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ABSTRACT

Long before audio technologists have been researching the acoustic reproduction of entire sound fields using
loudspeaker arrays, numerical acousticians began to study the solution of boundary integral equations.
This is particularly interesting because the fundamental question of uniqueness also appeared in numerical
acoustics much earlier than it recently did in the theory of sound field synthesis, where it still appears to be
pending. There were two main approaches that proved non-uniqueness at certain frequencies to be soluble
by enforcing all the necessary mathematical constraints. Both are directly applicable to generally ensure
uniqueness in the sound field synthesis theory based on free field monopole sources.

1. INTRODUCTION

Most sound field synthesis approaches aim at controlling
a sound field enclosed by a surrounding loudspeaker ar-
rangement. The control should ideally be able to create
any interior sound field.

Recently, the theory of sound field control has been es-
tablished more clearly than in the past, e.g., by the works
of Ise, Kimura, Fazi, Spors, [1, 2, 3, 4], and it ap-
pears that the basic principle largely works under gen-
eral circumstances, applying to several sound field re-
production techniques (Wave Field Synthesis, Bound-
ary Surface Control, Higher-Order Ambisonics, and in
some sense also Vector-Base Amplitude Panning). How-
ever, some of the works raised a fundamental question:
Is sound field control undetermined at some frequencies
and modes, for which the air volume enclosed by the sur-
rounding loudspeakers exhibits resonances, [5, 6]?The
problem is frequently referred to as the non-uniqueness
problem of sound field synthesis. This contribution re-
views the mathematical theory to gain more insight into
whether these frequencies really are a fundamental prob-
lem to sound field control. To gain mathematical clarifi-
cation, the basics of the theory are revisited.

Theory commonly simplifies the loudspeaker arrange-
ment to an arrangement of monopole sources in a free

sound field, i.e., free field Green’s functions. Another
abstraction is helpful: The surrounding arrangement of
loudspeakers is assumed to be infinitely dense, i.e. a con-
tinuous distribution of infinitely many sources on the hull
enclosing the sound field. Unlike the theory suggests,
loudspeakers of a real loudspeaker arrangement would
neither be omnidirectional, nor would they exhibit a per-
fectly flat frequency response in all directions; neither
would they be located in a sound field that is easy to de-
scribe, nor would they let pass through any sound from
other loudspeakers without diffraction. And normally
their number is limited. Despite unrealistic and overop-
timistic elements of the theory are easily observed, we
need better arguments to clarify whether sound field re-
production is affected by non-uniqueness. In fact, the
theory still seems to be surprisingly effective when it
comes to perception [7], and it is able to describe most
sound field reproduction techniques we apply nowadays.
Is there a general problem of non-uniqueness and miss-
ing frequencies in sound field reproduction?

The mathematical formulation of the infinitely dense
source distribution is a Fredholm integral operator of
zero index or, in physically terms, the expression single-
layer potential formulation is often found [8, 3, 5]. The
model using the surrounding hull of monopole sources
can be regarded as a simplification of the more general
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Fig. 1: When taking the valuesp(sss) and∂ p(sss)
∂n(sss) on a boundary∂V around a homogeneous field, the Kirchhoff-Helmholtz

integral represents−p(rrr) insideV, p(rrr)/2 on∂V, and 0 outside.

Kirchhoff-Helmholtz integral equation, which addition-
ally involves dipole sources pointing outwards of the
hull. It appears that the suspected uniqueness problem
is only due to that very simplification step of removing
dipoles.

Still, the simplification obtained by discarding the dipole
sources of the Kirchhoff-Helmholtz integral equation
(KHI) is essential for practical applicability of sound
field synthesis as dipole loudspeakers are still imprac-
tical. What is more, the simplification has been utilized
much earlier to approach boundary integral equations in
theoretical acoustics which led to the formulation of the
boundary element method (BEM) in numerical acous-
tics. Not surprisingly, the other disciplines faced simi-
lar doubt about uniqueness, but they could clear it up. A
matter of fact that we want to involve in our argumenta-
tion.

