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ABSTRACT
Concert sound reinforcement systems aim at the reproduction of homogeneous sound fields over extended
audiences for the whole audio bandwidth. For the last two decades this has been mostly approached by
using so called line source arrays for which Wavefront Sculpture Technology (WST) was introduced in the
literature. This paper utilizes a signal processing model developed for sound field synthesis in order to
analyze and expand WST criteria for straight arrays. Starting with the driving function for an infinite and
continuous linear array, spatial truncation and discretization are subsequently taken into account. The role
of the involved loudspeakers as a spatial lowpass filter is stressed, which can reduce undesired spatial aliasing
contributions. The paper aims to give a better insight on how to interpret the synthesized sound fields.

1. INTRODUCTION
In [1] we introduced a framework using sound field

synthesis (SFS) and spatial sampling theory to re-
visit infinite Line Source Arrays (LSA) using Wave-
front Sculpture Technology1 (WST) [2, 3]. The SFS
theory has been extensively used in the context of

1Wavefront Sculpture Technology R© is a registered trade-
mark of L-ACOUSTICS US, LLC. We omit the labeling in the
remainder of the paper and will only use the relevant research
results.

Wave Field Synthesis (WFS) research [4–14] and is
strongly linked to aperture theory in Fourier acous-
tics/optics [15–17] and antenna design [18,19].

So-called 2.5-dimensional SFS [6, Ch. 3] aims at
the synthesis of a virtual source within a horizon-
tal listening plane by a horizontally located loud-
speaker array, often termed secondary source distri-
bution (SSD). The listening area and loudspeaker
array are typically of about the same size, as for
many practically built WFS setups. In [20] it was
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discussed that synthesizing a virtual source is only
possible within the so-called Fresnel region [19, Ch.
2.2.4] of the SSD.

Sound reinforcement using LSAs has been tradi-
tionally seen as radiation synthesis using electronic
and/or geometric beamforming and -steering meth-
ods. Vertical loudspeaker arrays are commonly used
in a linear, curved, spiral, arc or J-shaped arrange-
ment [21]. In contrast to typical SFS setups, the lis-
tening area is usually much larger than the employed
loudspeaker arrays. An optimum radiation has to be
found that ensures a smooth frequency response over
the whole audience area and frequency independent,
homogeneous amplitude loss per distance doubling.
Additional constraints such as quiet zones may also
be imposed. It is well known that beam shaping is
only possible for a wave length that is smaller than
the length of the LSA. Hence the Fresnel region of an
LSA has to be optimized for a homogeneous sound
field [2, 3].

Although SFS and radiation synthesis aim at dif-
ferent target areas, the same analytical treatment
can be performed. Therefore recent results of SFS
research may be applied to LSA applications, which
constitutes the main motivation for the presented
work. In [6, Ch. 5] WFS reproduction of a virtual
spherical monopole was analyzed with an acoustic
signal processing framework. In [1] we argued that
sound reinforcement with LSAs can be modeled as
a special case of SFS: the synthesis of a cylindrical
wave perpendicular to the array that is uniformly
driven. The problem formulation starts with a lin-
ear, continuous and infinite SSD. Spatial discretiza-
tion is subsequently modeled by spatially sampling
the driving function. The individual sources can
be represented by baffled piston models. Assuming
identical characteristics for each secondary source,
the sampling process can be formulated in the corre-
sponding angular spectrum domain, where spectral
repetitions are introduced. We conclude that the
loudspeaker directivity acts as a spatial lowpass fil-
ter, i.e. the reconstruction filter within the sampling
model. Ideally, the spatial lowpass has to suppress
the spectral repetitions of the sampled driving func-
tion for perfect reconstruction of the sound field. If
the suppression is imperfect the Green’s function’s
angular spectrum (i.e. the spatially not bandlimited
spectrum of a spherical monopole) is triggered by
the spectral repetitions and undesired waves corrupt

the intended sound field. This is known as recon-
struction error or post-aliasing. In [9, Ch. 3.3,3.4]
different loudspeakers and thereby postfilters were
discussed in the context of WFS.

We further have shown that a spatial-aliasing-free
sound field for the discussed special case can only
be realized either by choosing the sampling distance
smaller then the radiated wave length λ, cf. [1, (23)],
or by using line pistons with the same length as
the sampling interval, cf. [1, (38,39)]. For all other
cases spatial aliasing will occur by either employ-
ing circular or line pistons. The tolerated amount
of spatial aliasing energy and hence the quality of
the produced sound field is a critical design criterion
of LSAs. In [2, 3] the usage of waveguides for high
audio frequencies was motivated and the 1st WST
criterion defines an active radiation factor (ARF) as
the quotient of piston length and sampling distance.
For ARF ≥ 0.82, spatial aliasing contributions are
at least 13.5 dB lower than that of the desired wave.
This criterion was initially derived for finite length
LSAs modeled with line pistons.

In this paper we will extend the signal process-
ing framework towards finite length, linear LSAs.
The finite array is modeled by spatially windowing
the driving function. The advantage of the pro-
posed viewpoint is the strict separation of spatial
truncation, spatial sampling and pre-/postfiltering
that might lead to better insights of the phenom-
ena, cf. [6].

In Sec. 3 we summarize the outcome of [1], the
model for an infinite, discrete SSD. Sec. 4 intro-
duces the finite length, continuous line array. In Sec.
5 both models are combined, discussing finite length
arrays modeled with discrete sources. Finally, a dis-
cussion on electronic beamsteering follows in Sec. 6.

2. NOMENCLATURE
A position vector in space is given by

x =

xy
z

 = ‖x‖ ·

cosϕ sinϑ
sinϕ sinϑ

cosϑ

 (1)

with azimuth ϕ ∈ [0, 2π), colatitude ϑ ∈ [0, π] and

the vector norm ‖x‖ = r =
√
x2 + y2 + z2. The

SSD with finite length L and the spatial discretiza-
tion ∆y is located on the y-axis, for which we later
choose an odd number of individual sources N at
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|y| ≤ L/2. The sound field is evaluated in the xy-
plane for x > 0, cf. Fig. 1. The dispersion relation
of linear acoustics

(
ω

c
)2 = k2

x + k2
y + k2

z (2)

holds. A constant speed of sound c=343 m/s, free-
field conditions and a dissipationless medium are as-
sumed. The wave number ky describes the wave
propagation along the SSD. For a cylindrical wave
(CW) the radial wave number kr is defined by

