spectral division method

1. INTRODUCTION

Traditionally, massive-multichannel sound field reproduction meth-

ods like wave field synthesis or higher order Ambisonics assume

that the involved secondary sources (i.e. loudspeakers) are om-

nidirectional. For lower frequencies, this assumption is indeed

approximately fulfilled when conventional loudspeakers with closed

cabinets are considered. However, for higher frequencies above a

few thousand Hertz complex radiation patterns evolve.

A number of approaches based on the theory of multiple-input-

multiple-output (MIMO) systems have been proposed in order to

compensate for loudspeaker radiation characteristics and influence

of the reproduction room (loudspeaker radiation characteristics are

part of the latter). Approaches suitable for linear loudspeaker arrays

are e.g. [1, 2, 3, 4].

Room compensation requires realtime analysis of the reproduced

sound field and adaptive algorithms due to the time-variance of

room acoustics (e.g. temperature variations). Compensation of the

loudspeaker radiation characteristics, such as directivity and fre-

quency response, is less complex since it can be assumed that these

characteristics are time-invariant. No adaptation and therefore no

real-time analysis is required. However, in order that the radiation

characteristics can be compensated for while neglecting the repro-

duction room, the radiation characteristics of the entire secondary

source setup have to be measured under anechoic conditions.

When certain physical constraints are accepted, a significant re-

duction of complexity can be achieved. Besides time-invariance,

the fundamental physical constraints introduced in the presented

approach are:

(1) The secondary source arrangement is linear.

(2) The spatio-temporal transfer function of the secondary

sources is shift invariant. In other words, all individual sec-

ondary sources have to have equal radiation characteristics

and have to be equally orientated.

Requirement (1) can obviously be fulfilled. Preliminary measure-

ments undertaken at Deutsche Telekom Laboratories have shown

that typical commercially available loudspeakers with closed cab-

inets indeed exhibit similar to equal spatio-temporal transfer func-

tions in anechoic conditions. This suggests that requirement (2) can

also be fulfilled when the acoustical properties of the reproduction

room are ignored.

The approach treated in this paper is termed spectral division method

and has been presented for linear and planar secondary source distri-

butions by the authors in [5]. A formulation of the spectral division

method for spherical and circular secondary source distributions has

been presented by the authors in [6, 7].

Unlike MIMO approaches which are discrete by nature, the spectral

division method is continuous and enables the application of pow-

erful analytical tools for the analysis of its general properties and

limitations.

In this contribution, we restrict the considerations to linear dis-

tributions of secondary sources and focus on the incorporation of

secondary sources with given radiation characteristics. The proper-

ties of the reproduced sound field are investigated analytically and

numerical simulations are presented which illustrate the results.

Nomenclature The following notational conventions are used: For

scalar variables, upper case denotes the temporal frequency domain.

The spatial frequency domain (wavenumber domain) is indicated

by a tilde over the respective symbol. The dependent variables

of a given quantity in the spatial frequency domain indicate with

respect to which dimension the spatial frequency domain is consid-

ered. E.g. P̃ (kx, y, z, ω) means that P (x, ω) is considered in the

wavenumber domain only with respect to kx.

Vectors are denoted by lower case boldface. The three-dimensional

position vector is given by x = [x y z]T and by (r, α, β) in spherical

coordinates. Refer also to the coordinate systems depicted in Fig. 1.

The acoustic wavenumber is denoted by k. It is related to the tem-

poral frequency by k2 =
(

ω
c

)2
with ω = 2πf being the radial

frequency and c the speed of sound.

Monochromatic plane waves are denoted by e−jkT
pwx, with k

T
pw =

[kpw,x kpw,y kpw,z] = kpw·[cos θpw sin φpw sin θpw sin φpw cos φpw]
and (θpw, φpw) being the propagation direction of the plane wave.

j is the imaginary unit
(

j =
√
−1

)

.

We refer to secondary sources rather than to loudspeakers since we

assume their distributions to be continuous throughout this paper.

