
2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2011, New Paltz, NY

EFFICIENT REALIZATION OF MODEL-BASED RENDERING FOR 2.5-DIMENSIONAL
NEAR-FIELD COMPENSATED HIGHER ORDER AMBISONICS

Sascha Spors, Vincent Kuscher and Jens Ahrens

Quality and Usability Lab, Deutsche Telekom Laboratories, Technische Universität Berlin, Germany
{sascha.spors,jens.ahrens}@telekom.de

ABSTRACT

Near-field compensated higher order Ambisonics is a sound field
synthesis technique which is based upon a mathematical represen-
tation in terms of surface spherical harmonics. The generation of
loudspeaker driving signals using digital signal processing is a nu-
merically challenging task due to the involved special functions.
This paper presents an efficient algorithm for 2.5-dimensional near-
field compensated higher order Ambisonics. It is based upon a
parametric representation of recursive filters realized in first- and
second-order sections. The performance of the proposed technique
is evaluated at an illustrative example.

1. INTRODUCTION

Sound field synthesis (SFS) techniques aim at the synthesis of a
desired sound field within an extended area using an ensemble of
loudspeakers. It is assumed that the correct synthesis in the phys-
ical sense leads to improved perceptual properties in comparison
with traditional approaches, like stereophony. An number of meth-
ods have been developed in the past decades. Well known analytic
methods in this context are Wave Field Synthesis (WFS), near-field
compensated higher order Ambisonics (NFC-HOA) and the Spec-
tral Division Method (SDM). In SFS two different techniques can
be distinguished for the rendering of virtual scenes: (i) data-based
and (ii) model-based rendering. For data-based rendering a scene
is recorded by sound field analysis techniques, for instance using
spherical microphone arrays, and the loudspeaker driving signals
are derived such that they synthesize the spatio-temporal structure
of the recorded scene as closely as possible.
In model-based rendering, models of virtual sources are used which
are then fed by the (dry) virtual source signal. Frequently used
models are point sources or plane waves. A virtual scene is typi-
cally composed from multiple sources of both types. Most of the
currently available implementations of NFC-HOA are data-based.
In [1] an approach for 3D model-based NFC-HOA was proposed,
2D synthesis was briefly discussed. The present paper proposes an
efficient and parametric algorithm for 2.5-dimensional NFC-HOA
which is more practical than a 2D or 3D solution.

2. NEAR-FIELD COMPENSATED HIGHER ORDER
AMBISONICS

The theory of NFC-HOA has originally been developed in [3] on
basis of the traditional Ambisonics approach. The following sec-
tion briefly reviews a generalized viewpoint as presented in [4]. We
begin with a spatially continuous formulation of the problem that is
later on sampled.
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Figure 1: 2.5-dimensional synthesis of a virtual source using a cir-
cular distribution of secondary sources.

2.1. Basic principle

The theory of NFC-HOA is based on explicitly solving the under-
lying physical problem of synthesizing a desired virtual sound field
within an extended area using an ensemble of loudspeakers (sec-
ondary sources). Analytic solutions are so far available for circular
or spherical distributions of secondary sources. Here, we consider
a circular distribution of secondary sources with monopole charac-
teristics. The distribution does not enclose the listening volume,
like for instance a spherical one would do. This constitutes a 2.5-
dimensional scenario. Refer to [4] for a detailed discussion of the
properties of 2.5-dimensional NFC-HOA.
Figure 1 illustrates the geometry underlying the following consid-
erations. The sound field P (x, ω) synthesized by a circular distri-
bution of secondary sources with radius R is given as

P (x, ω) =

∫ 2π

0

D(α0, ω)G(x− x0, ω) Rdα0 , (1)

were G(x − x0, ω) denotes the spatial transfer function of a sec-
ondary source at position x0, D(α0, ω) its weight (driving signal),
x = r [cosα sinα]T and x0 = R [cosα0 sinα0]

T . Expanding
the quantities in (1) into a Fourier series with respect to the azimuth
α yields

P̊m(r, ω) = 2πR D̊m(R,ω)G̊m(r, ω) , (2)

were for instance P̊m(r, ω) denotes the Fourier series coefficients of
the synthesized sound field so that P (x, ω) =

∑∞
m=−∞ P̊m(r, ω)ejmα.

The secondary source driving signal in order to synthesize a sound
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field S(x, ω) can be determined to be

D(α, ω) =
1

2πR

∞∑
m=−∞

S̊m(r, ω)

G̊m(r, ω)︸ ︷︷ ︸
D̊m(ω)

ejmα . (3)

The undesired dependency on r of the Fourier series coefficients
S̊m(r, ω) and G̊m(r, ω) in 2.5-dimensional synthesis can be over-
come by referencing the synthesis to the center [4]. For simple
source models, the required Fourier series coefficients can be de-
rived analytically. In the following, we assume secondary monopole
sources.

