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ABSTRACT

The performance of adaptive filtering can be enhanced by incorpo-

rating prior system knowledge. In this paper, we systematically con-

sider regularization strategies exploiting sparseness for the identi-

fication of acoustic room impulse responses specifically for multi-

channel systems. Due to the additional dimensions in the multichan-

nel case, a structured regularization appears to be a natural choice.

Based on this concept, we present a generic regularized Newton-

type algorithm. This generic formulation allows us to discuss vari-

ous properties specific to the multichannel case and forms a valuable

basis for the future development of efficient algorithms.

Index Terms— multichannel adaptive filtering, structured regu-

larization

1. INTRODUCTION

Full-duplex communication in a hands-free communication scenario

with multichannel setup (M loudspeakers) requires acoustic echo

cancellation (AEC). AEC aims at canceling the acoustic echoes

from the microphone signals. Figure 1 shows a block diagram of

multichannel AEC with M reproduction channels and a single mi-

crophone channel in the receiving room (’near-end’). The signals

of the M reproduction channels originate from speech- or audio

sources at the far-end. To cancel the echoes arising due to the acous-
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ĥ
M

h
1
(n

)

h
M
(n

)

g1(n)

gM (n)

e(n) y(n)
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Fig. 1. Block diagram of multichannel acoustic echo cancelation.

tic path in the near-end the reproduction signals xm are filtered

with the adaptively estimated coefficients ĥ, i.e., a replica of the

actual acoustic multiple-input single-output (MISO) system. The

resulting signal ŷ(n) is subtracted from the near-end microphone

signal y = h
T
x, with x(n) = [xT

1 (n),x
T
2 (n), · · · ,x

T
M (n)]T,

xm(n) = [xm(n), xm(n − 1), · · · , xm(n − L + 1)]T, n de-

notes the time instant, and L the filter length. ĥ(n) denotes the

estimated MISO coefficient vector composed from M subfilters,

ĥm = [ĥm,0, ĥm,1, · · · , ĥm,L−1]
T. If the estimated filter co-

efficients ĥ are equal to the true transfer paths h, all disturbing

echoes will be canceled from the microphone signal. Note, that the

multiple-input/output (MIMO) case can be considered as a series

of independent MISO systems for each microphone channel [1].

Hence, the consideration of a MISO system in the near-end room is

sufficient in the context of this work. Most of the popular adaptive

filtering algorithms are based on least-squares error minimization

[2]

J
(
ĥ(n)

)
:= Ê{e2(n)} = Ê

{(
y(n)− ĥ

T(n)x(n)
)2}

, (1)

and aim at the so-called Wiener solution. It is known that the recur-

sive least-squares (RLS) algorithm is the optimum choice in terms

of convergence speed for optimization problems in adaptive filtering

based on the least-squares criterion [2]. For multichannel adaptive

filtering, the important feature of RLS-type algorithms is that they

explicitly take all autocorrelations and also all crosscorrelations be-

tween the filter input signals x1, . . . , xM into account for the adap-

tation process [3, 4]. However, one major problem of the RLS algo-

rithm is the potential numerical instability caused by ill-conditioning

due to correlated input signals.

The single channel AEC problem must be regarded as ill-conditioned

when the system to be identified is badly excited. This is the case if

the input signals xm are autocorrelated. The ill-conditioning be-

comes even worse in the multichannel case, e.g., with stereo repro-

duction systems. In this case the excitation is highly intra- and inter-

channel correlated.

