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Abstract—Sound reproduction methods based on the physical
resynthesis of a desired field using loudspeaker arrays are well-
established nowadays. Their physical basis allows to resynthesize
almost any desired wave field, even the field of sound sources
positioned in between the loudspeakers and the listener. Such
sources are known as focused sources. This paper will present a
novel approach to the reproduction of focused sources with linear
loudspeaker arrays. Its formulation is based on a representation
of the respective fields in the spatio-temporal frequency domain.
The derivation of the loudspeaker driving function is discussed,
as well as a number of practical limits, the role of evanescent
contributions and the connections to other established techniques.

I. I NTRODUCTION

The accurate resynthesis of a sound field using loudspeaker
arrays has been a quite active area of research in the last
decades. Well known approaches in this context are wave field
synthesis (WFS) [1], higher-order Ambisonics (HOA) [2] and
a number of least-squares approaches e. g. [3]. Recently, the
authors have proposed a novel technique, the spectral division
method (SDM) [4], [5].
An interesting property of these approaches is that they prin-
cipally allow to reproduce the wave field of a source which is
positioned in between the loudspeakers and the listener. These
are known asfocused sources, due to their strong relation to
acoustic focusing.
Acoustic focusing refers to a variety of techniques to focus
acoustic wave fields. These have been developed in diverse
application areas like e. g. material analysis or medicine [6]–
[8]. The basic concept underlying most of the techniques is
the principle of time-delay law focusing or more generally
of time-reversal acoustic focusing. Typically, a concentration
of acoustic energy at the focus point is desired. For sound
reproduction, the goal is to create the illusion of an acoustic
source that is situated in front of the loudspeaker array.
Note, that this condition implies an important constraint in
comparison to the traditional time-reversal principle. Only
contributions emerging from the desired focused source should
be reproduced at the listener position in order not to confuse
the auditory impression by other contributions. Time reversal
techniques may result in additional contributions, especially
for curved or closed loudspeaker arrays.
So far, the SDM has been applied to the reproduction of plane
waves with planar or linear loudspeaker arrays [4], [5]. This
paper extends the SDM for the reproduction of focused sources
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Fig. 1. Geometry underlying the reproduction of focused sources with a
linear distribution of secondary point sources. The yellowarea denotes the
listening area.

using linear loudspeaker arrays. It is organized as follows:
Section II outlines the SDM, while Section III extends it
towards the reproduction of focused sources. Section IV shows
results, discusses the effects of spatial sampling and truncation,
and illustrates the links to WFS. The paper is summarized and
some conclusions are drawn in Section VI.

II. T HE SPECTRAL DIVISION METHOD

The spectral division method, presented in [4], [5], utilizes a
formulation of the sound reproduction problem in the Fourier
domain. It is applicable to planar and linear loudspeaker
arrays. In this paper the considerations are limited to the case
of linear loudspeaker arrays due to their practical relevance in
sound reproduction. The following section outlines the basic
theory.

A. Basic Concept

Without loss of generality, the geometry depicted in Fig. 1
will be assumed for the following considerations. An appro-
priately driven continuous distribution of monopole sources
(secondary sources) is located along thex-axis. The repro-
duced wave fieldP (x, ω) is given as

P (x, ω) =

∫ ∞

−∞

D(x0, ω)G(x − x0, ω)dx0 , (1)

whereω = 2πf denotes the angular frequency,x = [x y z]T

an arbitrary position in space andx0 = [x0 0 0]T a
position on the secondary source distribution. The wave field
of the secondary sources is denoted asG(x − x0, ω), and
their weights (driving function) byD(x0, ω). For the sake of
simplicity it is assumed that the listeners ears are locatedin



the upper half-plane (y > 0) of the planez = 0. Please refer
to [5] for a generalization. Thez-coordinate will be discarded
in the remainder of this paper.
Equation (1) essentially constitutes a spatial convolution of the
driving function with the field of the secondary sources along
the x-axis. Hence, the convolution theorem [9] of the Fourier
transformation can be utilized. Applying a spatial Fourier
transformation with respect to thex-coordinate to Eq. (1)
yields

P̃ (kx, y, ω) = D̃(kx, ω) G̃(kx, y, ω) , (2)

wherekx denotes the wavenumber inx-direction. Quantities
in the spatial Fourier domain are indicated by a tilde. Equa-
tion (2) can now be solved easily with respect to the driving
function D̃(kx, ω) when the spectra of the desired wave field
P̃ (kx, y, ω) and the secondary sourcesG̃(kx, y, ω) are known.
The former is derived in the following section.