2.2. Spatial sampling of secondary source distribution

Equation (1) assumes a spatially continuous distribution of sec-
ondary sources. In practice, the distribution is realized by a spatially
discrete distribution of individual loudspeakers. This constitutes a
spatial sampling of the secondary source distribution. Refer for
instance to [4, 5] for a discussion of spatial sampling in the context
of NFC-HOA.
For a spatially discrete distribution of secondary sources, the
Fourier series (3) is typically truncated. The truncation represents
a spatial bandlimitation of the driving function. For an equiangu-
lar sampling of the secondary source distribution, the bandlimited
driving signal is given as

D(α, ω) =
1

2πR

M∑
m=−M

D̊m(ω)ejmα , (4)

were P = 2M + 1 denotes the number of spatially discrete sec-
ondary sources (loudspeakers). For simplicity we limit our pre-
sentation to an odd number of loudspeakers P . The theory can
be extended straightforwardly to even numbers by modifying the
summation limits in (4).

2.3. Virtual plane waves and point sources

For model-based rendering, spatio-temporal models for the virtual
source are required in order to derive the driving functions analyt-
ically. The most common models used are plane waves and point
sources. We consider these two types in the remainder.
The Fourier series coefficients D̊pw,m(ω) of the driving function for
the synthesis of a virtual plane wave Spw(x, ω) = Ŝ(ω)e−j ω

c
n
T
pwx

using point sources as secondary sources are given as [4]

D̊pw,m(ω) = Ŝ(ω)
4πj(−j)|m|

ω
c
h
(2)
|m|(

ω
c
R)︸ ︷︷ ︸

Hpw,m(ω)

e−jmθpw , (5)

were h
(2)
m (·) denotes the m-th order spherical Hankel function of

second kind, Ŝ(ω) the time-frequency spectrum of the plane wave,
θpw the azimuth of the propagation direction npw = [cos θpw sin θpw]

T .
The Fourier series coefficients D̊ps,m(ω) of the driving function for
a virtual point source Sps = Ŝ(ω)e

−j ω
c
|x−xps|/|x−xps| at position

xps = rps [cos θps sin θps]
T are given as [4]

D̊ps,m(ω) = Ŝ(ω)
h
(2)

|m|
(ω
c
rps)

h
(2)

|m|(
ω
c
R)︸ ︷︷ ︸

Hps,m(ω)

e−jmθps . (6)

Although some similarities exist compared to [1] our handling of
2.5-dimensional synthesis is different, leading for instance to |m|
in the formulas (5) and (6) above.

3. EFFICIENT REALIZATION OF NFC-HOA

We are seeking for a parametric and efficient realization of the 2.5D
NFC-HOA driving functions for a plane wave and point source. The
following subsections introduce the proposed approach.

3.1. Overall structure

According to (4), the driving function is given as a truncated Fourier
series. For simplicity we assume an equiangular arrangement of P
secondary sources at the angles α0,n = 2πn/P . Introducing α0,n

into (4), reveals that the truncated Fourier series can be realized by
an inverse Discrete Fourier Transformation or in practice very effi-
ciently by an inverse Fast Fourier Transformation (IFFT) of length
P . Due to the conjugate complex symmetry of the filter modes
Hpw,m(ω) or Hps,m(ω) and the exponential factors a complex to
real valued IFFT may be used to further lower the computational
complexity.
The Fourier series coefficients for a virtual plane wave (5) and a
point source (6) are given by filtering the input signal ŝ(t) for each
mode m with a filter and multiplying the result with an exponen-
tial function. Figure 2 illustrates a block-diagram of the resulting
overall signal processing structure. Note the real valued weight a
and delay τ of the virtual source signal ŝ(t) are introduced later.
Since the filter modes depend only on the absolute value of m, it
is sufficient to filter the input signal by M + 1 instead of 2M + 1
filters. This, in conjunction with the IFFT, lowers the required com-
putational complexity considerably. Note further that H0(ω) is just
a delay/weighting operation as is shown later.
In the following we focus on a parametric design of the filter modes.
Since, the spherical Hankel function is a prominent part of the filter
modes, we first review its realization as a recursive filter as pre-
sented in [1, 6].