(
ω

c
)2 − k2

y = (
ω

c
)2
(
cos2 ϕCW sin2 ϑCW + cos2 ϑCW

)
︸ ︷︷ ︸

k2
r=k2

x+k2
z

(3)

for our 2.5D scenario. We are only interested in the
sound field within the xy-plane (i.e. z = 0, ϑ = π/2),
so the axial and radial wave numbers simplify to

ky =
ω

c
sinϕCW , kr =

ω

c
cosϕCW . (4)

The main part of this paper treats the special case
of wave propagation perpendicular to the SSD into

x
x0

x−x0

P (x, ω)

ϕ

L

l

∆y

y

x

z

Fig. 1: Side view of the discussed, schematic SSD
setup with length L using N = 11 line pistons of
length l on the y-axis. The distance between the
centers of two adjacent pistons is indicated as the
spatial discretization step ∆y. Sound field repro-
duction is considered within the xy-plane for x > 0.
Wave propagation angle is indicated with ϕ.

direction of positive x. This corresponds to a radia-
tion angle ϕCW = 0◦ or ky = 0 rad/m and kr = ω

c ,
respectively. For this case, we recall the required
driving function’s angular spectrum for the continu-
ous, infinite SSD [1, (16)]

D(ky, ω) = 2π δ(ky) · 2π δ(ω − ωCW) (5)

and the equidistantly sampled driving function’s an-
gular spectrum with ∆ky = 2π/∆y [1, (21)]

DS(ky, ω) =

(
2π

∆y

+∞∑
µ=−∞

δ(ky − µ
2π

∆y
)

)
×

2π δ(ω − ωCW). (6)

We use the farfield directivities of rigid baffled pis-
tons that are located within the yz-plane. These can
be interpreted as postfilters HPost(kx, ω), acting on
the sampled driving function. For a circular piston
with radius r0 (r2

0 = y2
0 + z2

0) the postfilter is given
as [22, (26.42)], [23, (7.4.17)], [1, (32)]

HCirc(ky, ω) =
2 J1(ky r0)

ky r0
=

2 J1(ωc sinϕ r0)
ω
c sinϕ r0

, (7)

where J1(·) denotes the cylindrical Bessel function
of 1st kind of 1st order [24, (10.2.2)]. Note that for
negative ky [24, (10.11.1)] is valid. The line piston
of length l along the y-axis and infinitesimal width
centered at the origin is characterized by the unit
amplitude normalized postfilter [22, (26.44)], [23,
(7.3.3)], [1, (33)]

HRect(ky, ω) =
sin
(
ky

l
2

)
ky

l
2

=
sin
(
ω
c sinϕ l

2

)
ω
c sinϕ l

2

. (8)

In Fig. 2 the angular spectra |Hpost(ky, ω)| of a 3”
circular and line piston are exemplarily given.

In the half plane of interest with x > 0 and z = 0
the angular spectrum of the Green’s function is given
as [11, (52)]

G0(x, ky, ω) = − j

4
H

(2)
0 (

√
(
ω

c
)2 − k2

y · x) (9)

for propagating waves, i.e. |ky| < ω
c . H

(2)
0 (·) de-

notes the 0th order cylindrical Hankel function of 2nd

kind [24, §10.1]. Throughout the calculus, evanes-
cent waves are not considered since the postfilter
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(a) Postfilter |HCirc(ky , ω)| in dB according to (7) for a circu-
lar piston with diameter 2 r0 = 3”.

(b) Postfilter |HRect(ky , ω)| in dB according to (8) for a line
piston with length l = 3”.

Fig. 2: Angular spectra of a baffled circular and a baffled line piston.

models hold only under farfield assumptions. As a
formal consequence, we define HPost(ky, ω) = 0 for
|ky| > ω

c and likewise G0(x, ky, ω). Similarly, an in-
verse spatial Fourier transform of the propagating
contributions of a spectrum P (x, ky, ω) is given by

F−1
|ky|≤ωc

{P (x, ky, ω)} :=
1

2π

+ω
c∫

−ωc

P (x, ky, ω) e−j ky y dky.

(10)

The temporal inverse Fourier transform

F−1
ω {P (x, ky, ω)} :=

1

2π

+∞∫
−∞

P (x, ky, ω) e+jω t dω

(11)

is used.
Note that the uniformly driven circular piston

model is only valid for λ� r0 for real loudspeakers.
Furthermore the assumption of an infinite baffle is
violated in practice for circular / line pistons and the
LSA. For high frequencies the modeling is nonethe-
less useful and allows direct comparison with [2].

3. INFINITE, DISCRETIZED LSA
This section summarizes the outcome of [1] together
with the analytical treatment of [11, Sec. IV.B]. The
angular spectrum of the synthesized sound field us-
ing an infinite, discretized, uniformly driven, linear

array modeled with pistons (7),(8) is with (6),(9)
given as [1, (24)]

P (x, ky, ω) =

sampling & reconstruction︷ ︸︸ ︷
DS(ky, ω) ·HPost(ky, ω) ·G0(x, ky, ω)︸ ︷︷ ︸

loudspeaker as spatial lowpass

(12)

for the considered xy-half-plane. A constant post-
filter HPost(ky, ω) = 1 corresponds to reproduction
with spherical monopoles and the sound field is an-
alytically given as [11, (37)]

P (x, y, ω) =
1

∆y
2π δ(ω − ωCW)×

+∞∑
µ=−∞

G0(x, ky = µ
2π

∆y
, ω) · e−jµ 2π

∆y y, (13)

by inverse spatial Fourier transform and subsequent
simplification. For |µ∆ky| < ω

c only propagating
waves are taken into account, which reduces the sum
in (13) to finite extent. The exponential term in
(13) describes the component along the y-dimension.
Note the discrete set of possible wave numbers due
to the discrete driving function’s angular spectrum.
The Green’s function’s angular spectrum describes
the component into radial direction. Both compo-
nents together describe a cylindrical wave with ra-
diation angle ϕµ. For µ = 0 the intended cylindrical
wave perpendicular to the SSD (i.e. into x-direction)
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D(y, ω) ∗

HPre(y, ω)

·

w(y)

∆y

HPost(y, ω)

∗

G(x,0, ω)

∗ P (x, y, ω)

truncation
sampling model

D(ky, ω) ∗

1
2π

w(ky)

HPre(ky, ω)

· ∗

1
2π

X(
ky∆y

2π
)

HPost(ky, ω)

·

G0(x, ky, ω)

· P (x, ky, ω)

truncation & sampling speaker & radiation

Dw,S(ky, ω)Dw(ky, ω) Dw,S,H(ky, ω)

Fig. 3: The single layer potential for a linear, spatially discretized and truncated SSD. Representation in
spatial (top) and angular spectrum domain (bottom), cf. [6, Fig. 5.7], [6, Fig. 5.13]. Convolution is denoted
by ∗ , multiplication by · .

is generated. For all other µ that fulfill |µ∆ky| < ω
c

propagating cylindrical waves are synthesized that
manifest as spatial aliasing, cf. [1, Fig. 2(c,d)]. For
∆y < λ the Green’s function generates a propagat-
ing wave only for µ = 0 and thus no spatial aliasing
occurs. By introducing the postfilter of pistons, the
sound field is given as

P (x, y, ω) =
1

∆y
2π δ(ω − ωCW)×

+∞∑
µ=−∞

HPost(ky = µ
2π

∆y
, ω) ·G0(x, ky = µ

2π

∆y
, ω)×

e−jµ 2π
∆y y.