To this end, we are going to explain the historical devel-
opment of the KHI and its application to acoustic scat-
tering problems. Such problems are of particular inter-
est, because there is a scattering problem that is equiva-
lent to sound field synthesis, as clearly addressed in the
work of Fazi [4, 5]. We give a brief historic overview
of non-uniqueness in acoustic equations, beginning with
Sommerfeld’s radiation condition that brings uniqueness
to the exterior problem, and finally turning to bound-
ary integral equations of scattering problems that suf-
fer from own uniqueness problems due to resonances
of the interior field. Especially, the equivalent scatter-
ing formulation discards the dipole sources in the KHI
and hereby might introduce resonances of a sound-soft
boundary condition.

By addressing all properties, not only the boundary val-

ues of the compound boundary integral formulation, we
can show that sound field synthesis is generally possible
with theories based on surrounding hulls of monopole
sources; a model that is directly or indirectly used by
nearly all existing sound field reproduction techniques.

2. GREEN, HELMHOLTZ, KIRCHHOFF
Inspired by the new analytical methods introduced in
Green’s essay in 1828 [9] for the Poisson/Laplace equa-
tion, the researchers Hermann von Helmholtz (1860) and
Gustav Robert Kirchhoff (1883) reformulated Green’s
third integral theorem for the wave equation. Hereby,
they discovered the equation of Huygens’ principle [10],
which had been unclear for more than 100 years [11, 12].

2.1. Green’s third integral theorem
Green’s third integral theorem defines an analytic
method applicable to simplify integral relations in scalar
potential fields. It is related to Gauß’ divergence theo-
rem that equates the flux of a vector fielduuu(rrr), obtained
by integration over a closed surface∂V, with the vector
surface element dSSS(sss) pointing outwards, and its diver-
gence∇∇∇Tuuu(sss) integrated over the volumeV,

∮

sss∈∂V
uuu(sss)T dSSS(sss) =

∫

sss∈V
∇∇∇T uuu(sss)dV(sss),

where del∇∇∇T = [ ∂
∂x,

∂
∂y,

∂
∂z] is a vector of Cartesian

derivatives. Green’s theorem uses two functionsp and
G to constructuuu

uuu= p∇∇∇G−G∇∇∇p,

which yields his third integral theorem
∮

∂V

[

p∇∇∇G−G∇∇∇p
]T

dSSS=

∫

V

[

p△G−G△ p
]

dV,
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where△= ∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂z2 is the Laplace operator. The
functionsp andG satisfy the Laplace/Poisson equation.
In particular, p satisfies△p = 0 insideV and G, the
Green’s function, is a solution whose excitation lies in
an exceedingly small point△G=−δ , usingδ , the Dirac
delta distribution1, symbolizing the infinitesimal normal-
ized volume excitation

δ (rrr − sss) = lim
ε→0

{

0, for ‖rrr − sss‖> ε,
3

4πε3 . for ‖rrr − sss‖ ≤ ε.

Inserting△p= 0 and△G=−δ into the volume integral
yields−

∫

V δ (rrr − sss) p(sss)dV(sss). As the integration range
is limited, this becomes−p(rrr) for rrr ∈V and 0 otherwise.

2.2. Kirchhoff-Helmholtz Integral (KHI)
Helmholtz [13] and Kirchhoff [14] applied the same pro-
cedure to the wave equation. In the frequency domain,
p andG satisfy the Helmholtz equation;p satisfies the
homogeneous equation(△+ k2)p = 0 inside V, and
Green’s function satisfies(△+ k2)G= −δ (rrr − sss), with

the solutionG= e−ikr

4π r . The integral becomes2, see Fig. 1,

I =
∮

sss∈∂V

[

p(sss)
∂G(rrr − sss)

∂n(sss)
−G(rrr − sss)

∂ p(sss)
∂n(sss)

]

dS(sss),

(1)

and it consists of the scalar fields,p, G, and their outward
normal derivatives∂ p

∂n , ∂G
∂n on every point on∂V. The

value of the integral becomes

I(rrr) =











−p(rrr), rrr ∈V,

−p(rrr)/2, rrr ∈ ∂V,

0, rrr /∈V,

(2)

which is obtained upon insertion of△p = −k2p and
△G=−k2G− δ into the volume integral
∫

V

[

p△G−G△ p
]

dV(sss) =−

∫

V
δ (rrr − sss) p(sss)dV(sss).

