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ABSTRACT
Concert sound reinforcement systems aim at the reproduction of homogeneous sound fields over extended
audiences for the whole audio bandwidth. For the last two decades this has been mostly approached by using
so called line source arrays due to their superior abilities of producing homogeneous sound fields. Design
and setup criteria for line source arrays were derived as Wavefront Sculpture Technology in literature. This
paper introduces a viewpoint on the problem at hand by utilizing a signal processing model for sound field
synthesis. It will be shown that the optimal radiation of a line source array can be considered as a special
case of spatial-aliasing-free synthesis of a wave front that propagates perpendicular to the array. For high
frequencies the so called waveguide operates as a spatial lowpass filter and therefore attenuates energy that
otherwise would lead to spatial aliasing artifacts.

1. INTRODUCTION
Wavefront Sculpture Technology1 (WST) and its

derived criteria [1, 2, 3] represent the modern funda-
mentals of line source array (LSA) radiation. Sim-
ilar findings were also discussed in [4]. The WST
criteria define how to engineer LSA elements (single
loudspeaker cabinets) and how to setup an LSA in
order to reproduce homogeneous sound fields over a
large audience area. The WST criteria 1-3 [3, pg.

1Wavefront Sculpture Technology R© is a registered trade-
mark of L-ACOUSTICS US, LLC. We omit the labeling in the
remainder of the paper and will only use the relevant research
results.

929] define how the LSA elements have to be de-
signed to arrange an in-phase driven, straight LSA
of finite length. For high frequencies (>1-2 kHz) the
criteria require line pistons with specific length and
infinitesimal width as individual sources. This will
be achieved by a waveguide that is able to ”generate
a flat, isophasic” wavefront [3, pg. 916]. This feature
constitutes the main difference to a line array for
which regular (horn-loaded) loudspeakers are verti-
cally stacked. Typically the latter produce undesired
interference patterns – which we will term spatial
aliasing – that corrupt the desired sound field mainly
at high frequencies. LSA design aims to avoid this.
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The WST criterion 4 defines an optimal array cur-
vature to provide a homogeneous and frequency in-
dependent amplitude decay over the audience dis-
tance. The WST criterion 5 interrelates the length
of the waveguide and a maximum possible splaying
angle between the LSA elements. Model- or data
based loudspeaker directivities have been taken into
account for the prediction of sound fields generated
by LSAs [5, 6, 7, 8, 9]. Radiation synthesis has been
approached by solving an inverse problem using nu-
merical optimization and driving the LSA elements
with finite impulse response filters (FIR) [10, 11].

In this paper we approach the radiation synthe-
sis problem analytically, by applying findings from
the broader theory of sound field synthesis (SFS).
Linear loudspeaker arrays have been discussed for
Wave Field Synthesis (WFS) [12] and for the Spec-
tral Division Method (SDM) [13]. Usually, the
individual sources – termed secondary sources in
SFS – are modeled as spherical monopoles, result-
ing in a simplified mathematical formulation. Ap-
proaches exist which also implement model- or data
based loudspeaker directivities into SFS algorithms
[14, 15, 16, 17, 18, 19].

We briefly revisit SFS theory and derive a suitable
driving function for an LSA beginning with a contin-
uous secondary source distribution (SSD). For clar-
ity of analysis, spatial discretization [1, II.3.] and
spatial truncation [20] of the LSA are treated sepa-
rately. This paper’s scope is restricted to the spatial
sampling process and its implications.
We propose an optimal waveguide design from a the-
oretical viewpoint which is in agreement with the
known WST criteria 1,2. We will show that an
ideal waveguide has a directivity which theoretically
is able to suppress all spatial-aliasing components.
The simulations are compared to measurements of a
real waveguide. Spatial truncation and its interac-
tion with discretization will be discussed in an up-
coming study [21].