B. Secondary Source Model

Although the SDM allows for the employment of secondary
sources with complex radiation characteristics we assume a
point source model for simplicity. Loudspeakers with closed
cabinets approximately have the properties of a point source.
Hence, the point source is a practical model for the secondary
sources. The associated transfer function is given as [10]

G(x − x0, ω) =
1

4π

e−j ω

c
|x−x0|

|x − x0|
, (3)

wherec denotes the speed of sound. The Fourier transforma-
tion with respect tox can be derived from [11] as

G̃(kx, y, ω) =
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whereH

(2)
0 (·) denotes the zero-th order Hankel function of

second kind andK0(·) the zero-th order modified Bessel
function of second kind [12]. Note that (4) is valid only for
y > 0. The spectrum of the secondary sources (4) consists
of two parts: a traveling contribution for|kx| <
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ω
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Evanescent waves are waves which exhibit no phase variation
in at least one spatial dimension and decay exponentially
in these directions [10]. They emerge from solutions of the
acoustic wave equation with exhibit at least one imaginary
wave number.

C. 2.5-dimensional Reproduction

From a physical point of view, the natural choice for the
characteristics of secondary sources used for two-dimensional
reproduction would be the elementary solution of the wave
equation in two dimensions. The resulting transfer function
is given by the two-dimensional free-field Greens function,
which can be interpreted as the field produced by a line source.
Using point sources as secondary sources for the reproduction
in a plane results in a dimensionality mismatch, therefore such
methods are often termed as2.5-dimensional reproduction.
It is well known from other reproduction techniques, e. g. WFS

and HOA, that 2.5-dimensional reproduction techniques suffer
from artifacts [13], [14]. Most prominent are amplitude and
spectral errors in this context. For the SDM these artifactshave
been analyzed in detail for the reproduction of plane waves [5].

III. F OCUSEDSOURCES USING THESDM

So far the spectral division method, as outlined in Section II,
has been applied to the reproduction of plane waves. This
section presents the extension to focused sources.

A. Model of Focused Source

In order to derive the driving function, a model for the
desired wave fieldP (x, ω) is needed. A point source placed
within the listening area is not a suitable model in this
context. The resulting solution would have to violate causality
below the focus point, since the secondary sources can only
emit a wave field which travels towards the focus point. A
suitable model for a focused source can be formulated by
prescribing the field above the focus point as a point source.
The impression of a source within the listening area is hence
only conveyed for focus points located in between the listener
and the secondary sources. However, this is a well known
limitation in the context of auralization. The resulting listening
area is indicated by the yellow area in Fig. 1.
Modeling an acoustic point source above the focus point
y > yfs yields

Pfs(x, ω) = P̂fs(ω)
1

4π

e−j ω

c
|x−xfs|

|x − xfs|
, for y > yfs > 0 , (5)

where xfs = [xfs yfs]
T denotes the position of the focused

source (focus point) and̂Pfs(ω) the temporal spectrum of the
focused source. Based on the model (5), the driving function
is derived in the next section.

B. Derivation of Driving Function

The spatial spectrum̃Pfs(kx, y, ω) of the focused source (5)
is required in order to analytically derive the driving function
by application of (2). The spatio-temporal spectrum can be
derived from (4) by applying the shift-theorem [9] of the
Fourier transformation. It is given as

P̃fs(kx, y, ω) = P̂fs(ω) ejkxxfs×
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which is valid fory > yfs > 0. The driving function is given
by a division of the spectrum of the desired fieldP̃fs(kx, y, ω)
and the spectrum of the secondary sourcesG̃(kx, y, ω)

D̃fs(kx, ω) = P̂fs(ω) ejkxxfs×
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It is easy to conclude from Eq. (7) that the driving function
depends on the (listener) distancey to the secondary source



distribution. This is a property of 2.5-dimensional reproduc-
tion. The wave field can only be reproduced correctly on
a reference liney = yref parallel to the secondary source
distribution [5]. In the remainder of this paper,y will be
replaced byyref whenever the driving function (7) is used.
Even though we are only matching the spectra of the repro-
duced and the desired wave field fory > yfs, the wave field for
0 < y < yfs will be determined uniquely. This follows from
the Rayleigh integrals [10]. It is nevertheless straightforward
to repeat the steps above for the regiony < yfs, in order to
derive an alternative formulation of the driving function.
Note, the driving function is not defined foryref − yfs = 0
due to the properties of the involved functions. The driving
function (7) is composed of a propagating and an evanescent
part. The latter is subject to excessive levels in the driving
function, as will be discussed in the following.