3.2. Spherical Hankel function as recursive filter

In a first step, a series expansion of the spherical Hankel function
is derived. Due to its close link to the z-transformation, it is useful
to apply the Laplace transformation for the series representation.
Using a series expansion of the spherical Hankel function and re-
placing jω by s the desired expansion reads [6]

h(2)
n ( r

c
s) = −jne−

r
c
s

∑n

k=0 βn(k)(
r
c
)ksk

( r
c
)n+1sn+1

. (7)

The expansion coefficients βn(k) are given as

βn(k) =
(2n− k)!

(n− k)!k!2n−k
. (8)

Note βn(k) can be calculated recursively by exploiting the recur-
rence relation of the spherical Hankel function [6]. A direct real-
ization of (7) as digital recursive filter is likely to become numeri-
cally unstable for higher orders n. A decomposition into first- and
second-order sections (FOS/SOS) is more stable in practice. Noting
that the series expansion coefficients βn(k) are real-valued, Eq. (7)
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Figure 2: Block-diagram illustrating the signal flow of the efficient realization of model-based NFC-HOA.

can be factorized as follows

h(2)
n ( r

c
s) = −jne−

r
c
s 1

r
c
s

(
s− c

r
ρ0

s

)mod(n,2)

×

div(n,2)∏
l=1

(s− c
r
ρl)

2 + c
r
σ2
l

s2
, (9)

were ρ0 denotes the real-valued root of the polynomial given by
βn(k); ρl, σl denote the real and imaginary parts of its complex-
conjugate roots, respectively. Equation (9) states that the roots of
the denominator polynomial of (7) are given by scaling the roots of
the normalized polynomial given by the coefficients βn(k). This is
an important result for the desired parametric realization since only
the roots of the normalized polynomial have to be computed. The
next section illustrates how the series expansion (9) can be used
to efficiently realize the filter modes Hpw,m(ω) or Hps,m(ω) for
model-based NFC-HOA.

3.3. Realization of filter modes

Introducing the FOS/SOS expansion (9) of the spherical Hankel
function into the filter modes of a plane wave, as given by (5), yields

Hpw,m(s) = 4πR e
R
c
s (−1)|m|

(
s

s− c
R
ρ0

)mod(|m|,2)

×

div(|m|,2)∏
l=1

s2

(s− c
R
ρl)2 +

c
R
σ2
l

. (10)

In (10) 4πR represents a scaling and e
R
c
s an anticipation (nega-

tive delay) of the virtual source signal ŝ(t) that can be discarded in
practice. Otherwise causality has to be ensured by a pre-delay. The
remaining terms can be realized by a digital filter consisting of FOS
and SOS. Introducing (9) into the filter modes of a point source, as
given by (6), yields

Hps,m(s) =
R

rps
e−

rps−R

c
s

(
s− c

rps
ρ0

s− c
R
ρ0

)mod(|m|,2)

×

div(|m|,2)∏
l=1

(s− c
rps

ρl)
2 + c

rps
σ2
l

(s− c
R
ρl)2 +

c
R
σ2
l

. (11)

In (11) R
rps

represents a scaling and e−
rps−R

c
s a delay of the virtual

source signal ŝ(t). The scaling represents the amplitude decay of a

point source, the delay its propagation time from the virtual source
to the center. In both the dependency on R may be dropped in a
practical implementation, or for certain applications it may even be
desired to drop both the scaling and delay completely. Note the
presented formulation allows to do so, while the scaling and de-
lay is not evident from (6). Refer to Figure 2 for the overall signal
processing structure. Note the filter mode independent delay and
scaling present in (10) or (11) are extracted from the filter modes
and represented by the delay τ and weight a of the virtual source
signal s(t).
So far the FOS and SOS have been formulated in the Laplace do-
main. For implementation of these by a digital recursive filter a
suitable transformation of the coefficients has to be performed. Two
frequently applied methods for this purpose are the bilinear trans-
formation and the impulse invariance method. However, in our case
the corrected impulse invariance method (CIIM) [7] has to be ap-
plied since discontinuities at t = 0 may be present. In [6] it is
shown that the digital filter coefficients of the FOS and SOS can be
derived in closed form from the zeros/poles in the Laplace domain
using the CIIM.
Alternatively a bilinear transformation can be used. This transfor-
mation can be performed efficiently by formulating it in terms of a
2×2 or 3×3matrix multiplication. Hence for both the CIIM and bi-
linear transformation the digital filter coefficients can be computed
from the zeros/poles of the FOS and SOS in the Laplace domain.
It is also evident from (10) and (11) that the zeros/poles in the
Laplace domain can be computed by scaling the roots of the nor-
malized polynomial given by βn(k). Hence, the coefficients of the
filter modes can be computed very efficiently by pre-calculating the
roots of the normalized polynomial and sorting them into FOS and
SOS. The pre-calculated roots are then scaled accordingly to the de-
sired virtual source and its parameters. After scaling the digital filter
coefficients are computed by applying a CIIM or bilinear transfor-
mation. Noting that H0(s) is constant besides a delay/weight, a
total of M recursive filters with ascending order from 1 to M is re-
sulting. This solution is highly efficient compared to a realization of
the filter modes by the frequently used frequency sampling method.