2. NOMENCLATURE
This section defines conventions and notations that

are used throughout this study. The unit vec-
tor er = (sinϕ sin θ, cosϕ, sinϕ cos θ) with ϕ ∈ [0, π]
and θ ∈ [0, 2π) links the position vector x =

(x, y, z) = ‖x‖ er with ‖x‖ = r =
√
x2 + y2 + z2

and the wave number vector k = (kx, ky, kz) = ω
c er

with ω
c =

√
〈k,k〉 by denoting the scalar prod-

uct 〈·, ·〉 and the speed of sound c in m/s. Note
that the used spherical coordinate system has un-
typical nomenclature but is consistent with the
representation of loudspeaker directivities known
from textbooks, cf. (32),(33). A constant speed
of sound c=343 m/s is assumed throughout this
study. The dispersion relation (ωc )2 = k2

x + k2
y +

k2
z holds. The scalar product notation 〈k,x〉 =
kx x + ky y + kz z is used for the description of
plane waves in cartesian coordinates. The tempo-
ral angular frequency ω = 2π f in rad/s is linked
to the temporal frequency f in Hz. The tempo-
ral Fourier transform sign and normalization con-
vention p(x, t) = 1/(2π)

∫
P (x, ω) e+jω tdω is used

for the relationship of the sound pressure p(x, t)
in time domain and its temporal spectrum P (x, ω)
by denoting the unit imaginary number j. The
spatial Fourier transform sign and normalization
convention P (x, ω) = 1/(2π)

∫
P (kx, ω) e−j kx xdkx

is used. This implies that the wave vector k
denotes the propagation direction of the wave.
Thus e−j 〈kPW,x〉 e+jωPW t describes a unit ampli-
tude monochromatic plane wave which propagates
into direction of kPW. For the chosen conven-
tions the three-dimensional, freefield Green’s func-

tion is defined by G(x,x0, ω) = e−j ω
c
‖x−x0‖

4π ‖x−x0‖ with the

source position x0 [22, 27.4]. It models a spherical
monopole [23, ch. 5.16]. For brevity, dependence on
the temporal angular frequency ω is omitted.

3. SOUND FIELD REPRODUCTION
A well known approach for sound field prediction of

a finite LSA [9] is based on the complex summation
over N LSA elements which are defined by their in-
dividual farfield directivity patterns An(ϕ, θ, ω) and
a complex temporal frequency dependent weighting
D(x0,n, ω). This filter defines magnitude, phase and
delay for the individual secondary sources and is
termed driving function in SFS.
For discrete source positions x0,n we can therefore
write, cf. [9, (11)], [24, (2)]

P (x) =

N∑
n=1

D(x0,n)An(x,x0,n)
e−j ωc ‖x−x0,n‖

4π ‖x− x0,n‖
.

(1)

While this equation is useful for the prediction of
sound fields and constitutes the basis for numerical
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optimization schemes, it does not reveal how spatial
aliasing is generated. Since we are majorly inter-
ested in this question the problem is reformulated
and simplified in the first instance. We are then able
to show under which circumstances spatial aliasing
in LSA setups occurs and how to avoid it. This is
achieved by spatially sampling the continuous prob-
lem formulation and a transformation into the wave
number domain.

3.1. 2.5D Sound Field Synthesis
We start our discussion with the fundamentals of
SFS. The sound field P (x) produced from an infinite,
continuous, linear array is described by the single
layer potential (SLP)

P (x) =

+∞∫
−∞

D(x0)G(x,x0) dx0 (2)

using the driving function D(x0) and the Green’s
function G(x,x0). The following conventions are
chosen: the SSD, i.e. the infinite, linear, continu-
ous array is located on the x-axis x0 = (x0, 0, 0).
Such a linear source is incapable of radiating three
dimensional plane waves and rather emits cylindri-
cal waves [13, III.B]. This mismatch between a linear
SSD (2D problem) and the employed Green’s func-
tion (3D solution of the inhomogeneous wave equa-
tion) is treated in so called 2.5D SFS [12]. Thus our

x

z

n

θ∆x
x

x0 x− x0

P (x)

xy
yy

xx

Fig. 1: Side view of the simplified SSD setup for
a typical multi-stand public address situation. The
infinite SSD is located on the x-axis. Sound field
reproduction is considered within the xz-plane (z >
0). The SSD becomes continuous for a secondary
source spacing ∆x → 0. The LSA is later modeled
by spatially sampling the driving function and ex-
changing the Green’s function in (2).

target space for sound reinforcement is the half plane
x = (x, 0, z) with z > 0 for which ϕ = π/2 holds. In
fig. 1 the utilized geometry and the simplified setup
are depicted.