C. Near-Field Contributions

Using large argument approximations of the modified Bessel
function and the Hankel function [12] yields the following
approximation of the spectrum of the driving function (7)

D̃fs(kx, ω) ≈ P̂fs(ω) ejkxxfs
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The approximation given by (8) holds for
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Hence, for large distances of the focus point to the secondary
source distribution (yfs ≫ 1) and for large distances of the
reference line to the focus point ((yref − yfs) ≫ 1), or for
high temporal/spatial frequencies in case of the propagat-
ing/evanescent part. The approximation has shown to be quite
accurate for typical frequencies (above some hundert Herz)
and distances (bigger than some ten centimeters) used in audio
reproduction.
It is evident from (8) that the evanescent part of the driving
function becomes very large for focused sources far away
from the secondary source distribution and for high spatialor
low temporal frequencies. This can be concluded intuitively
when considering the exponentially decay of the evanescent
contributions of the individual secondary sources with distance
to the secondary source distribution.

D. Modified Driving Function

A solution to overcome the potential problems with the
evanescent contributions in the driving function (7) is to
model the focused source without these. As first approach,
the evanescent contributions in (6) are simply neglected. This

results in the following modified driving function

D̃mod,fs(kx, ω) = P̂fs(ω) ejkxxfs×
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As a consequence, the evanescent part of the focused source
will not be resynthesized. However, this modification results
in a more stable driving function, as will be shown in the next
section. To the knowledge of the authors, the role of evanescent
contributions in human perception seems to be unclear at the
current state of research.

IV. RESULTS

The following section discusses the properties of the pro-
posed approach and illustrates its relations to WFS.

A. Reproduced Wave Field

The reproduced wave field is given by introducing the
driving function D̃fs(kx, ω) together with the spectrum of
the secondary sources into (2). Inverse Fourier transforma-
tion yields then the reproduced wave field in the temporal
frequency domain. Performing these steps for a position on
the reference liney = yref yields that the desired wave field
is indeed reconstructed perfectly there. In order to illustrate
the properties of the reproduced wave field at other positions
numerical simulations of (2) and the inverse spatial Fourier
transformation have been performed.
Fig. 2(a) shows the reproduced wave field for the driving
functionD̃fs(kx, ω) including the evanescent contributions (7)
and Fig. 2(b) for the modified driving functioñDmod,fs(kx, ω)
excluding the evanescent contributions (9). The reproduction
of a focused source at positionxfs = [0 1]T m emitting a
monochromatic signal withfs = 1000 Hz using a continuous
secondary source distribution is considered. The reference line
is chosen toyref = 2 m (dashed line in Fig. 2).
As already predicted in Section III-C and clearly visible in
Fig. 2(a), the driving function (7) including the evanescent
contributions produces excessive amplitudes in the reproduced
wave field below the focus point (y < yfs). Above the focus
point (y > yfs), the field is resynthesized without visible
artifacts. However, these excessive contributions will render
this approach unfeasible in practice.
The modified driving function (9), excluding the evanescent
contributions used in Fig. 2(b) does not show these problems.
The amplitudes are bounded to reasonable levels. However
the hard truncation proposed in Section III-D, seems to cause
artifacts in the reproduced wave field above the focus point
(y > yfs). The amplitude of the wave fronts shows some
deviations from the desired field.
A more in-depth analysis of the reproduced wave fields shown
in Fig. 2 revealed that the amplitude decay with distance to
the secondary source distribution of the focused source does
not equal the decay of a point source placed at the focus point.
This is a well known artifact of 2.5-dimensional reproduction.
However, in the case of focused sources the amplitude decay
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(a) Driving function (7) including evanescent contributions
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(b) Modified driving function (9) excluding evanescent contributions

Fig. 2. Reproduced wave field for a monochromatic focused source with fs = 1000 Hz, xfs = [0 1]T m andyref = 2 m using a continuous secondary
source distribution. The level is normalized to the reference line, values are clipped.

seems to differ not so much as for the reproduction of plane
waves. The detailed analysis of artifacts and the improvement
is subject to future work.
Practical implementations of the proposed approach will use
a finite number of loudspeakers placed at discrete positions.
This implies a spatial sampling and truncation process thatis
discussed in the following two subsections.

B. Spatial Sampling

The discretization of the secondary source distribution is
modeled by spatial sampling of the driving function. This is
performed by multiplyingDfs(x, ω) with a series of spatial
Dirac functions at the positions of the loudspeakers. For an
equidistant spacing this reads

Dfs,S(x, ω) = Dfs(x, ω) · 1

∆x

∞
∑

µ=−∞

δ(x − ∆xµ) , (10)

whereDfs,S(x, ω) denotes the sampled driving function and
∆x the distance (sampling period) between the sampling
positions (indicated by the dots• in Fig. 1). Applying a spatial
Fourier transformation to (10) results in

D̃fs,S(kx, ω) = 2π

∞
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(
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∆x
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)

. (11)

Equation (11) states that the spectrum̃Dfs,S(kx, ω) of the
sampled driving function is given as a superposition of the
shifted continuous spectrãDfs(kx − 2π