For the second value3 −p/2 only the part of the exceed-
ingly smallδ lying insideV is considered whenever the
observation point lies on the surfacerrr ∈ ∂V.

1∇∇∇ was not used as a symbol in the original work,δ symbolized the
Laplace operator, and the delta distribution differed by a factor 1

4π .
2Helmholtz’ work uses▽ for Laplace and Kirchhoff’s△, ∇∇∇ was

not used and the delta distribution was as in Green’s work.
3This value is unused in the original works of Green, Helmholtz,

and Kirchhoff. It appears in the 1960s in boundary integral equations.

3. SIMPLE SOURCE SOUND FIELD CONTROL
According to the values of the integral in Eq. (2), the
KHI seems to perfectly resynthesize a sound fieldp in-
sideV based on its boundary valuesp and ∂ p

∂n(sss) on ∂V,
but with opposite sign. In practice, the KHI could be
simulated by suitable loudspeakers surrounding the au-
dience insideV, with characteristics resemblingG(rrr,sss)

and ∂G(rrr,sss)
∂n(sss) , and which are driven by the corresponding

signalsp and ∂ p
∂n(sss) . However, this would still be im-

practical today as representing the derivative source type
requires loudspeakers with dipole directivity4.

A more practical aim of current sound field synthesis the-
ory is to achieve reconstructionprec(rrr) = pin(rrr) of an in-
coming fieldpin insideV by using only monopole loud-
speakers representingG(rrr,sss). Its general model aims
at defining a functionµ(sss) that suitably drives a hull of
surrounding Green’s functions, a so-calledsimple-source
approachor single layer potential formulation,

prec(rrr) =
∮

∂V
µ(sss) G(rrr − sss) dS(sss). (3)

Such a formulation could be obtained by making the
KHI’s dipole expression vanish in Eq. (1). This is obvi-
ously achieved by zeroing its coefficientp(sss) = 0, what
imposes a sound-soft boundary condition on∂V and cre-
ates an unknown scattered fieldpsc outsideV due to
the sound pressurepin of the impinging waves, hence
p= psc+ pin.

Actually, sound field synthesis intends to do anything
else but prescribing rigid or sound-soft boundary con-
ditions as naturally real physical conditions would create
resonances. Nevertheless, this step is useful and effective
in order to obtain a single layer potential formulation.

3.1. Equivalent sound-soft scattering problem
To describe equivalent scattering, we assume a primary
field pin impinging on the volume of a scattererVsc, see
Fig. 2.

4Nevertheless, theories exist of how to obtain sound field synthesis
with higher-order loudspeaker systems, see [15], and convincing prac-
tical applications of higher-order loudspeaker systems are already in
use, cf. [16]. Still, today only zero-order loudspeaker systems can meet
the quality expectations we have concerning wide-band audio playback
of eight octaves. By contrast today, successful directivity synthesis
utilizes the poor radiation efficiency higher-order components have at
low frequencies. Hereby a size-related upper freuqency bound is intro-
duced, and order-dependent lower frequency bounds due to dynamical
restrictions of the transducer excursion.
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Fig. 2: Kirchhoff-Helmholtz integral applied to define sound-field-synthesis-equivalent sound-soft scattering on∂Vsc.
Here, interaction due to thinkable boundary conditions of the virtual source∂Vin is neglected. The represented field
must equal the original−pin(rrr) plus scattered one−psc(rrr) outsideVsc and the perfect re-synthesispin(rrr) insideVsc.

For formal clarity, let us assume an integralIin enclosing
the volumeVin in which the sources of the incident field
pin lie. Vin shall be a bounded region outside the scatterer.