Strategies to cope with the mentioned ill-conditioning problem aim

either at enhancing the conditioning by manipulating the input sig-

nals xm, as long as the manipulation can be perceptually tolerated

[4, 5]. Or at regularizing the problem to determine an approximate

solution that is stable under small changes in the initial data. Regu-

larization incorporates supplementary prior solution knowledge into

the ill-conditioned problem. A very popular regularization scheme is

the energy-based regularization in the spirit of Tikhonov which can

be understood as adding a constraint on the ℓ2-norm of ĥ(n). The

resulting cost function reads [6]

J
(
ĥ(n)

)
:= Ê

{(
y(n)− ĥ

T(n)x(n)
)2}

+ λ
∥∥∥ĥ(n)

∥∥∥
2

2
. (2)

From a probabilistic point of view, regularization is strongly related

to the maximum a posteriori criterion (MAP) which reads

ĥopt = argmax
ĥ

p(ĥ|x, y). (3)

Note that we discarded the time dependency for clarity of presenta-

tion. p(ĥ|x, y) denotes the a posteriori probability distribution and



is given by the Bayesian rule [6],

p(ĥ|x, y) ∝ p(y|x, ĥ) · p(ĥ). (4)

The constraint in Eq. (2) corresponds to a prior multivariate normal

distribution with zero mean and variance Σĥ = σ2
ĥ
I

p(ĥ) =
1√

(2π)ML|Σĥ|
e
− 1

2
ĥ
T
Σ

ĥ
−1

ĥ
, (5)

where |Σĥ| denotes the determinant of Σĥ. It is easy to see that

maximizing the a posteriori log-likelihood is equivalent to minimiz-

ing the cost function in Eq. (2).

Acoustic room impulse responses characterize the reverberant struc-

ture of a room. The presence of walls can be modeled by image

sources which mirror the actual source and all other images with

respect to the walls. Moreover, in practice the length of acoustic

impulse responses is limited by the finite time over which the re-

flections need be considered [7]. This motivates the assumption of

sparseness of typical room impulse responses in the time domain,

i.e., only a small percentage of their components has significant mag-

nitude while the rest is close to zero. Nonadaptive identification of

sparse systems was the subject of several recent studies, e.g., [8, 9].

So far, many studies presented different techniques for sparse adap-

tive filtering in the single-channel case. E.g., proportionate nor-

malized least mean squares (PNLMS) and exponentiated gradient

[1, 10] are efficient gradient based algorithms that exploit the decay-

ing structure of the acoustic impulse response in the time domain.

A frequency-domain formulation of a sparse adaptive filtering ap-

proach has been developed in [11].

In the multichannel case interchannel correlations are present in ad-

dition to the intrachannel signal correlation which makes the ill-

conditioning problem more challenging.

It has been shown that multichannel acoustic impulse responses can

be regarded as sparse in suited transform domains, such as the fre-

quency or wave domain [12, 13]. In this paper we focus on a spatio-

temporal regularization in the time domain and present a rigorous

derivation of a Newton-based algorithm for adaptive filtering which

takes explicitly the spatio-temporal probability distribution of the

multichannel system into account. Furthermore, we discuss some

special cases and present simulation results.

2. STRUCTURED REGULARIZATION

As mentioned before, the subfilters of a full-duplex multichannel

acoustic communication system are typically sparse in the time

domain. Therefore, it is desirable that a space-time regularization

strategy exploits this time sparsity.

It has been shown that sparse systems are likely to be Laplace-

distributed. Incorporating this prior information in the MAP es-

timatior leads to a constraint on the ℓp-norm, with p → 1 of the

subfilters. Prior knowledge about the spatial structure of the impulse

responses can be understood as a prior distribution of the norms of

every channel. It can be related to a ℓq-norm constraint on a vector

with components being composed from the ℓp-norms of the individ-

ual channels. E.g., in many cases one could intuitively assume the

ℓp-norms of the channels to be normal distributed.

Hence, the concept of structured regularization [14] is promising

for MISO adaptive filtering. This aims at minimizing the ℓp,q-norm

which is defined as

‖ĥ‖p,q :=

(
∑

m

‖ĥm‖qp

) 1

q

=




∑

m

(
∑

l

|ĥm,l|
p

) q
p





1

q

. (6)

Please note, that the traditional ℓp-norm can be regarded as the spe-

cial case of taking the ℓp,p-norm.