(14)

The postfilter attenuates the spatial aliasing contri-
butions, cf. [1, Fig. 5]. Perfect reconstruction for
all temporal frequencies, i.e. a spatial-aliasing-free
sound field is achieved with line pistons for l = ∆y,
as discussed in [1, Sec. 5.2].

4. FINITE LENGTH, CONTINUOUS LSA
To account for a finite length array, the signal pro-

cessing model is extended by windowing the driving
function, cf. Fig. 3. This section discusses a finite,
albeit continuous SSD: the sampling stage is omitted
and the driving function is truncated to

Dw(y, ω) = w(y) ·D(y, ω) (15)

by employing the rectangular window (as in [2])

w(y) =

{
1 for |y| ≤ L

2

0 else
, (16)

with the angular spectrum (normalized to unity)

w(ky) =
sin
(
ky

L
2

)
ky

L
2

. (17)

The convolution of (17) and (5)

Dw(ky, ω) =
1

2π
w(ky) ∗ky D(ky, ω) (18)

leads to

Dw(ky, ω) =
sin
(
ky

L
2

)
ky

L
2

, (19)

where we omit the dependence on 2π δ(ω − ωCW)
from here on. Similar to (12) the angular spectrum
of the synthesized sound field is given by

P (x, ky, ω) = Dw(ky, ω) ·G0(x, ky, ω). (20)

The Dirac function (5) is smeared by convolution
(18) and the driving function’s angular spectrum
(19) becomes continuous regarding ky, cf. [11, Sec.
VII]. Hence, the treatment and the interpretation of
the synthesized sound fields and the radiation char-
acteristics of the LSA becomes more demanding.
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−3 dB

−6 dBxB

log2 x
SPL

Fresnel Fraunhofer
0 dB −3 dB

fB

log2 f
SPL
Fraunhofer

Fresnel

Fig. 4: Simplified radiation characteristics on x-axis
for a rectangular windowed, continuous LSA under
constant volume acceleration.

4.1. Farfield Directivity & Fresnel/Fraunhofer
Transition
The single layer potential [1, (2)], [11, (9)]

P (x, ω) =

+∞∫
−∞

w(y)D(y, ω)
e−j ωc ‖x−x0‖

4π ‖x− x0‖
dy (21)

formulates the problem in the spatial domain.
Closed form solutions for finite length arrays are only
available for special cases.

Evaluating (21) for ‖x‖ � L, ‖x‖ � λ, ‖x‖L �
L
λ

using ‖x‖ = r = const, the farfield polar pattern can
be analytically derived [25, Ch. 3.5], and the direct
link to the angular spectrum

P (r, ϕ, ω) ∝ Dw(ky, ω) =

+∞∫
−∞

Dw(y, ω) e+j ky y dy

(22)

is well known. Dw(ky, ω) is therefore interpreted
as the farfield directivity of the LSA cf. [23, Ch.
7.11], [22, Ch. 26.2], [25, Ch. 3.6].

Another closed form solution of (21) can be de-
rived for positions x = [x, 0, 0]T , x ≥ L/2, i.e. along
the main axis, cf. [22, Ch. 26.23], [26], [2, I.3.b].
The latter two papers deduced that a continuous, fi-
nite length array with constant volume acceleration
exhibits a Fresnel region (3 dB amplitude loss per
distance doubling with ripples, 3 dB/oct. lowpass
for temporal frequencies with ripples) and a Fraun-
hofer region (6 dB amplitude loss per distance dou-
bling, temporal frequency independent amplitude),
cf. Fig. 4, [2, 26]. The transition or border dis-
tance xB between both regions on the main axis is
highly dependent on the frequency and array length.

By the geometric diffraction approach the authors
of [2], [3, p. 913] derived

xB =
1

2
L2 f

c

√
1− 1

( fc L)2
, (23)

for which xB /∈ R indicates pure Fraunhofer radia-
tion. We therefore cannot expect cylindrical wave
radiation for all frequencies, contrasting to the case
for the infinite line source [26, p.12], [1].

In the following section we utilize the signal pro-
cessing framework within angular spectrum domain
to derive another, yet consistent viewpoint of Fres-
nel/Fraunhofer transition.

4.2. Angular Spectrum Synthesis
The inverse spatial Fourier transform of (20) for the
propagating part of the sound field is given by

P (x, y, ω) = F−1
|ky|≤ωc

{Dw(ky, ω) ·G0(x, ky, ω)}

=
1

2π

+ω
c∫

−ωc

Dw(ky, ω) ·G0(x, ky, ω) · e−j ky y dky.

(24)

The analytical solution of the integral is–if feasi-
ble at all–not straightforward and we leave this for
future inspection. Numerical evaluation allows for
synthesizing the sound field by weighted superpo-
sition of cylindrical waves with propagating angles
−π/2 < ϕ < +π/2, which can be interpreted as
angular spectrum synthesis. Note that these waves
stem from an infinite, continuous line source. The
integration over ky, i.e. the different radiation an-
gles, yields the radiation characteristics of a line
source with finite dimension by interference phenom-
ena. This viewpoint is in contrast to the numeri-
cal evaluation of (21), which can be interpreted as
source synthesis by weighted spherical monopoles.

Note that (21) inherently includes evanescent
waves, which we discarded in (24) for ease of discus-
sion. The discretization of ky in (24) for numerical
evaluation leads to spatial repetitions of the sound
field along the y-axis, which must become negligible
in the evaluated listener area.
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Writing out (24) yields

P (x, y, ω) =
−j

8π
×

+ω
c∫

−ωc

sin
(
ky

L
2

)
ky

L
2

·H(2)
0

(√
(
ω

c
)2 − k2

y · x
)
· e−j ky y dky.