For uniform SSD characteristics, the Green’s func-
tion is shift-invariant and (2) can be interpreted as
a convolution along x with z = const

P (x) = D(x
∣∣
y=0

) ∗x G0(x), (3)

using the Green’s function G0(x) in the coordinate
system origin x0 = 0. This corresponds to a multi-
plication in the so called angular spectrum domain
with respect to the wave number kx, cf. [13],[25]

P (kx, 0, z) = D(kx, 0, z) ·G0(kx, 0, z) , (4)

using the one-dimensional spatial Fourier transform

P (kx, y, z) =

+∞∫
−∞

P (x, y, z) e+j kx xdx (5)

along x. The unknown driving function is derived
by division of the known functions, i.e. the desired
sound field to be reproduced and the Green’s func-
tion, within the angular spectrum domain. In order
to do that G0(kx, 0, z) 6= 0 is required. A subse-
quent inverse Fourier transformation yields the driv-
ing function

D(x0) =
1

2π

+∞∫
−∞

P (kx, 0, z)

G0(kx, 0, z)︸ ︷︷ ︸
D(kx,0,z)

e−j kx xdkx. (6)

This approach is termed Spectral Division Method
(SDM) in SFS literature, cf. [13, pg. 2040],[18].
We proceed with the derivation of a driving function
D(x0) and its angular spectrum D(kx) for a wave
radiation perpendicular to the line source. In our
chosen geometry this requires the radiation only
into +z direction, for which kx = 0, ky = 0 and
kz = ω

c has to be chosen.

3.2. Derivation of the Driving Function
A thorough derivation of the driving function is
found in [13, II. B] and is briefly revisited here. Let
us assume the synthesis of a unit amplitude plane
wave in the xz-half plane

P (x, 0, z, ω) = e−j 〈kPW,x〉 2π δ(ω − ωPW) (7)
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with kPW = (kx,PW, 0, kz,PW) using ϕPW = π/2
and ωPW as the desired temporal angular frequency.
A spatial Fourier transform with respect to kx yields

P (kx, 0, z, ω) = 2π δ(kx − kx,PW)× (8)

e−j kz,PW·z · 2π δ(ω − ωPW).

The spatial Fourier transform of the Green’s func-
tion for propagating wave radiation is given as

G0(kx, 0, z, ω) = − j

4
H

(2)
0

(√(ω
c

)2

− k2
x · z

)
, (9)

where H
(2)
0 denotes the 0th order cylindrical Han-

kel function of 2nd kind [26, §10.1]. Note that we
omit the discussion of evanescent waves. With the

dispersion relation kz =

√(
ω
c

)2 − k2
x we can rewrite

G0(kx, 0, z, ω) = − j

4
H

(2)
0 (kz z) . (10)

The angular spectrum of the driving function follows
from (6)

D(kx, 0, z, ω) =
2π δ(kx − kx,PW) · e−j kz,PW·z

− j
4 H

(2)
0

(√(
ωPW

c

)2 − k2
x,PW · z

)
×2π δ(ω − ωPW).

(11)

It can be shown that the driving function does not
reproduce a desired plane wave using a linear SSD.
The sound field rather exhibits an amplitude decay
proportional to 1/

√
z in the farfield which we iden-

tify as a cylindrical wave [13, (20)].

We proceed to derive the driving function’s angu-
lar spectrum for our problem at hand. The de-
sired propagation angles ϕPW = π/2 and θPW = 0
define the wave vector kPW = (0, 0, ωPW

c ). Then
kx,PW = sin θPW

ωPW

c and kz,PW = cos θPW
ωPW

c
hold and (11) simplifies to

D(kx, 0, z, ω) =
2π δ(kx) · e−j

ωPW
c ·z

− j
4 H

(2)
0

(
ωPW

c z
) · 2π δ(ω − ωPW).