Moreover, we assume that the scatterer emits a diffracted
field psc in response. The diffracted wave is represented
by the integralIsc around the volume of the scattererVsc.

Let the surface normals of the compound integralIin+ Isc

point inside the volumesVin and Vsc, so that the cor-
responding volume integral describes the homogeneous
field betweenVin and Vsc. Assuming an independent
Iin, there will be no multiple scattering between both
boundaries, and assuming evaluation only outsideVin,
i.e. Iin =−pin, we get

−pin(rrr)+
∮

Vsc

[

p(sss)
∂G(rrr,sss)

∂n(sss)
−G(rrr,sss)

∂ p(sss)
∂n(sss)

]

dS(sss)

=











0, rrr ∈Vsc,

−p(rrr)/2, rrr ∈ ∂Vsc,

−p(rrr), rrr /∈Vsc.

(4)

We may impose a boundary impedance condition of
the scatterer in this equation, i.e.p(sss) = ζ ∂ p(sss)

∂n(sss) . In
p= pin + psc this does not change the incident fieldpin,
which we assumed to be independent, but the scattered
one psc emerging due to the non-free boundary condi-
tion. To remove dipoles∂G

∂n from the equation, we choose
a sound soft impedanceζ = 0, i.e.p(sss) = 0. Insertion of

p(sss) = 0 and addition ofpin yields

−

∮

Vsc

∂ p(sss)
∂n(sss)

G(rrr,sss)dS(sss) =











pin(rrr), rrr ∈Vsc,

pin(rrr), rrr ∈ ∂Vsc,

−psc(rrr), rrr /∈Vsc.

Focusing on the observation on the integration surface
rrr ∈ ∂Vscat, the formulation ofboundary integral equa-
tions were developed in the 1960s [17, 18, 19]. This
brought forward powerful numerical solutions known
under the nameboundary element method(BEM) for
acoustic radiation and scattering problems, see [20].

For our purpose, it means that we only need to solve for

−

∮

∂Vsc

[

∂ pin(sss)
∂n(sss)

+
∂ psc(sss)
∂n(sss)

]

G(rrr,sss)dS(sss) = pin(rrr),

(5)

with both rrr ,sss∈ ∂Vsc, to identify ∂ psc(sss)
∂n(sss) from pin(sss) and

∂ pin(sss)
∂n(sss) . According to Fazi [5] and what was said above,

Eq. (5) determines the optimal driving function

µ(sss) =−
∂ pinc(sss)

∂n(sss)
−

∂ pscat(sss)
∂n(sss)

. (6)

4. ABOUT UNIQUENESS
Justified doubt has been raised about the way of deter-
mining ∂ psc

∂n(sss) in Eq. (6). If there exist non-trivial solutions

pl of the sound-soft boundary conditionp(sss) = 0
∮

∂V

∂ pl (sss)
∂n(sss)

G(rrr,sss)dS(sss) = 0, for rrr ∈ ∂Vsc,
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then, forrrr ∈ ∂Vsc, Eq. (5) stays correct also upon addition

∮

∂V

[

µ(sss)+∑
l

αl
∂ pl (sss)
∂n(sss)

]

G(rrr,sss)dS(sss) = pin(rrr), (7)

which means the unknown∂ psc(sss)
∂n(sss) is not uniquely deter-

mined by Eq. (5). It is a poor consolation that such solu-
tions can only exist at specific frequencies.

This section shows how non-uniqueness was mastered in
numerical acoustics by recognizing that a single bound-
ary integral equation degenerates at modal frequencies,
and by adding additional constraints.

4.1. Discussion of uniqueness in acoustics
Between the 18th and 19th century, uniqueness was not
regarded as a major concern in acoustics. Enclosed
modal fields were considered as easy to work with, and
when describing acoustic fields radiating towards infin-
ity, researchers knew how to tell useless solutions of the
wave equation from the useful ones, e.g. [21].