(25)

For less computational load the large argument ap-
proximation of the Hankel function may be utilized

P (x, y, ω) =
−j

8π

+ω
c∫

−ωc

[
sin
(
ky

L
2

)
ky

L
2

×

√√√√ 2

π
√

(ωc )2 − k2
y · x

e−j (
√

(ωc )2−k2
y·x−π4 ) e−j ky y ] dky

(26)

for
√

(ωc )2 − k2
y · x� 1.

The proposed framework provides an interesting
opportunity, by definition of a perfect spatial low-
pass filter (cf. [14, (4.55)], [12, (9)])

HLP(ky, ω) =

{
1 |ky| < | 2πL |
0 elsewhere ,

(27)

that may be included to the signal flow. This was
discussed in [14, Ch. 4.6.6], [12], although with the
different motivation to suppress discretization effects
(spatial aliasing) instead of truncation artifacts as in
the case presented here. The cutoff wave numbers
ky = ±2π/L are the locations of the first zeros of
the array’s farfield directivity (19), if they exist in
the visible region |ky = ±2π/L| < ω

c for the chosen
frequency. The spatial lowpass can be used to in-
dependently synthesize the sound field of the main
lobe

Pmain(x, y, ω) =

F−1
|ky|≤ωc

{HLP(ky, ω) ·Dw(ky, ω) ·G0(x, ky, ω)}
(28)

and that of the remaining propagating side lobes

Pside(x, y, ω) =

F−1
|ky|≤ωc

{(
1−HLP(ky, ω)

)
·Dw(ky, ω) ·G0(x, ky, ω)

}
.

(29)

This is equivalent to splitting the integral (25) into
three integration ranges

P (x, y, ω) =

+ 2π
L∫

− 2π
L

...

︸ ︷︷ ︸
Pmain(x,y,ω)

+

− 2π
L∫

−ωc

...+

+ω
c∫

+ 2π
L

...

︸ ︷︷ ︸
Pside(x,y,ω)

. (30)

4.3. Numerical Evaluation
In Fig. 5 the introduced approach is evaluated for
the case L = 8 · λ = 5.05 m. Fig. 5a shows the
sound fields’ pressure level of the uniformly driven
LSA in the xy-plane according to (25), (30). The
sound pressure level (SPL) is normalized to 94 dB at
x = 20 m on the main axis. The colormap is clipped
for values > 112 dBSPL and < 67 dBSPL. The Fres-
nel/Fraunhofer transition distance (23) for this ex-
ample is given to xB = 20.04 m. Fig. 5b shows the
sound fields’ pressure level that stems only from the
main lobe (28), whereas Fig. 5c excludes it, i.e. the
synthesis of all remaining side lobes (29). The super-
position of Pmain(x, y, ω) Fig. 5b and Pside(x, y, ω)
Fig. 5c results in the sound field P (x, y, ω) Fig. 5a
by interference. In Fig. 6 the SPL on the main axis
was evaluated for all three cases. The main lobe
sound field exhibits a ripple free amplitude decay
with a transition at xB from almost ideal cylindri-
cal (Fresnel) to spherical (Fraunhofer) wave propa-
gation. The sound field that excludes the main lobe
exhibits lower overall SPL, notches and an ampli-
tude loss, that is larger than 6 dB per distance dou-
bling for x > xB. The interaction of the main and
side lobes for x < xB results in the rippled on-axis
sound pressure level that is typical for the Fresnel
region [2, 21, 26]. The total sound field in the xy-
plane is corrupted by the side lobes as long as the
level of the latter is large enough to produce perturb-
ing interferences. The side lobe level attenuation for
x > xB is larger than 20 dB, and thus has weak im-
pact on the total sound field, which is expected in
the Fraunhofer region.

By observing the temporal frequency and LSA
length dependence regarding the integration limits
for the main lobe sound field

|ky = sinϕ
ω

c
| = 2π

L
, (31)

it becomes obvious that for higher frequencies
and/or larger LSAs, the side lobe field is synthe-
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(a) Complete sound field |P (x, y, ω)| = |Pmain(x, y, ω) +
Pside(x, y, ω)| according to (25),(30)

(b) |Pmain(x, y, ω)| (28) of main lobe components.

(c) |Pside(x, y, ω)| (29) of side lobe components.

Fig. 5: Level of sound field |P (x, y, ω)| (top) synthe-
sized by numerical evaluation of (25) with a contin-
uous, finite length array (L = 5.05 m, f = 8 · c/L =
543.4 Hz).

Fig. 6: On-axis sound pressure level for Fig. 5.

sized from smaller radiation angles ϕ. These waves
closer to ϕ = 0◦ interfere with the main lobe within
a much larger spatial region, and this is indicating
the large Fresnel/Fraunhofer transition borders in
(23) for high frequencies and large array lengths.

5. FINITE LENGTH, DISCRETIZED LSA
We proceed with the discussion of a finite length,

discrete LSA modeled with pistons. Therefore we
employ the complete signal processing chain in Fig. 3
except the prefilter HPre. As depicted in Fig. 1, an
axisymmetric LSA geometry with regard to y = 0
and an odd number N of sources is assumed.

The driving function for a finite length, uniformly
driven and discretized array of spherical monopoles
is modeled as

Dw,S(y, ω) =

+N−1
2∑

µ=−N−1
2

δ(y − µ∆y). (32)

This includes spatial truncation (15) by a rectangu-
lar window (16) and discretization with step size ∆y
(6). The corresponding angular spectrum is given as

Dw,S(ky, ω) =

+N−1
2∑

µ=−N−1
2

e+j (ky ∆y)µ. (33)

This geometric series has the closed form solution of
the Dirichlet kernel, also called aliased sinc-function
[27, (3-37) ff., App. B], given by

Dw,S(ky, ω) =
1

N

sin(ky ∆y N/2)

sin(ky ∆y/2)
, (34)

AES 137th Convention, Los Angeles, USA, 2014 October 9–12

Page 8 of 18



Schultz et al. Spatial-Aliasing-Free Finite Line Source Arrays

Fig. 7: Dw,S(ky) in (34) for ∆y = 2π/20 m, ∆ky =
20 rad/m, N = 15 (gray), N = 31 (black).

using unit amplitude normalization for ease of dis-
cussion, cf. [22, Ch. 26.3.2], [23, Ch. 7.8], [19, Ch.
6.3]. Dw,S(ky) in (34) is formally defined for all
ky ∈ R. We see that for

ky = µ
2π

∆y
= µ∆ky (35)

unit amplitude peaks occur due to the spectral rep-
etitions of the Dirac comb in (6). The Dirac comb
is smeared to sinc-like lobes due to windowing. The
main lobe is located between ky = ±2π/L as in Sec.
4, the lobes between ky = µ∆ky ± 2π/L for µ 6= 0
are termed grating lobes [19], whereas the remain-
ing side lobes exhibit a sinc-like decay, cf. [2, p.15].
Thus, a higher number of sources N and thereby
a longer LSA exhibits narrower main and grating
lobes, cf. Fig. 7. A smaller discretization step ∆y
results in a larger distance ∆ky between the adja-
cent main/ grating lobes. The propagating region of
the Green’s function’s angular spectrum is triggered
by (34) with the frequency dependent visible region
−ωc < ky < +ω

c .
In [2, II.2.a] (34) was termed form factor of the

array, whereas in [21] the term directivity function
was used. The angular spectrum (34) is interpreted
as the farfield directivity of a finite length line array
build with equidistantly spaced spherical monopoles.