3. ℓp,q-NORM CONSTRAINED ADAPTIVE FILTERING

The sparseness of room impulse responses offers us the possibility to

transform the traditional minimization process in the AEC problem

into a constrained optimization problem. Hence, the cost function

from Eq. (1) can be modified using the Lagrange multipliers formu-

lation into

J
(
ĥ(n)

)
= Ê

{(
y − ĥ

T(n)x(n)
)2}

+ λ
∥∥∥ĥ(n)

∥∥∥
q

p,q
, (7)

λ denotes the Lagrange-multiplier. A minimum of the cost function

can be found by setting its gradient w.r.t ĥ to zero.

∇
ĥopt

J
!
= 0. (8)

The gradient of the cost function is

∇
ĥ
J = −2Ê

{
x(n)

[
y(n)− ĥ

T(n)x(n)
]}

+ λ∇
ĥ
‖ĥ‖qp,q

= Ê {−2x(n) · e(n)}+ λ∇
ĥ
‖ĥ‖qp,q . (9a)

It can be easily verified that the entries of the vector ∇
ĥ
‖ĥ‖qp,q are

given as

∂‖ĥ‖qp,q

∂ĥm,l

= q‖ĥm‖q−p
p

|ĥm,l|
p

ĥm,l

. (9b)

Determining the zeros of ∇
ĥ
J can be done iteratively with the New-

ton algorithm.

ĥ(n) = ĥ(n− 1)− (∇
ĥ
∇T

ĥ
J(ĥ(n− 1)))−1∇

ĥ
J(ĥ(n− 1)).

(9c)

The main advantage of Newton-type adaptation algorithms is their

quadratic convergence rate compared to the linear convergence rate

of the gradient-based algorithms. Newton type algorithms require

the computation of the Hessian matrix [15]

∇
ĥ
∇T

ĥ
J(ĥ(n− 1)) = Rxx + λ · ∇

ĥ
∇T

ĥ
‖ĥ‖qp,q︸ ︷︷ ︸

:=G

. (9d)

Usually, the correlation matrix is estimated iteratively using

Rxx(n) = α Rxx(n− 1) + x(n)xT(n), (9e)

where α denotes a forgetting factor.

Hence, in our special case the Hessian reduces to an estimate of the

regularized correlation matrix. The entries of the G are given by

differentiation of Eq. (9b) and we derive after several straightforward

calculation steps

∂2‖ĥ‖qp,q

∂ĥm,l∂ĥm′,l′
=δmm′ q(q − p)‖ĥm‖(q−2p)

p
|ĥm,l|

p

ĥm,l

|ĥm,l′ |
p

ĥm,l′

+δmm′δll′ q(p− 1)‖ĥm‖(q−p)
p

|ĥm,l|
p

ĥ2
m,l

, (9f)

hereby, δmm′ denotes the Kronecker delta.

Hence, the regularization matrix can be decomposed into the sum of

two matrices, one block-diagonal matrix Gbdiag with entries given

by the first summand of the right hand side of Eq. (9f), and one

diagonal matrix Gdiag reflected by the second summand.



4. DISCUSSION OF SPECIAL CASES

From Eq. (9f) it can be deduced that for cases where the norm ℓp,q
with p = q is considered, the matrix Gbdiag becomes a zero-matrix

and the regularization can be described by adding a diagonal matrix

to the correlation matrix. Moreover, for the choice p = q = 2 we

get for G the unity matrix multiplied by a scalar which is consistent

with the known Tikhonov regularization.

4.1. Multichannel sparse adaptive filtering

In the following we discuss the special case of setting p = q. Study-

ing this case offers insights into the properties of the sparseness

based regularization in the context of multichannel adaptive filter-

ing and as we will see this choice of the norm parameter leads to an

efficient implementation strategy since the regularization matrix G

becomes diagonal as discussed above.

By this p, q configuration the gradient (9b) simplifies to

∂‖ĥm‖pp

∂ĥm,l

= p|ĥm,l|
(p−1)

sgn(ĥm,l), (10)

hereby, sgn(·) = |·|
·

stands for the sign function.