2. DERIVATION OF THE SECONDARY SOURCE

DRIVING FUNCTION

In order to analyze the properties of the sound field reproduced by

planar and linear secondary source distributions, we have to find the
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Fig. 1. The coordinate systems used in this paper.

appropriate secondary source driving signals. The procedure is out-

lined in the following.

We will exemplarily derive the explicit driving signals to reproduce

a virtual plane wave of given propagation direction and frequency.

The obtained results can be straightforwardly extended to the repro-

duction of complex sound fields via the angular spectrum represen-

tation [8]. The latter represents the decomposition of wave fields into

a continuum of plane waves in a source-free region. The appropriate

combination of the driving signals for plane waves as indicated by

the angular spectrum representation yields the driving signals for a

given complex sound field to be reproduced.

For convenience, the secondary source array is assumed to be along

the x-axis (thus x0 = [x0 0 0]T , refer to Fig. 2). For this setup the

x

y

z

↙ y = yref

Fig. 2. Illustration of the geometrical setup. The secondary source

distribution is situated along the x-axis. It is indicated by the grey

shading and has infinite extend. The target half-plane is the half-

plane bounded by the secondary source distribution and contains the

positive y-axis. Thin dotted lines indicate the reference line (see

text).

reproduction equation is given by [9]

P (x, ω) =

∞
∫

−∞

D(x0, ω) · G(x − x0, ω) dx0 . (1)

Note that we assume G(·) to be shift invariant (we write G(x −
x0, ω) instead of G(x|x0, ω)) [8]. This requires that all secondary

sources have to have equal spatio-temporal characteristics and ori-

entation.

Equation (1) can be viewed as a convolution integral. This fact is

revealed when (1) is rewritten as

P (x, ω) =

∞
∫

−∞

D (x0, ω) G
(

[x y z]T − [x0 0 0]T, ω
)

dx0 = (2)

=

∞
∫

−∞

D(x0, ω) G(x − x0, y, z, ω) dx0 = (3)

= D(x, ω) ∗x G(x, ω) , (4)

whereby G(x, ω) represents the spatio-temporal transfer function of

the secondary source located in the origin of the coordinate system.

The convolution is performed along the x-axis and the convolution

theorem

P̃ (kx, y, z, ω) = D̃(kx, ω) · G̃(kx, y, z, ω) (5)

holds [10]. The secondary source driving function D̃(kx, ω) in

wavenumber domain is thus given by

D̃(kx, ω) =
P̃ (kx, y, z, ω)

G̃(kx, y, z, ω)
. (6)

In the above derivation, we intentionally assumed D(x, ω) to be

exclusively dependent on x because x is the only degree of free-

dom in the position of the secondary sources. However, generally

D(x, ω) will be dependent on the position of the receiver. This is

mathematically reflected by the fact that y and z do not cancel out

in (6) [5].

It is not surprising that we are not able to reproduce arbitrary sound

fields over an extended area since we are dealing with a secondary

source distribution which is neither infinite in two dimensions nor

does it enclose the target volume [8].

In the present case, the secondary source setup will only be capable

of creating wave fronts that propagate away from it. We will treat

this circumstance in an intuitive way in the following. Refer to [5]

for a rigorous derivation.

The propagation direction of the reproduced sound field can gener-

ally only be correct inside one half-plane bounded by the secondary

source distribution. We term this half-plane target half-plane. The

reproduced sound field anywhere else in space is a byproduct whose

properties are determined by the secondary source driving function

D(x, ω) and the radiation characteristics of the secondary sources

in the respective direction. For convenience, we aim at reproducing

a given desired sound field inside that half of the horizontal plane

which contains the positive y-axis. We therefore set z = 0.

However, above considerations do not affect the dependence of the

driving function on y. In other words, even inside the target half-

plane the reproduced sound field will generally only be correct on

a line parallel to the x-axis at distance y = yref [5]. At locations

off this reference line, the reproduced sound field generally deviates

from the desired sound field in terms of amplitude, propagation

direction, and near-field components [5].

The present situation, i.e. the employment of secondary sources

with a three-dimensional spatio-temporal transfer function for

two-dimensional reproduction and all resulting properties of the

reproduced sound field are termed 2.5-dimensional reproduction,

e.g. [11].