According to the signal processing model, when
using pistons instead of spherical monopoles, we can
define the driving function’s angular spectrum

Dw,S,H(ky, ω) = Dw,S(ky, ω) ·Hpost(ky, ω) (36)

as the farfield directivity of the LSA, which is con-
sistent with the product theorem [15, Ch. 7], [23,
Ch. 7.9]. In [2, p.13], [2, Fig. 16] the farfield of
a discrete, finite length array was termed collective
Fraunhofer region. In antenna design the product
(36) was termed final array factor for a closely re-
lated problem treatment [28].

For a line piston LSA with ∆y = l and L = N · l,
we arrive at

Dw(ky, ω) = Dw,S(ky, ω) ·HRect(ky, ω) (37)

using (34) and (8). This yields the farfield directiv-
ity (19) of a continuous, finite length array. Note
that (37) is only valid for an uniformly driven array.

At this stage of discussion it is worth to stress that
manipulation of Dw,S(ky, ω) (34) and Dw,S,H(ky, ω)
(36) in the electronic signal domain is not possible.
The postfilter acts in the acoustic domain and once
the driving function is physically sampled by using
discrete loudspeakers there is no further control over
Dw,S(ky, ω) and Dw,S,H(ky, ω) in the electronic do-
main.

5.1. First and Second WST Criterion
The previous introduction of the driving function

for a finite length, discretized array and the product
theorem allows for revision of the 1st and 2nd WST
criteria. The revision of the other three WST crite-
ria [3, p.929] is beyond the scope of this paper.

According to the sampling theorem for basisband
signals, perfect reconstruction of (34) requires an
ideal spatial lowpass with Nyquist band width

HLP(ky, ω) =

{
1 |ky| < ∆ky

2

0 elsewhere
(38)

as the postfilter. The finite length line array
build with equidistantly spaced spherical monopoles
does not involve this filter physically. This mod-
els practical LSA designs using approximately omni-
directional radiating loudspeakers at low frequen-
cies. Perfect reconstruction is thus only possible for
frequencies that fulfill

|ky| =
ω

c
<

∆ky
2
. (39)

Rearranging (39) reveals the 2nd WST criterion [2],
[3, p.918], [22, Ch. 26.4]

WST #2: f <
c

2 ∆y
↔ ∆y <

λ

2
, (40)
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that defines a spherical monopole spacing not larger
than half of the radiated wave length in order to syn-
thesize a spatial-aliasing-free sound field. Eq. (40)
requires very small distances ∆y and thus small in-
dividual drivers for high frequencies, which is a tech-
nically demanding approach.

Therefore the 1st WST criterion was defined for
the case that (34) exceeds the Nyquist band width
for high frequencies. With regard to the signal pro-
cessing model in Fig. 3, a postfilter HRect was in-
troduced by the authors of [2], cf. [3, Fig. 6]. By
allowing grating lobes in the region of |ky| < ω

c in
(34), spatial aliasing is tolerated. This is in contrast
to complete avoidance by fulfillment of the 2nd WST
criterion. For large N the Active Radiation Factor
(ARF) [3, Ch. 3.2]

WST #1: ARF =
l

∆y
≥ 0.82 (41)

was defined, such that the farfield level of all side
lobes (i.e. from windowing) and grating lobes (from
sampling) in (36) is at least 13.5 dB below the
main lobe level. This was motivated with amplitude
matching of the highest side lobe of a continuous,
rectangular windowed array. We define the ARF for
the practical setup of a finite length LSA with line
pistons to

ARF =
N · l
L
≥ 0.82 (42)

according to the sketched geometry in Fig. 1 and
recall that (37) corresponds to an ARF = 1 design.

For the two-dimensional case of adjacent circular
pistons with radius r0 the ARF was derived to [3]

ARF =
π r2

0

4 r2
0

≈ 0.7854, (43)

using a quadratic enclosure with length 2 r0. It was
concluded that the 1st WST criterion never can be
fulfilled by usage of circular pistons, which inher-
ently suggests that only the 2nd one can be used for
circular pistons. The interpretation is misleading,
since the criterion was derived for utilizing a line
piston postfilter.

Although – for an infinite array – it was shown
that HCirc cannot perfectly suppress the undesired
spectral repetitions for ∆y = 2 r0 [1, Fig. 5] as HRect

does for l = ∆y [1, Fig. 7], HCirc has better spatial

Fig. 8: |Dw,S,H(ky, ω)| for f = 5 kHz, L ≈ 5 m. LSA
with ARFCirc = π/4: r0 = 3”/2, ∆y = 3”, N = 65.
LSA with ARFRect = 0.82: l = 0.0635 m, ∆y =
0.0777 m, N = 65.

lowpass characteristics than HRect with the same di-
mension (l = 2 r0), for the case that spatial aliasing
is disregarded, cf. Fig. 2. A comparison of two LSAs
with
◦ 3” circular pistons, ARF = π/4
◦ line pistons of length l = 0.0635 m, ARF = 0.82
of same LSA length L ≈ 5 m is conducted. The line
piston LSA fulfills the 1st WST criterion, whereas
the circular piston LSA violates both the 1st WST
criterion (due to insufficient ARF) and the 2nd WST
criterion (due to high frequency). In Fig. 8 the
farfield directivities |Dw,S(ky, ω) · Hpost(ky, ω)| for
5 kHz are depicted. The discretization step size
∆y is almost equal for both cases and the same
number of pistons N = 65 is used. Due to equal
LSA length the main lobes exhibits the same sinc-
patterns. Two grating lobes of (34) exist in the vis-
ible region −ωc < ky < +ω

c and are attenuated by
the postfilters. Fig. 8 indicates the larger grating
lobe suppression at |ky = 2π/∆y| ≈ 80 rad/m for
the circular piston LSA of about 15 dB, compared
to the expected 13.5 dB for the line piston LSA.