(12)

We may setup z = zREF in order to reproduce the
exact amplitude of the actually desired plane wave at
this line parallel to the SSD. For ωPW

c z � 1 the large

argument approximation of the Hankel function [26,
10.2.6] leads to the proportionality

| 1

− j
4 H

(2)
0

(
ωPW

c z
) | ∝ |√ωPW

c
z|. (13)

Hence, the driving function (12) inherently includes
a 3 dB/oct. highpass filter for the case of our inter-
est. For further discussion we omit the compensa-
tion filter and the phase shift e−j

ωPW
c ·z in (12) and

restrict the driving function’s angular spectrum to

D(kx, 0, z, ω) = 2π δ(kx) · 2π δ(ω − ωPW), (14)

which yields the driving function

D(x0, 0, z, ω) = 1 · 2π δ(ω − ωPW). (15)

Eq. (15) confirms that an infinite, continuous line
source driven with constant volume acceleration pro-
duces a cylindrical wave with a 3 dB/oct. lowpass
behavior and a 3 dB level drop per distance dou-
bling in the farfield, cf. [20, pg. 12]. In essence the
3 dB/oct. highpass (13) compensates the lowpass
characteristics of the line source. In practical LSA
applications this is referred to as the coupling filter,
which is examined in detail in [21].
The angular spectrum of the desired full band driv-
ing function

D(kx) = 2π δ(kx) (16)

is depicted in fig. 2a, together with the farfield
Green’s function G0(kx) (10). For a full audio-
bandwidth wavefront into z-direction, D(kx) takes
the shape of a vertical line. The propagating part
of G0(kx) is bounded to the triangular region where
|kx| ≤ |ωc |. Then, each point coincident with D(kx)
corresponds to a monochromatic cylindrical wave, as
exemplarily shown for a single frequency in fig. 2b.
Finally, the temporal-frequency lowpass behavior of
a line source can be observed in the Green’s func-
tion’s magnitude along the line of D(kx) in fig. 2a.

3.3. Spatial Truncation of the Line Soure
Practical arrays are obviously restricted to a finite
length. This is realized by truncating the driving
function with a spatial window w(x0) ∈ R in our
signal processing model, cf. fig. 3. A thorough treat-
ment of possible windowing artifacts in this context
(i.e. leakage, near-/farfield characteristics [1]) is be-
yond the scope of this contribution. Truncation is

AES 136th Convention, Berlin, Germany, 2014 April 26–29
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(a) Angular magnitude spectrum of G0(kx). Ideal driv-
ing function D(kx) for a full-band cylindrical wave into z-
direction schematically indicated with a black line, the dot
indicates the contribution for f = 3430 Hz.

(b) Cylindrical wave into z-direction with f = 3430 Hz syn-
thesized by a continuous SSD of infinite length.

(c) |G0(kx)| and sampled driving function DS(kx), dis-
cretized with ∆x ≈ 0.25 m. Spectral repetitions indicated
in red. The frequency f = 3430 Hz is above the spatial
Nyquist frequency, aliasing contributions marked by red
dots.

(d) The same intended wave as above, here synthesized by a
discretized SSD using ∆x ≈ 0.25 m. The red arrows show the
propagation directions of aliasing components.

Fig. 2: Ideal sound field reproduction by a continuous SSD (top) and with spatial aliasing due to a discretized
SSD (bottom). The angular spectra of the driving functions D(kx), DS(kx) and of the Green’s function
G0(kx) shown on the left. Magnitude of G0(kx) in dB is normalized to kx = 0 rad/m and f = 1 kHz with a
3 dB step colormap. Corresponding wave fields <{P (x)} in the xz-plane for the frequency f = 3430 Hz are
depicted on the right side.

to be discussed in detail in [21]. For concise ar-
gumentation, we consider only the discretization of

the SSD in the remainder of this paper and assume
w(x0) = 1.

AES 136th Convention, Berlin, Germany, 2014 April 26–29
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3.4. Spatial Discretization of the Line Source
A continuous SSD cannot be realized in practice and
is usually implemented as a linear array of discrete
loudspeakers. This constitutes a spatial sampling
process of the driving function as depicted in fig. 3.
Assuming identical speakers, equidistantly arranged
with ∆x, ideal sampling is modeled by multiplica-
tion with an accordingly spaced Dirac comb. The
discretized driving function DS(x0) reads

DS(x0) = D(x0) ·
+∞∑

µ=−∞
δ(x0 − µ∆x)︸ ︷︷ ︸

=: 1
∆xX(

x0
∆x )

, (17)

where the shorthand notation is obtained by dilat-
ing a Dirac comb X(x0) :=

∑+∞
µ=−∞ δ(x0 − µ) [27,

(11.1)] with unit spacing. The spatial Fourier trans-
form pair for the Dirac combs (17) is known as

+∞∑
µ=−∞

δ(x0 − µ∆x)︸ ︷︷ ︸
=: 1

∆xX(
x0
∆x )

c s 2π

∆x

+∞∑
µ=−∞

δ

(
kx − µ

2π

∆x

)
︸ ︷︷ ︸

=: X( kx ∆x
2π )

.