The entries on the main diagonal of G according to the second term

of (9f) are then given as

∂2‖ĥm‖pp

∂ĥ2
m,l

= p(p− 1)|ĥm,l|
(p−2)

. (11)

For the limiting case p = 1 we derive the sign function for the first

derivative, and hence, the following update equation

ĥ(n) = ĥ(n− 1) +
(
λ · diag

{
δ(ĥ(n− 1))

}
+Rxx(n)

)−1

·
(
−λ · µ · sgn(ĥ(n− 1)) + x(n)e(n)

)
, (12)

where µ is a weighting factor for the gradient of the norm that takes

into account the different estimation approaches in practical imple-

mentations for the Hessian and the gradient. The Hessian is usu-

ally estimated in a recursive way in contrast to the estimation of the

gradient which is mostly done by taking the instantaneous value of

the vector Ê{xe}. δ(·) denotes a component-wise Dirac impulse.

Hence, once some of the filter coefficients converged to zero, the

algorithm can change their values only slowly. This results in rela-

tively bad tracking properties of the adaptive filter. This statement

clarifies why most well known single channel sparse adaptive filter-

ing approaches are strongly related to minimization of the ℓp-norm

for p ∈]1, 2[. For instance, the IPNLMS algorithm [16, 17].

4.2. Efficient computation of the regularized inverse

As stated in Eq. (8) the optimization process requires the inversion

of an ML ×ML matrix in each iteration. This results in very high

complexity. The following observation leads to a reduction of the

computational complexity.

Since the correlation matrix is estimated iteratively using Eq. (9e).

Let assume R
−1
xx (n− 1) to be known and

(
Rxx(n− 1) + x(n)xT(n) +G(n)

)−1

is required. Since G := ∇
ĥ
∇T

ĥ
‖ĥ‖pp is diagonal, a unitary matrix

U and Λ can be efficiently computed representing the eigensystem

of a diagonal plus rank-1 matrix [18, 19]

x(n)xT(n) +G(n) = UΛU
T
. (13)

Preliminary experiments of the authors have shown that the rank k,

i.e., the number of nonzero eigenvalues is much smaller than ML.

Applying the inversion lemma leads to

(Rxx(n) +G(n))−1 = R
−1
xx (n− 1)−R

−1
xx (n− 1)

·U
(
Λ

−1 +U
T
R

−1
xx (n− 1)U

)−1

U
T
R

−1
xx (n− 1). (14)

Hence, only the inversion of the much smaller matrix

A :=
(
Λ

−1 +U
T
R

−1
xx (n− 1)U

)−1

, (15)

with the size k × k is needed.

5. ILL-CONDITIONING IN MULTICHANNEL ADAPTIVE

FILTERING AND SPARSENESS CONSTRAINT

An advantage of the regularization due to a ℓ2-constraint is that the

ℓ2 regularization aims at adding the same value to all eigenvalues

of an ill-conditioned system. This has the positive effect that all

eigenvalues are prevented from becoming zero, hence, they can be

inverted and an inversion of the resulting regularized system is en-

sured. But the resulting system could still have eigenvalues with

high multiplicity. Hence, the inversion of the resulting matrix is not

unique. In contrast, ℓp→1 regularization aims at adding large values

to the diagonal of the ill-conditioned system at the positions cor-

responding to the unknown parameters which are likely to become

zero. Adding large regularization (r → ∞) for p = 1 to the i-th el-

ement of the diagonal of Rxx results in zeroing out the i-th column

and i-th row of R−1
xx . Hence, to measure the resulting misalignment

[12] we should adapt its definition to

µmin := 10 log

(
σ2
ν

σ2
x

)
(1− α)2

‖h‖22
κ{R1/2

xx }, (16)

κ{R1/2
xx } =

∑

{η:tη<T}

∑

{η′:t−1

η′
> 1

T
}

tη(tη′)−1
.

where tη,η′ denotes eigenvalues of Rxx and κ the condition num-

ber. Since the condition number considers a smaller matrix it is al-

ways smaller or equal to the condition number of the original matrix.

Therefore, smaller misalignment could be expected.