Sommerfeld recognized the arbitrariness of this common
approach and considered a radiation condition [22, 23,
24] to bring rigor and uniqueness to radiating fields.

With the boundary integral equations emerging in the
1960s5, [17, 18, 19], researchers began to notice there be-
ing non-uniqueness problems in single-layer or double-
layer potential boundary integral equations; the same
problem as we are discussing using Eq. (7) but normally
with ideally rigid rather than ideally soft boundaries.

The non-uniqueness problem was first gone unnoticed by
some researchers, e.g. [19], because it requires to sharply
hit the modal frequencies in numerical simulations. Nev-
ertheless, researchers stayed confident that the problem
was avoidable [8, 26] and developed solutions.

A good overview of the solutions is given in [25].

4.1.1. Null-field condition: Schenck’s CHIEF
point method
Regardless of the boundary condition applied to the KHI,
it must become zero outside its volume integration range.
In the case of the scattering problem, the volume with the
non-zero values lies betweenVin andVsc.

Non-trivial solutions of the homogeneous boundary con-
dition p(sss) = 0 for ∂Vsc will not be zero insideVsc.
Therefore, adding null-field constraints of the KHI to the

5The authors could not get earlier work (1930s, Kuprdaze), see [25].

boundary integral equation is sufficient to rule out non-
uniqueness, see Schenck [27]. In fact this means for our
problem that Eq. (5) not only needs to be fulfilled for
rrr ∈ ∂Vsc but also for pointsrrr ∈Vsc, the CHIEF points.

4.1.2. Surface derivative of pressure: Burton-
Miller method
In addition to the fact that single boundary integral equa-
tions fail to fulfill the null-field condition inside the scat-
terer at the interior mode frequencies, they also violate a
compatibility condition of the surface normal derivative.

Despite adding null conditions inside the scatterer al-
ready works, it is not the only way to obtain uniqueness.
Alternatively, Burton and Miller [28] showed that requir-
ing a second boundary integral equation to be fulfilled
also provides uniqueness. In addition to Eq. (5), we may
demand forrrr ∈ ∂Vsc after deriving Eq. (4) by ∂

∂n(rrr)

−2
∮

∂V

[

∂ pin(sss)
∂n(sss)

+
∂ psc(sss)
∂n(sss)

]

∂G(rrr,sss)
∂n(rrr)

dS(sss) = (8)

−
∂ psc(rrr)
∂n(rrr)

+
∂ pin(rrr)
∂n(rrr)

.

5. HIGHER-ORDER AMBISONICS (HOA)
Higher-order Ambisonics [29] considers a spherical
playback regionVsc. Its surface∂Vsc is one of a cen-
tered sphere of the radius R described bysss= Rθθθ s, using
the direction vectorθθθ = [cosϕ sinϑ ,sinϕ sinϑ ,cosϑ ]T

with its azimuth and zenith angles,ϕ , andϑ . The sin-
gle layer potential formulation Eq. (3) is either deter-
mined by solving its inhomogeneous Helmholtz equation
(△+ k2) =− f (θθθ )δ (r −R)/R2, e.g. [30], or by solving
its spherical boundary integral equation Eq. (5), see [5].

The latter case is more insightful here, as it illustrates the
above discussion. AsG is rotationally symmetric around
the directionθθθ s, we may re-express Eq. (5) forr ≤ R as

−
∮

θθθ∈S2

∂ p(Rθθθ s)

∂n(Rθθθ s)
G(θθθ Tθθθ s, r,R)R2 dθθθs = pin(r θθθ ), (9)

which is a spherical convolution integral [31]. In spheri-
cal basis solutions, the incident (finite atr = 0) and scat-
tered (Sommerfeld condition atr → ∞) fields, as well as
the Green’s function forr ≤ R are described as

pin(r θθθ ) =
∞

∑
n=0

n

∑
m=−n

bnm jn(kr)Ym
n (θθθ ), (10)

psc(r θθθ ) =
∞

∑
n=0

n

∑
m=−n

cnmhn(kr)Ym
n (θθθ ), (11)
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G(θθθ Tθθθ s, r,R) =−i k
∞

∑
n=0

n

∑
m=−n

Ym
n (θθθ )Ym

n (θθθ s) jn(kr)hn(kR).