(18)

With [27, (11.33)]

D(x0) · 1

∆x
X(

x0

∆x
) c s 1

2π
D(kx) ∗kx X(

kx ∆x

2π
)

(19)

we obtain the angular spectrum of the ideally sam-
pled driving function

DS(kx, 0, z) =
1

∆x

+∞∑
µ=−∞

D(kx − µ
2π

∆x
). (20)

D(x0) ∗

HPre(x0)

·

w(x0)

truncation

∆x

HPost(x0)

∗

G(x,0)

∗ PS(x)

ideal spatial sampling

Fig. 3: The single layer potential for a linear, dis-
cretized and truncated SSD as a general signal pro-
cessing model. Convolution is denoted by ∗ , multi-
plication by · .

For our problem at hand we thus have to deal with
the sampled version of (16)

DS(kx, 0, z) =
2π

∆x

+∞∑
µ=−∞

δ(kx − µ
2π

∆x
). (21)

In fig. 2c DS(kx, 0, z) is schematically indicated for
a spatially discretized SSD using a secondary source
spacing of ∆x ≈ 0.25 m for which the spatial Dirac
comb spacing ∆kx = 2π/∆x = 25 rad/m holds.
Compared to fig. 2a the additional repetitions in the
angular spectrum stemming from the Dirac comb
are clearly indicated. Their coincidences with non-
zero values of the Green’s function indicate addi-
tional propagating contributions in the reproduced
sound field. This is called spatial aliasing.
The radiating angles θµ6=0 of the spatial aliasing
wave fronts are derived with sin θµ6=0 = kx,µ 6=0/

ω
c

and are strongly dependent of the temporal angu-
lar frequency ω. Note that only for |kx/ωc | ≤ 1
propagating waves will be triggered. For frequen-
cies smaller than

f <
c

∆x (1 + | sin θ|)
(22)

no propagating spatial aliasing components will be
synthesized, cf. [13, (38)]. For our problem at hand
θ = 0 eq. (22) reduces to

f <
c

∆x
↔ ∆x < λ (23)

denoting the wavelength λ in m, cf. [1, sec. II.3.a].
Note that this criterion is different from that found
in [3, sec. 3.1] for a discretized linear array of fi-
nite length (∆x < λ/2, WST #2). In [1, II.3.a.]
an equivalent derivation is given and the resulting
sound field was named ”chaotic”, although this term
is somewhat misleading since the aliasing contribu-
tions can be analytically specified, at least for the
considerations of an infinite array.
In contrast to the example in fig. 2b, for a spatially
discretized SSD (∆x ≈ 0.25 m) a propagating sound
field for f = 3430 Hz is synthesized which consists
of the desired cylindrical wave into kz-direction plus
four weighted spectral repetitions at µ = ±1,±2 in
(21). The radiating angles of the additional cylindri-
cal waves are derived to θµ=±1,2 = ±23.4◦,±52.7◦.
The resulting sound field is depicted in fig. 2d. The
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originally intended wave (cf. fig. 2b) is corrupted due
to destructive and constructive interferences with
the additional waves. The chosen SSD discretization
does not allow the reproduction of a homogeneous
wave at this frequency.
Spatial aliasing should obviously be avoided for uni-
form sound reinforcement in the listening area. We
therefore need a methodology to suppress the spatial
repetitions in the driving function’s angular spec-
trum (21). This will be elaborated in the next sec-
tions.