5.2. Numerical Evaluation
The angular spectrum of the synthesized sound field
is with (36) given as, cf. (12)

P (x, ky, ω) = Dw,S,H(ky, ω) ·G0(x, ky, ω). (44)

The inverse spatial Fourier transform for the range
|ky| < ω

c yields the sound field for propagating waves
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similar to (24)

P (x, y, ω) = F−1
|ky|≤ωc

{P (x, ky, ω)}

=
1

2π
·

+ω
c∫

−ωc

[Dw,S(ky, ω) ·Hpost(ky, ω)

× G0(x, ky, ω) · e−j ky y ] dky. (45)

By using (45), a 5 m-LSA modeled with line pis-
tons is numerically evaluated according to the strat-
egy in (30). The LSA parameters in Fig. 14a are
used for f = 1.2 kHz. Note that the evaluation is
only valid in the farfield of the line pistons. The
sound fields’ pressure levels are visualized in Fig. 9.
The farfield directivity exhibits two grating lobes
around ±ky = 13.6861 rad/m, ϕ = ±38.5◦, that
have been attenuated by the line piston’s postfilter,
cf. Fig. 14a. The resulting spatial aliasing is ob-
served in Fig. 9a. In the plotted region of Fig. 9b
Pmain(x, y, ω) exhibits pure Fresnel characteristics
on main axis. This sound field is corrupted by inter-
ference with Pside(x, y, ω) that is shown in Fig. 9c.
This results in the so-called chaotic region [2, II.1.
& fig. 16] close to the array. Note that this is a
deterministic phenomenon due to (45). In [2, p. 14,
r2
Border] the transition distance on main axis between

the chaotic region and the collective Fraunhofer re-
gion was derived from the geometric diffraction ap-
proach to

xB =
1

2
N2 ∆y2 f

c
− 1

4 f
c

. (46)

For x > xB the side lobe level becomes negligible,
which is confirmed by the on-axis sound pressure
level depicted in Fig. 10. For the chosen example
xB = 44.5 m holds.

It is worth realizing the fundamental difference re-
garding the synthesized sound fields of infinite and fi-
nite length LSAs. While for infinite arrays the sound
field remains corrupted over the whole space, the fi-
nite length LSA exhibits an almost spatial-aliasing-
free sound field beyond the discussed distance xB.

5.2.1. Circular vs. Line Piston LSA
In the remainder of Sec. 5 we discuss further prop-
erties and special cases for uniformly driven, dis-
crete, finite LSAs. The simulation results are de-
picted in Fig. 13 to Fig. 15 at the end of this pa-
per. In those figures one column represents a specific

(a) Complete sound field |P (x, y, ω)| = |Pmain(x, y, ω) +
Pside(x, y, ω)|.

(b) |Pmain(x, y, ω)| of main lobe components.

(c) |Pside(x, y, ω)| of side lobe components.

Fig. 9: Sound field synthesized by numerical eval-
uation of (45) with an LSA build by line pistons
(L = 4.9684 m, f = 1.2 kHz, ∆y = 0.4591 m,
l = 0.381 m, ARF=0.8436, N = 11).
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Fig. 10: On-axis sound pressure level for Fig. 9.

scenario. Subplot a) depicts the farfield directivity
|Dw,S,H(ky, ω)| over temporal frequency f and wave
number ky. Levels < −36 dB are clipped to white
color. Subplot b) shows the specific farfield direc-
tivity for a chosen frequency, for which in subplot
c) the resulting sound field is numerically evaluated
by (21). All sound fields’ levels are normalized to
94 dBSPL at x = 10 m on main-axis. Sound pressure
levels > 112 dB are clipped to black color, those
< 76 dBSPL to white color. The frequencies for the
synthesized sound fields were chosen to highlight the
particular phenomenon under discussion.

In Fig. 13 LSAs with ARF = π/4, L ≈ 5 m mod-
eled with circular (left) and line (right) pistons of
about the same dimensions can be compared. The
circular piston LSA – although violating the 1st

and 2nd WST criterion – has better spatial lowpass
characteristics, the two observable grating lobes in
Fig. 13c for 1.6 kHz are attenuated≈ 15 dB in the far
field. For 20 < |ky| < 30 rad/m side lobe suppres-
sion of more than 36 dB is observed. This results
in only small sound pressure levels in the proxim-
ity above and below the LSA. Using line pistons for
this LSA on the other hand violates the ARF crite-
rion (41): we observe four prominent grating lobes
in Fig. 13d, postfilter attenuation of minimum 13.5
dB is not achieved for the first pair. The outermost
grating lobes produce high sound pressure level in
the depicted sound field near above and below the
LSA.

For the discussed case the circular piston LSA ex-
hibits less spatial aliasing, as was already discussed

in Sec. 5.1. The result here is however only of the-
oretical interest, since a 15” circular piston is not
able to radiate uniformly at this frequency in prac-
tice and the farfield piston model is not valid. How-
ever, choosing very small drivers and a source spac-
ing in the range of few cm for the high frequency LSA
section–and thereby fulfilling the sampling theorem
(39)–is a recently realized approach in commercial
LSA designs.

5.2.2. LSAs with Different Line Piston Length
The ARF criterion (41) alone states only a minimum
ratio for piston size and source spacing, which ob-
viously can be met by different setups. In Fig. 14
two LSAs with ARF ≈ 0.84 and L ≈ 5 m modeled
with line pistons, using N = 11 pistons of length
l = 0.381m (left) and N = 21 with l = 0.2012m
(right) are visualized. The LSAN=11 exhibits four
grating lobes for f = 1.6 kHz due to the larger dis-
cretization step ∆y, concurrently with high suppres-
sion in the range of ky ≈ 20 rad/m. The LSAN=21

features only two grating lobes that have about
the same farfield radiation angles as the two out-
ermost grating lobes of LSAN=11. This is due to
∆yN=11 ≈ 2 ∆yN=21. In both cases all side and
grating lobes are attenuated at least 13.5 dB in the
farfield, since the ARF criterion is fulfilled.

Note that the maximum line piston size was de-
fined only in [3, Sec. 6.2] by linking it with a max-
imum allowed splaying angle of adjacent pistons for
curved arrays.