∆x
η, ω) of the driv-

ing function. Introducing the spectrum of the sampled driv-
ing function D̃fs,S(kx, ω) into (2) results in the spectrum
P̃fs,S(kx, y, ω) of the wave field reproduced by a spatially
discrete secondary source distribution.
Above considerations can be used to qualitatively and quan-
titatively discuss the effects of spatial sampling for focused
sources. The same methodology as outlined above has been
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Fig. 3. Wave field reproduced for a monochromatic focused source using
D̃mod,fs(kx, ω) with fs = 2000 Hz, xfs = [0 1] m and yref = 2 m by
a discrete secondary source distribution with∆x = 0.20 m. The level is
normalized to the reference line, values are clipped.

used for a detailed analysis of sampling artifacts for WFS [15],
[16]. It is straightforward to apply these methods also here.
Fig. 3 shows a numerical simulation of the wave field re-
produced by a spatially discrete secondary source distribution
with ∆x = 0.20 m using (11) and the modified driving
functionD̃mod,fs(kx, ω). The focused source emits a monochro-
matic signal withfs = 2000 Hz. Sampling artifacts are clearly
visible in the reproduced wave field, especially close to the
secondary sources. However, no sampling artifacts are visible
in the vicinity of the focus point. This is an interesting property
of focused sources that has been observed also in the context
of WFS [16]. An in-depth analysis is subject to future research.



C. Truncation

Practical implementations will not only be realized by
spatially discrete distribution of individual secondary sources
but will also be of finite length. This constitutes a truncation of
the secondary source distribution. Mathematically, truncation
can be modeled by multiplying the secondary source driving
function Dfs(x, ω) with a suitable window functionw(x).
Incorporatingw(x) into (1) yields the wave fieldPfs,tr(x, ω)
reproduced by a truncated linear array [5].
Quantitatively, truncation will have two consequences: (1) a
limited listening area and (2) an enlarged focus point. The
effective listening area can be approximated quite well by
geometric means. It is given by the area in front of the
loudspeaker array which is bounded by lines through the focus
point passing the secondary source distribution at its ends
in a tangent like manner [16]. Severe truncation artifacts are
present outside this area and some minor deviations are present
in the listening area. The second consequence of truncation
is well known from optics and there often referred to as
diffraction limited system.

V. COMPARISON WITH WAVE FIELD SYNTHESIS

Focused sources are a basic feature of WFS [13]. The links
between the proposed approach and acoustic focusing by WFS
are of special interest, since the properties of these have been
investigated in quite some detail for the latter [16].
Qualitatively, the link can be established by comparing theap-
proximation (8) of the spatial spectrum of the driving function
with the spectrum of the WFS driving function derived in [16,
eq.(10)]. Both are equal besides a normalization factor. The
link to the traditional driving function for WFS [13, eq.(2.30)]
can be established by following the argumentation given
in [16]. In summary, performing a far-field approximation of
the inverse spatial Fourier transformation of the approximated
driving function (8) will result (besides some normalization
factors) in the traditional WFS driving function for focused
sources. Hence in the context of focused sources, WFS can
be regarded as an approximation of the SDM. A similar
conclusion was also drawn for the reproduction of plane waves
with the spectral division method [5].
As a consequence of the close relationship between the pro-
posed approach and WFS, most of the properties that have
been reported for WFS will hold also here [16]. This holds
especially when the approximations used to derive the link
are valid, hence for high-frequencies, large distancesyfs of
the focused source to the secondary source distribution and
listener positionsy far away from the focused source. Note,
that these limits have to be seen in the context of typical wave
lengths appearing in audio reproduction.

VI. CONCLUSIONS

This paper presents an approach to acoustic focusing using
linear loudspeaker arrays which is based upon a formulation
of the underlying problem in the spatio-temporal frequency
domain. The driving function is derived by spectral division
in the spatio-temporal frequency domain and inverse Fourier

transformation. It was shown that the evanescent contributions
of the desired focused source cannot be reconstructed without
accepting high levels in the driving signals of the secondary
sources. Hence, in practice it is favorable to neglect the
evanescent contributions of the focused source. However, the
psychoacoustic implications seem to be unclear at the current
stage.
The derived results in conjunction with the results in [16]
further indicate that the artifacts of 2.5D reproduction
are different for focused sources than for plane waves.
Interestingly, acoustic focusing as used currently in WFS can
be regarded as an approximation of the presented approach.
Hence, the presented approach will have benefits for focused
sources placed close to the secondary source distribution and
for low frequencies. Furthermore, extensions to the spectral
division method like explicit consideration of the secondary
source directivity can be applied straightforwardly.
The presented approach can also be applied to other
application areas like e. g. ultrasonic imaging. Future research
will include a more detailed analysis of the physical and
psychoanalytical properties of the presented approach.
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