In order to simplify the mathematical treatment, we restrict the

validity of equations (1)–(6) to our reference line in the target half-

plane, i.e. z = 0 and y = yref.

Equation (6) is then given by

D̃(kx, ω) =
P̃ (kx, yref, 0, ω)

G̃(kx, yref, 0, ω)
. (7)



Performing an inverse Fourier transform with respect to kx on (7)

yields the driving function D(x, ω) in temporal spectrum domain as

D(x, ω) =
1

2π

∞
∫

−∞

P̃ (kx, yref, 0, ω)

G̃(kx, yref, 0, ω)
e
−jkxx

dkx . (8)

In order that D(x, ω) is defined, G̃(kx, yref, 0, ω) may not exhibit

zeros.

From (6) and (8) it is obvious that the driving function is essentially

yielded by a division in a spectral domain. We therefore term the

presented method spectral division method. We emphasize that the

spectral division method is not restricted to linear secondary source

distributions (refer to Sec. 1).

For convenience, we want to reproduce a virtual plane wave which

propagates along the x-y-plane. Recall that we reference the repro-

duced sound field to the line given by z = 0 and y = yref > 0. Refer

to Fig. 2.

P̃ (kx, y = yref, z = 0, ω) of a monochromatic plane wave of ra-

dial frequency ωpw = 2πfpw and with unit amplitude propagating in

direction (θpw, π

2
) is given by [5]

P̃ (kx, yref, 0, ω) = 2πδ(kx − kpw,x) e
−jkpw,yyref×

× 2πδ(ω − ωpw) , (9)

where kpw,x = kpw cos θpw and kpw,y = kpw sin θpw.

Introducing (9) and the reference line into (8) and exploiting the sift-

ing property of the Dirac delta function [10] yields the driving signal

D(x, ω) for the secondary source at position [x 0 0]T as

D(x, ω) =
e−jkpw,yyref e−jkpw,xx

G̃ (kpw,x, yref, 0, ωpw)
. (10)

If we thus aim at reproducing a virtual plane wave, we can relax the

requirement that G̃(kx, yref, 0, ω) may not exhibit zeros as set in (8).

From (10) we can deduce that for the reproduction of a plane wave, it

is sufficient that G̃ (kpw,x, yref, 0, ωpw) does not exhibit zeros. Arbi-

trary complex wave fields can be described by a continuum of plane

waves [8] so that in this case the strict requirement as dictated by (8)

applies.

If the latter requirement is not fulfilled in practical situations, regu-

larization can be applied in order to ensure a good behavior of the

inverse of G̃(·). In the presented approach, the regularization can be

applied on individual spatial frequencies kx which results generally

in a more gentle regularization than regularizing the entire inverse

problem like in [1].

3. COMPARISON TO CONVENTIONAL APPROACHES

As stated in Sec. 1, analytical sound field reproduction methods

like WFS which employ linear distributions of secondary sources

assume that the latter are omnidirectional, e.g. [11]. However,

real-world loudspeakers are omnidirectional only for low frequen-

cies, but complex radiation patterns evolve for frequencies typically

above a few thousand Hertz. In order to assess the benefit of the

proposed method, we have to investigate what happens in real-live

scenarios when conventional methods are employed, i.e. when an

array composed of non-omnidirectional loudspeakers with spatio-

temporal transfer function G0(·) is driven with a driving function

designed for omnidirectional secondary sources. We denote the

spatio-temporal transfer function assumed by the driving function

GD(·). For convenience, we assume again a virtual plane wave to

be reproduced.

In order to obtain the reproduced sound field P (x, ω) we insert (9)

in (7), the result in (5), perform an inverse Fourier transform with

respect to kx and exploit the sifting property of the Dirac delta

function [10]. P (x, ω) is then given by

P (x, ω) = e
−jkpw,yyref e

−jkpw,xx G̃0 (kpw,x, y, z, ωpw)

G̃D (kpw,x, yref, 0, ωpw)
, (11)

In (11), G̃D (kpw,x, yref, 0, ωpw) is a single complex number whose

absolute value and phase are both dependent on the propagation di-

rection of the virtual plane wave and on the assumed spatio-temporal

transfer function of the secondary sources employed.