5.2.3. LSA with Spatial Aliasing at ϕ = ±90◦

We use the same LSA setup with N = 11 line pistons
as in the previous subsection, although at a different
frequency. Evaluating at f = 1.495 kHz illustrates
the phenomenon of propagating waves along the ar-
ray axis, depicted in the left column of Fig. 15. Here,
the second spectral repetitions with µ = ±2 occur at
wave numbers |ky| = 27.37 rad/m, close to the pole
of G0(x, ky, ω) at ω

c = 27.386 rad/m. This results
in wave propagation along the array (|ϕ| ≈ 90◦).
The level of the produced sound field close to the
array is not predicted by the LSA farfield directivity
Dw,S,H(ky, ω). In Fig. 11 the sound pressure level
along the x- and the y-axis is evaluated. It indicates
that the wave propagation along the array (grating
lobe on y-axis) decays with 6 dB per distance dou-
bling and therefore faster than the main lobe (on x-
axis) that exhibits a typical Fresnel/Fraunhofer level
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Fig. 11: On-axis and off-axis sound pressure level
versus distance for Fig. 15e.

decay. However, very close to the array (x, y < 7 m)
both sound pressure levels exhibit the same order
of magnitude. In the collective Fraunhofer region
(x/y = 100 rad/m, Fig. 11) |Dw,S,H(ky, ω)| predicts
the grating lobe suppression of 15 dB, that is ob-
served in Fig. 15c. Wave propagation along the ar-
ray with high SPL, that results from spatial aliasing,
occurs for all LSA designs that violate the 2nd WST
criterion and ARF < 1. This is observable at par-
ticular frequencies, where the grating lobes trigger
the Green’s function’s angular spectrum very close
to its pole. This behavior cannot be avoided and
is observable in commercial prediction software as
well.

5.2.4. Spatial-Aliasing-Free LSA with ARF=1
In Fig. 15, right column for completeness a con-
tinuous LSA is simulated corresponding to Sec. 4.
Due to (37) this models also a discrete LSA with
ARF = 1 using the chosen parameters. No grating
lobes occur and only the sinc-function of the trunca-
tion window (17) is observable, producing the well
known sound field of a continuous, uniformly driven
line source, cf. [21, Fig. 13].

6. ELECTRONICALLY STEERED, FINITE
LENGTH AND DISCRETIZED LSA
Finally we briefly discuss radiation synthesis into

direction ϕ 6= 0◦. By applying a delay time τ cumu-
latively to the individual sources, the main lobe of
an LSA can be steered into direction of ϕSteer. With

the wave velocity along the array, cf. [25, Ch. 3.5.3]

cs =
∆y

τ
=

c

sinϕSteer
> c (47)

and the corresponding wave number ky,Steer =
ω
cs

, the driving function’s angular spectrum for a
straight, discretized, rectangular windowed and fi-
nite length array is given as [23, (7.8.16)]

Dw,S(ky, ω) =
1

N

sin([ky − ky,Steer] ∆y N/2)

sin([ky − ky,Steer] ∆y/2)
. (48)

The farfield directivities |Dw,S,H(ky, ω)| for two elec-
tronically steered (ϕSteer = −5◦) LSAs of length

(a) Line pistons HRect(ky , ω), l = 0.4591 m, L = 5.05 m,
N = 11, ARF=1, ∆y = 0.4591 m, ∆ky = 13.6859 rad/m.

(b) 3” circular pistons HCirc(ky , ω), L = 4.9530 m, N = 65,
ARF=π/4, ∆y = 0.0762 m, ∆ky = 82.4565 rad/m.

Fig. 12: Farfield directivities |Dw,S,H(ky, ω)| for off-
axis beamsteering to ϕSteer = −5◦ for two LSA se-
tups.
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L ≈ 5 m modeled with line and circular pistons re-
spectively are visualized in Fig. 12. The line piston
LSA in Fig. 12a features an ARF=1. The circu-
lar piston LSA exhibits an ARF = π/4, with much
smaller pistons than the line pistons. The line pis-
ton postfilter HRect attenuates the intended main
lobe in Fig. 12a for f > 6 kHz due to its first notch
of the sinc function. A prominent grating lobe en-
ters the propagating part of the Green’s function’s
angular spectrum at about 800 Hz and can be traced
towards ky ≈ 0 rad/m at 8 kHz. It exhibits about
the same level as the intended main lobe and will
severely corrupt the desired wave propagation. Elec-
tronic beamsteering with large line pistons (large l,
small ∆ky, narrow main lobes in farfield directivity)
is therefore not advisable.

The electronically steered LSA in Fig. 12b is mod-
eled with adjacent 3” circular pistons. Since the
sampling step size is much smaller, only two grat-
ing lobes are observed. The intended main lobe is
maintained within the plotted frequency range, due
to the less directed farfield pattern of the postfilter.
For an LSA modeled with pistons, it is obviously
advantageous to use a larger number N of smaller
sources, which exhibit a less directed piston farfield
pattern and thus offer a higher degree of freedom.
In essence this was confirmed in the simulations per-
formed in [29].

7. CONCLUSION
We revised and provided new insights to the 1st

and 2nd Wave Sculpture Technology criteria with a
signal processing framework that was developed in
sound field synthesis research. Although analytical
treatment is sophisticated and presumably not pos-
sible, the numerical evaluation of–what we termed–
angular spectrum synthesis allows for a more intu-
itive interpretation on how sound fields are synthe-
sized from linear, discrete and finite length arrays
that are modeled with farfield directivities of baffled
pistons.

We conclude that spatial-aliasing-free sound fields
for high frequencies should be synthesized with line
source arrays that employ waveguides with an ideal
active radiation factor of one. Based on the dis-
cussions it is furthermore suggested to choose a
rather fine driving granularity, i.e. small, individ-
ually driven pistons. This approach would displace
the spatial aliasing problem to higher temporal fre-

quencies and therefore a higher degree of freedom
with regard to electronic beamforming is achieved.
This would allow improved performance of finding
driving functions in recently developed numerical
optimization schemes [30–32].

8. REFERENCES

[1] Schultz, F.; Rettberg, T.; Spors, S. (2014):
“On spatial-aliasing-free sound field reproduc-
tion using infinite line source arrays.” In: Proc.
of the 136th Audio Eng. Soc. Conv., Berlin,
#9078.

[2] Heil, C.; Urban, M. (1992): “Sound fields ra-
diated by multiple sound sources arrays.” In:
Proc. of 92nd Audio Eng. Soc. Conv., Vienna,
#3269.

[3] Urban, M.; Heil, C.; Baumann, P. (2003):
“Wavefront Sculpture Technology.” In: J. Au-
dio Eng. Soc., 51(10):912–932.

[4] Berkhout, A.J.; de Vries, D.; Vogel, P. (1992):
“Wave Front Synthesis: A new direction in
electroacoustics.” In: Proc. of 93rd Audio Eng.
Soc. Conv., San Francisco, #3379.