(12)

Here, jn(kr), hn(kr) are the spherical Bessel and Hankel
functions,Ym

n (θθθ ) are spherical harmonics, andbnm, cnm

are the wave spectra of the incident and radiating fields.
Decomposed inn andm, the convolution integral Eq. (9)
for r ≤ R becomes, using ∂

∂n(Rθθθs)
=−k ∂

∂kR,

−i(kR)2 [bnmj ′n(kR)+ cnmh′n(kR)
]

jn(kr)hn(kR) =

bnmjn(kr).
(13)

Non-unique. Evaluating Eq. (13) atr = R, the remain-
ing equation has the structureA jn(kR) = B jn(kR), and
it is therefore undetermined wheneverjn(kR) = 0.

Unique. Otherwise, Eq. (13) can be divided byjn(kR).
After simplifications given in the appendix, we get the
scattered wave spectrumcnm from bnm

cnm=−bnm
jn(kR)
hn(kR)

. (14)

Wheneverjn(kR) = 0, theCHIEF method corresponds
to solving Eq. (13) at an interior radiusr < R for which
jn(kr) permits division and hereby also yields Eq. (14).

Wheneverjn(kR) = 0, theBurton-Miller method corre-
sponds to deriving Eq. (13) byr before settingr = R so
that we can divide byj ′n(kR) instead to obtain Eq. (14),

−i (kR)2 [bnmj ′n(kR)+ cnmh′n(kR)
]

j ′n(kR)hn(kR) =

bnmj ′n(kR).
(15)

Note that we derived towards the inside ofVsc here. Divi-
sion by j ′n(kR) is possible wheneverjn(kR) = 0 because
there is only one common zero forj ′n(kR) = jn(kR) = 0
at kR= 0 andn> 0.

The appendix shows how to obtain the driving func-
tion µ for synthesis with Eq. (3) from Eq. (14). For
synthesizing a virtual point source, we choosebnm =
−ikhn(kr0)Ym

n (θθθ0) and get

µ(sss) =
∞

∑
n=0

n

∑
m=−n

hn(kr0)

R2hn(kR)
Ym

n (θθθ0)Y
m
n (θθθs). (16)

6. WAVE FIELD SYNTHESIS (WFS)
From the boundary element method, a high-frequency
formulation of the KHI is known which is particularly
interesting for deriving Wave Field Synthesis (WFS).

The explicit form of the free field Green’s function for
r = ‖rrr − sss‖ in three dimensions is

G(r) =
e−ikr

4πr
. (17)

Its normal derivative in the KHI is obtained by applying
the chain rulennnT ∂ r

∂ (rrr−sss)
∂
∂ r G(r), see also Eq. (1), Fig. 1,

∂G(r)
∂n(sss)

=
nnnT(rrr − sss)

r
(−1)

1+ ikr
r

G(r). (18)

Inserting into Eq. (1) and replacingnnn
T(rrr−sss)

r = cosφ yields

−

∮

∂V

[

p(sss)cosφ
1+ ikr

r
+

∂ p(sss)
∂n(s)

]

G(r)dS(sss) =−p(rrr)

for rrr ∈V. As a result we have achieved a representation
of the KHI using weighted monopole sources only. How-
ever, the weight within the brackets not only depends on
the integration variablesss but also the observation point
rrr. We simplify by the following pair of assumptions

(i) cosφ →−1, for rrr ∈V and

(ii) i kr ≫ 1, to obtain

p(r) =
∮

∂V

[

−ikp(sss)+
∂ p(sss)
∂n(sss)

]

G(r− s)dS(s). (19)

This approximation is known as thehigh frequency
boundary element method[32].