This means that if the spatio-temporal transfer function of the sec-

ondary sources which was assumed in the derivation of the driving

function does not match the actual spatio-temporal transfer function

of the employed secondary sources, the reproduced sound field will

deviate from the desired sound field in amplitude and in phase. Both

the amplitude and the phase deviations are dependent on the propa-

gation direction of the virtual plane wave and on the mismatch be-

tween actual and assume secondary source spatio-temporal transfer

function.

As a consequence, if such a mismatch is apparent, the reproduced

sound field varies in amplitude and phase for different propagation

angles. Furthermore, if the mismatch is dependent on the tempo-

ral frequency f (what it does in real-life scenarios, see above), the

amplitude and phase of a virtual plane wave of given propagation

direction carrying a broadband signal varies with the temporal fre-

quency. Especially the frequency dependent amplitude variations are

likely to be audible as a timbral coloration.

It is remarkable that the reproduced sound field will exhibit perfectly

plane wave fronts for a given frequency f even if a mismatch is ap-

parent. The amplitude decay of the reproduced sound field is de-

pendent on the spatio-temporal transfer function of the secondary

sources employed. Omnidirectional sources lead to an amplitude

decay for around 3 dB for each doubling of the distance to the sec-

ondary source distribution [9]. For secondary sources with a strong

focus in a given direction the amplitude decay is lower.

4. RESULTS

In this section, we present simulations of a sample scenario in order

to illustrate the theoretical derivations outlined in Sec. 2. We will

simulate the sound field of a distribution of secondary sources with

given directivity and compare the result with a distribution of omni-

directional secondary sources in order to illustrate the basic proper-

ties.

The distribution of non-omnidirectional sources is assumed be com-

posed of secondary sources with a spatio-temporal transfer function

Gdipole(·) given by

Gdipole(x, ω) = h
(2)
1

(

ω

c
r
) (

e
−j π

6 Y
1
1 (α, β) − e

j π
6 Y

−1
1 (α, β)

)

,

(12)

whereby h
(2)
1 (·) denotes the 1st-order spherical Hankel function of

second kind, and Y m
n (·) the n-th degree, m-th order spherical har-

monic [8]. Refer to Fig. 1 for the coordinate system.

Gdipole(·) represents a dipole [8] whose main axis lies in the horizon-

tal plane at an angle of 30° to the x-axis. The normalized far-field

directivity of Gdipole(·) is depicted Fig. 3.

For convenience, we apply a numerical Fourier transform in order to

obtain G̃dipole(·) since an analytic treatment is not straightforward.



Fig. 3. Normalized far-field directivity of the secondary sources em-

ployed in Fig. 4(b).

Like in Sec. 2, we aim at reproducing a virtual plane wave with unit

amplitude and propagation direction
(

π
4
, π

2

)

.

It can be shown that G̃dipole (kpw,x, yref, 0, ωpw) does not exhibit ze-

ros. It is therefore justified to apply presented approach.

The real part of the sound field reproduced a continuous distribution

of such dipoles when it is driven with the presented approach is de-

picted in Fig. 4(b). The classical situation, i.e. a linear distribution

of secondary monopoles, is depicted in Fig. 4(a) for comparison.

We reproduced sound fields are very similar inside the target half-
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(a) Distribution of monopoles.
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(b) Distribution of dipoles as
indicated in text.

Fig. 4. Sound fields in the horizontal plane reproduced by contin-

uous distributions of secondary sources. Desired sound field is a

monochromatic plane wave of frequency fpw = 700 Hz with unit

amplitude and propagation direction
(

π
4
, π

2

)

.

plane. For the distribution of monopoles, the sound field reproduced

in the other half-space is a perfect mirrored copy of the target half-

space. For the distribution of dipoles, the sound field reproduced in

the other half-space differs from the perfect mirrored copy with re-

spect to amplitude and phase. The wave fronts are perfectly plane in

both half-planes. The observations are in accordance with the dis-

cussion carried out in Sec. 3.