It should be noted that the non uniqueness [4] is still not solved.

The correlation of the loudspeakers signals leads in general to vio-

lation of the convexity assumption on the search space. However,

simulations have shown that the sparseness constraint enhances the

tracking ability of the algorithm, see Sect. 6, and the adaptive sys-

tem manages the identification with significantly less preprocessing

effort such that improved perceptual quality could be expected.

Moreover, using structured regularization ℓp→1,2 for estimating mul-

tichannel systems with sparse subvectors leads only then to reason-

able estimations when the ℓp→1-norm of the subvectors are in as-

similable dimensions otherwise, minimizing the ℓp→1,2-norm would

converge to a solution that equalizes the ℓp→1-norms of the subvec-

tors in the ℓ2-sense.
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Fig. 2. (a) Achieved enhancement by considering constraints on the

ℓ2, ℓ1.3, and ℓ1.3,2-norms, L = 256, M = 2. (b) Tracking properties

of the presented algorithm. Constraints on the ℓ2, ℓ1.1, and ℓ1.1,2-

norms for sparse system of length L = 64, M = 2.

6. EXPERIMENTS

To illustrate the properties of the developed algorithms, an AEC ap-

plication scenario is considered. The simulation aims at a proof of

our concept. More efficient implementations for complex scenarios

can be obtained by considering a block formulation for the presented

algorithm in a similar manner to the approach in [15].

The near-end room is a small room with a reverberation time (T60)

of approximately 20ms containing two loudspeakers, spaced by 1m.

In a distance of 1.5m an omni directional microphone is placed. The

filter length is L = 256 at a sampling rate of fs = 8kHz. Noise with

a level of approximately -60dB with respect to the echo was added to

the microphone signals, in order to simulate microphone and other

noise sources at the near-end. The far-end is a stereo system render-

ing a virtual source of white noise randomly located between the two

loudspeakers. The virtual sources were positioned during the simu-

lation at three different points (position changes after 1s and 1.5s).

The stereo signals were preprocessed, as suggested in [4] with a non-

linearity rate of only 0.1. The forgetting factor α is set to 0.99, the

Lagrange multiplier λ = 0.15, and µ was set to 3 ·10−6. The update

(9c) was implemented using the pseudoinverse. The red, blue, and

green curves in Fig. 6(a) depict the achieved system distance of the

estimated MISO system by using a constraint on the ℓ2, ℓ1.3, and

ℓ1.3,2-norms respectively. The simulations show the achieved en-

hancement of the convergence rate by using a sparseness constraint.

To show the tracking performance of the presented algorithm sys-

tems we give a second example with filter length L = 64 and very

similar scenario but here we simulated a system change after 1s, by

changing the microphone position. Again we simulate a stereo sys-

tem with one microphone but here each simulated acoustic impulse

response is zero except at ten random points. The simulation sce-

nario is suitably adopted for the chosen short filter length by taking a

sampling frequency of 1kHz and the virtual source movements in the

far-end is done by delaying one of the loudspeaker signals, we pre-

processed the loudspeaker signals with a non-linearity rate of 0.05.

The position changes in the far-end were now after 0.5s, 0.75s, 1.5s,

and 1.75s. All other simulation parameters are the same as in the

first experiment. The simulations demonstrate the relation between

the sparseness degree of the system and the suitable norm constraint.

In Fig. 6(b) the artificially generated system is sparser than the mea-

sured one in Fig. 6(a) hence, a constraint on the ℓ1.1,2 offered the

best results.

7. CONCLUSION

In this paper we presented a rigorous derivation of a Newton-based
algorithm for adaptive filtering which takes explicitly the spatio-
temporal probability distribution of the multichannel system into ac-
count. Furthermore, we discussed some special cases. Future work
should focus on a block formulation of the presented algorithm for a
more efficient implementation in the frequency domain. Exploiting
the well known link between the NLMS and the Newton-based algo-
rithms allows the derivation of efficient algorithms with sparseness
constraint as special cases of the presented algorithm.
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