For representing a point source,p=G(r0), with cosφ0 =
nnnT(rrr−sss0)

r0
andr0 = rrr − sss0, WFS becomes

p(r) =−
∮

∂V

[

ik+ cosφ0
1+ ikr0

r0

]

G(r0)G(r)dS(s),

which is usually further approximated assuming ikr0 ≫ 1
and(1+ cosφ0)≈ 2max{cosφ0,0},

p(r) =−
∮

∂V
2ikmax

{

nnnT(rrr−sss0)
‖rrr−sss0‖

,0
}

G(rrr,sss0)G(rrr,sss)dS(s).
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The last approximation yields the driving function

µ(sss) =−2ikmax
{

nnnT(rrr−sss0)
‖rrr−sss0‖

,0
}

G(rrr,sss0) (20)

for three-dimensional WFS [33]. As a result of the max-
imum operator, only those parts of the integral are ac-
tivated that support waves enteringV. In BEM this is
known asdetermining the visible elements[32] and in
WFS assecondary source selection criterion[34]. The
selection criterion, be it the hard one from Eq. (20) or a
softer variant obtained from Eq. (19), avoids undamped,
artificial interior resonances and thus non-uniqueness.

With that said, WFS can be regarded as a high frequency
BEM. In the context of WFS the approximations are re-
ferred to asstationary phase approximation[35].

7. CONCLUSION
The far-field approximation approach to formulate WFS,
and the theoretical ability of controlling all fundamental
spherical basis solution in HOA did not imply a prob-
lem of non-uniqueness that we discussed here. However,
uniqueness hasn’t been explicitly proven either.

Bringing known properties of acoustic boundary inte-
grals to mind when discussing the sound field synthesis
theory in general, we could show that there is no funda-
mental non-uniqueness problem of using a single-layer
potential formulation.

Problems only occur unless all properties of the
Kirchhoff-Helmholtz integral equation are expressed; a
reason why a single boundary integral equation fails in
case of interior resonances of the equivalent scattering
problem. Remedy is found by additionally imposing ei-
ther constraints on the normal derivative of the boundary
integral equation (Burton-Miller method) or constraints
regarding values in the enclosed volume (CHIEF point
method).

For this reason, we can now say that wave field synthesis,
higher-order Ambisonics, or boundary surface control,
can always be formulated as to provide unique solutions.
This also includes amplitude panning methods, which
can be regarded as sound field synthesis approaches lim-
ited to interpolating between the sources of the playback
facility.
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in Röhren mit offenen Enden,”Journal f̈ur die
reine und angewandte Mathematik, no. 57, pp.
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10. APPENDIX: UNIQUE SOLUTIONS OF THE
HOA BOUNDARY INTEGRAL EQUATION
After settingr = R in Eq. (13) and dividing byjn(kR),
we insert the Wronskian1

i(z)2
= h′n(z) jn(z)− j ′n(z)hn(z)

on its right hand side and cancel equal terms and com-
mon factors

−
✭
✭
✭
✭
✭
✭
✭✭

bnmj ′n(kR)hn(kR)− cnm✘✘
✘✘h′n(kR)hn(kR) =

bnm

i (kR)2 =

bnm✘✘
✘✘h′n(kR) jn(kR)−

✭
✭
✭
✭
✭
✭
✭✭

bnmj ′n(kR)hn(kR).

This finally yiels the solution of Eq. (14).

11. APPENDIX: HOA DRIVING FUNCTION

Inserted inµ = k∂ psc
∂R + k∂ pin

∂R , we get

µ(sss) = k
∞

∑
n=0

n

∑
m=−n

[

bnmj ′n(kR)+ cnmh′n(kR)
]

Ym
n (θθθ s)

= k
∞

∑
n=0

n

∑
m=−n

bnm
j ′n(kR)hn(kR)−h′n(kR) jn(kR)

hn(kR)
Ym

n (θθθ s)

=−
∞

∑
n=0

n

∑
m=−n

bnm
khn(kr0)

i(kR)2hn(kR)
Ym

n (θθθ s), (21)

and hereby the driving function Eq. (16).
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