[5] de Vries, D. (1996): “Sound reinforcement by
wavefield synthesis: Adaptation of the synthesis
operator to the loudspeaker directivity charac-
teristics.” In: J. Audio Eng. Soc., 44(12):1120–
1131.

[6] Start, E.W. (1997): Direct Sound Enhancement
by Wave Field Synthesis. Ph.D. thesis, Delft
University of Technology.

[7] Spors, S. (2006): “Spatial aliasing artifacts pro-
duced by linear loudspeaker arrays used for
Wave Field Synthesis.” In: Proc. of the 2nd IS-
CCSP, Marrakech.

[8] Spors, S.; Rabenstein, R.; Ahrens, J. (2008):
“The theory of Wave Field Synthesis revisited.”
In: Proc. of the 124th Audio Eng. Soc. Conv.,
Amsterdam, #7358.

[9] Verheijen, E. (2010): Sound Reproduction by
Wave Field Synthesis. Ph.D. thesis, Delft Uni-
versity of Technology.

AES 137th Convention, Los Angeles, USA, 2014 October 9–12

Page 14 of 18



Schultz et al. Spatial-Aliasing-Free Finite Line Source Arrays

[10] Spors, S.; Ahrens, J. (2010): “Analysis
and improvement of pre-equalization in 2.5-
dimensional Wave Field Synthesis.” In: Proc.
of the 128th Audio Eng. Soc. Conv., London,
#8121.

[11] Ahrens, J.; Spors, S. (2010): “Sound field re-
production using planar and linear arrays of
loudspeakers.” In: IEEE Trans. Audio Speech
Language Process., 18(8):2038–2050.

[12] Ahrens, J.; Spors, S. (2010): “On the anti-
aliasing loudspeaker for sound field synthesis
employing linear and circular distributions of
secondary sources.” In: Proc. of the 129th Au-
dio Eng. Soc. Conv., San Francisco, #8246.

[13] Firtha, G.; Fiala, P. (2012): “Prefiltering the
wave field synthesis operators - anti-aliasing
and source directivity.” In: Intl. Conference on
Noise and Vibration Engineering (ISMA 2012),
Leuven, Belgium, 3121 – 3136.

[14] Ahrens, J. (2012): Analytic Methods of Sound
Field Synthesis. Heidelberg: Springer.

[15] Ziomek, L.J. (1995): Fundamentals of Acoustic
Field Theory and Space-Time Signal Process-
ing. Boca Raton: CRC Press.

[16] Williams, E.G. (1999): Fourier Acoustics,
Sound Radiation and Nearfield Acoustic Holog-
raphy. London: Academic Press.

[17] Goodman, J.W. (2005): Introduction to Fourier
Optics. Greenwood Village: Roberts & Co
Publ, 3. ed.

[18] Elliot, R.S. (2003): Antenna Theory and De-
sign. Hoboken: Wiley.

[19] Balanis, C.A. (2005): Antenna Theory - Anal-
ysis and Design. Hoboken: Wiley, 3. ed.

[20] Schultz, F.; Spors, S. (2014): “On the frequency
response variation of sound field synthesis using
linear arrays.” In: Proc. of 40th DAGA, Olden-
burg, 592–593.

[21] Ureda, M.S. (2004): “Analysis of loudspeaker
line arrays.” In: J. Audio Eng. Soc., 52(5):467–
495.

[22] Skudrzyk, E. (1971): The Foundations of
Acoustics. New York: Springer.

[23] Kinsler, L.E.; Frey, A.R.; Coppens, A.B.;
Sanders, J.V. (2000): Fundamentals of Acous-
tics. Hoboken: Wiley, 4. ed.

[24] Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.;
Clark, C.W. (2010): NIST Handbook of Mathe-
matical Functions. Cambridge: Cambridge Uni-
versity Press.
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(a) |Dw,S(ky , ω) ·HCirc(ky , ω)|
r0 = 15”/2 = 0.1905 m, ∆ky = 2π/(2 r0) = 2π/0.381 m

(b) |Dw,S(ky , ω) ·HRect(ky , ω)|
l = 0.3526 m, ∆ky = 2π/0.4591 m

(c) |Dw,S(ky , ω) ·HCirc(ky , ω)| for f = 1.6 kHz (d) |Dw,S(ky , ω) ·HRect(ky , ω)| for f = 1.6 kHz

(e) sound field for f = 1.6 kHz normalized to
94 dBSPL @ x = 10 m, y = 0 m

(f) sound field for f = 1.6 kHz normalized to
94 dBSPL @ x = 10 m, y = 0 m

Fig. 13: Angular spectra and sound fields of a rect windowed line source array, left: with circular pistons
(L = 4.953 m, ARF=π/4, N = 13), right: with line pistons (L = 4.9401 m, ARF=0.7851, N = 11)
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(a) |Dw,S(ky , ω) ·HRect(ky , ω)|
l = 0.381 m, ∆ky = 2π/0.4591 m

(b) |Dw,S(ky , ω) ·HRect(ky , ω)|
l = 0.2012 m, ∆ky = 2π/0.2405 m

(c) |Dw,S(ky , ω) ·HRect(ky , ω)| for f = 1.6 kHz (d) |Dw,S(ky , ω) ·HRect(ky , ω)| for f = 1.6 kHz

(e) sound field for f = 1.6 kHz normalized to
94 dBSPL @ x = 10 m, y = 0 m

(f) sound field for f = 1.6 kHz normalized to
94 dBSPL @ x = 10 m, y = 0 m

Fig. 14: Angular spectra and sound fields of a rect windowed line source array, left: with line pistons
(L = 4.9684 m, ARF=0.8436, N = 11), right: with line pistons (L = 5.0073 m, ARF=0.8436, N = 21)
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(a) |Dw,S(ky , ω) ·HRect(ky , ω)|
l = 0.381 m, ∆ky = 2π/0.4591 m

(b) |Dw,S(ky , ω) ·HRect(ky , ω)|
l = 0.4591 m, ∆ky = 2π/0.4591 m

(c) |Dw,S(ky , ω) ·HRect(ky , ω)| for f = 1.495 kHz (d) |Dw,S(ky , ω) ·HRect(ky , ω)| for f = 1.6 kHz

(e) sound field for f = 1.495 kHz normalized to
94 dBSPL @ x = 10 m, y = 0 m

(f) sound field for f = 1.6 kHz normalized to
94 dBSPL @ x = 10 m, y = 0 m

Fig. 15: Angular spectra and sound fields of a rect windowed line source array, left: with line pistons
(L = 4.9684 m, ARF=0.8436, N = 11), right: with line pistons (L = 5.05 m, ARF=1, N = 11)
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