3.4. Practical aspects

The calculation of the roots of the normalized polynomial is prone
to numerical inaccuracies for high orders n. Acceptable results
have been achieved up to order n = 75 using MATLAB with
double precision. Hence up to P = 151 loudspeakers can be
handled straightforwardly. For higher orders advanced root finding
algorithms have to be applied. Good results have been achieved in
practice when storing the roots in double precision and changing
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the precision to float after scaling.
For model-based rendering it is desirable to allow for time-variant
source parameters, like e. g. required for the synthesis of moving
virtual point sources. The proposed highly efficient computation of
the filter coefficients allows to calculate these at dense time inter-
vals. However, exchanging the filter coefficients of a recursive filter
for a given state may lead to discontinuities and/or transients [8].
Care has to be taken in a real-time implementation to handle time-
variant scenarios. One potential solution is to use two filters per
mode m in parallel, one with the previous coefficients and one with
the current ones and to cross fade between both. Due to the rapidly
decaying impulse responses of the filter modes for typical scenarios
the crossfade time can be chosen short.
The synthesis of multiple virtual sources can be considered by
adding up the contributions from the multiple sources before the
IFFT, requiring only one IFFT for multiple sources.

4. RESULTS

4.1. Implementation

The proposed approach has been implemented in MATLAB for
evaluation. However, care has taken to stay in line with a potential
real-time implementation. In a first step, the roots of the normalized
polynomials given by βn(k) up to order 75 were computed using
double precision, sorted into FOS/SOS and stored in a file. This file
was then used to scale the roots according to (10) or (11) in order
to derive the zeros/poles of the filter modes in the Laplace domain.
A CIIM or bilinear transformation was then applied in order to de-
rive the coefficients of the digital recursive filter. The FOS/SOS
were realized in direct form II using single precision arithmetic.
The loudspeaker signals were computed as depicted in Fig. 2. The
sampling rate was fs = 44100 Hz, the radius of the loudspeaker
array R = 1.5 m, the maximum order M = 28 and the number of
loudspeakers P = 57.

4.2. Evaluation results

For evaluation the frequency and phase response of the filter modes
has been compared to the desired responses as given analytically
by (5) and (6), respectively. The CIIM showed some deviations
from the desired responses for higher orders m. The bilinear trans-
formation provided much better results in this respect. Here the
deviation from the desired magnitude frequency response was be-
low 1 dB even for m = 28. Consequently for the following results
the bilinear transformation has been chosen.
In a second step the overall impulse responses from the virtual
source to the loudspeaker driving signals has been compared to an
implementation using the frequency sampling method. Again the
results showed high accuracy for the considered scenario. Results
for the first two steps of evaluation are not shown due to space
constraints.
Finally the synthesized sound field has been computed for the
driving signals evaluated above. Figure 3 shows the resulting
sound field for the synthesis of a virtual point source at position
xps = [0 3]T m. The synthesized sound field shows all typical fea-
tures of NFC-HOA when comparing with the results derived in [9].
For instance, the multiple wave fronts are a result of the spatial
bandlimitation and sampling. Similar results have been archived
for the synthesis of a plane wave.
The evaluation of the presented approach proves its accuracy and
stability in practical scenarios.
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Figure 3: Spatial impulse response for the synthesis of a virtual
point source at xps = [0 3]T m using P = 57 loudspeakers, M =
28 and fs = 44.1 kHz.

5. CONCLUSIONS

This paper presents an efficient parametric realization of the sig-
nal processing required for 2.5-dimensional NFC-HOA. The main
building blocks are the filter modes, realized a FOS/SOS direct
form II recursive filters and an IFFT. It was shown that the filter
coefficients of the filter modes can be computed very efficiently
from the roots of a normalized polynomial. These roots can be
pre-computed and stored offline. The presented approach allows
for the synthesis of time-varying acoustic scenes due to the efficient
computation of the filter coefficients.
As next step the proposed technique is implemented into the Sound-
Scape Renderer (SSR) [2], a versatile framework for model-based
real-time rendering of acoustic scenes. Furthermore, extensions
towards the artifact free handling of filter coefficient changes are
developed.
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