5. CONCLUSIONS AND OUTLOOK

The spectral division method applied on linear distributions of sec-

ondary sources was presented. The focus of this paper was on the

incorporation of the spatio-temporal characteristics of the employed

secondary source and on the properties of the reproduced sound

field. It was shown that the spatio-temporal transfer function of the

employed secondary sources may not exhibit zeros in the wavenum-

ber domain. Otherwise regularization has to be applied in order to

ensure a good behavior of the inverse of the transfer function.

Unlike MIMO approaches where the radiation characteristics of the

entire secondary source setup have to be measured in anechoic con-

ditions, it is sufficient in the presented approach to measure only one

single secondary source. At this stage it can not be judged whether it

is favorable to employ a linear microphone array in the measurement

of the secondary source’s transfer function or whether a spherical

or circular array is advantageous when an appropriate plane wave

representation of the measured signals is used.

The treatment of discrete secondary source distributions was beyond

the scope of the paper and is subject to future work. Discrete dis-

tributions of non-omnidirectional have remarkable properties with

respect to spatial aliasing and even provide the potential to suppress

spatial aliasing in special situations.

Although not explicitly investigated either in the present paper, it

can be shown that the amplitude deviations of the reproduced sound

field from perfect reproduction are lower when secondary sources

with a with a strong focus in a given direction are employed. It might

therefore be favorable to use such loudspeakers especially in large

arrays in order to achieve a more balanced amplitude distribution.

This circumstance is also subject to future work.

6. REFERENCES

[1] O. Kirkeby, P.A. Nelson, H. Hamada, and F. Orduna-Bustamante, “Fast
deconvolution of multichannel systems using regularization,” IEEE

Trans. on Sp. and Audio Proc., vol. 6, no. 2, pp. 189–195, March 1998.

[2] J. J. Lopez, A. Gonzalez, and L. Fuster, “Room compensation in wave
field synthesis by means of multichannel inversion,” in IEEE Workshop

on Appl. of Sig. Proc. to Audio and Acoustics (WASPAA), New Paltz,
NY, USA, Oct. 2005.

[3] E. Corteel, “Equalization in an extended area using multichannel inver-
sion and wave field synthesis,” JAES, vol. 54, no. 12, pp. 1140–1161,
Dec. 2006.

[4] S. Spors, H. Buchner, R. Rabenstein, and W. Herbordt, “Active listen-
ing room compensation for massive multichannel sound reproduction
systems using wave-domain adaptive filtering,” JASA, vol. 122, no. 1,
pp. 354–369, July 2007.

[5] J. Ahrens and S. Spors, “Sound field reproduction using planar and
linear arrays of loudspeakers,” IEEE Trans. on Sp. and Audio Proc.,
under review.

[6] J. Ahrens and S. Spors, “An analytical approach to sound field repro-
duction using circular and spherical loudspeaker distributions,” Acta

Acustica utd. with Acustica, vol. 94, no. 6, pp. 988–999, Nov./Dec.
2008.

[7] J. Ahrens and S. Spors, “An analytical approach to 2.5D sound field
reproduction employing circular distributions of non-omnidirectional
loudspeakers,” in 17th European Signal Processing Conference (EU-

SIPCO), Glasgow, Scotland, August 24–28th 2009.

[8] E. G. Williams, Fourier Acoustics: Sound Radiation and Nearfield

Acoustic Holography, Academic Press, London, 1999.

[9] J. Ahrens and S. Spors, “Reproduction of a plane-wave sound field
using planar and linear arrays of loudspeakers,” in IEEE Int. Symp. on

Comm., Control, and Sig. Proc. (ISCCSP), Malta, March 12th–14th
2008.

[10] B. Girod, R. Rabenstein, and A. Stenger, Signals and Systems, J.Wiley
& Sons, 2001.

[11] S. Spors, R. Rabenstein, and J. Ahrens, “The theory of wave field
synthesis revisited,” in 124th Convention of the AES, Amsterdam, The
Netherlands, May 17–20 2008.