3.5. Pre-/Postfilter for the Ideal Sampling Model
In classical baseband sampling theory the prefilter
HPre(x0) and the postfilter HPost(x0) in fig. 3 are
usually understood as the anti-aliasing and the re-
construction filter, both with ideal spatial lowpass
characteristics. When sampling the driving func-
tion, HPre(x0) ideally suppresses all contributions
for |kx| > π/∆x (i.e. above the Nyquist frequency)
to ensure a correctly sampled baseband. Subse-
quently, the ideal postfilter HPost(kx) removes all
spectral repetitions in Ds(kx) for correct baseband
reconstruction. Artifacts due to a non-ideal pre-
filter have been termed aliasing error or pre-aliasing,
those due to the postfiltering stage reconstruction
error or post-aliasing, cf. [28]. In the context of
SDM theoretical spatial postfiltering schemes were
discussed in [18, 29].
In most practical SFS applications and radiation
synthesis approaches however, explicit spatial pre-
and postfiltering is omitted (i.e. HPre(kx) =

D(kx, 0, z)
∗

1
2π

X( kx∆x
2π

)
HPost(kx)

·

G0(kx, 0, z)

·
P ′(kx, 0, z)

ideal sampling

= G′(kx, 0, z)

Fig. 4: The single layer potential for a linear, dis-
cretized SSD with the postfilter in the angular spec-
trum domain. The prefilter- and truncation stages
are omitted.

HPost(kx) = 1). For our radiation problem at hand,
dropping the prefilter is well justified: the contin-
uous driving function D(kx) in (16) is already spa-
tially band-limited and pre-aliasing cannot occur.
Omitting the postfilter on the other hand is not rec-
ommended: By (4), (10) and (21) the sound field
P (kx) is reproduced as a product of the two func-
tions DS(kx) and G0(kx) which both exhibit infinite
spatial bandwidth. This results in post-aliasing as
illustrated in fig. 2d. Therefore we aim for a spa-
tial lowpass postfilter in the angular spectrum. The
corresponding sampling model is shown in the block
diagram in fig. 4.
With (4) and (21) we deduce

P ′(kx, 0, z) =

ideal sampling︷ ︸︸ ︷
DS(kx, 0, z) · HPost(kx) ·G0(kx, 0, z)︸ ︷︷ ︸

loudspeaker as spatial lowpass

(24)

(cf. [18, (36)]) and may define

G′(kx, 0, z) = HPost(kx) ·G0(kx, 0, z) (25)

which we term Green’s-like function2 . The post-
filter is split from the sampling stage and merged
with the Green’s function. This allows us to model
an ideally sampled driving function and take loud-
speaker farfield directivities into account, cf. (1). In
practice the used loudspeakers exhibit a finite spa-
tial bandwidth and thus operate as a (non-ideal) re-
construction filter. This method was also used in
[14, 15, 18]. In [29, sec. 3.1] theoretical spatial low-
pass secondary sources were discussed and denoted
Ganti-alias.
We proceed with the derivation of Green’s-like func-
tions for baffled piston models which will serve for
further examination of our problem.

4. PISTON GREEN’S-LIKE FUNCTIONS
The farfield radiation characteristics of a plane baf-

fled piston is derived from the Rayleigh integral’s

2Note that this is not a Green’s function by strict defini-
tion, rather a particular solution of the wave equation with
a different inhomogeneity 6= δ(x − x0). We have chosen the
term to stress its role of a propagator into space. Informally
speaking, G′ does for a loudspeaker modeled with farfield di-
rectivity what G0 does for monopoles.

AES 136th Convention, Berlin, Germany, 2014 April 26–29
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farfield approximation [22, (26.4)],[25, (2.84)]

PFar(x) = 2 jω ρ0G(x,x0)×
+∞∫∫
−∞

Vn(x0) e+j(kx x0+ky y0) dx0dy0. (26)

for which ω
c ‖x− x0‖ � 1. The piston is located in

the xy-plane, thus x0 = (x0, y0, 0). The field points
are denoted by x = (x, y, z > 0). The nominal at-
mospheric density is denoted by ρ0 in kg/m3. We
use the piston’s normal velocity temporal spectrum
Vn(x0) into z-direction. With (5) the integral in (26)
is identified as the two-dimensional spatial Fourier
transform V (x, y, 0) c s V (kx, ky, 0) and therefore

PFar(x) = 2 jω ρ0G(x,x0)V (kx, ky, 0). (27)

We extend (27) with the complex source strength
temporal spectrum, sometimes referred to as the vol-
ume flow Q [23, pg. 175], [22, ch. 18.3]

PFar(x) = 2Q jω ρ0G(x,x0)
V (kx, ky, 0)

Q︸ ︷︷ ︸
H(kx,ky)

(28)

and define the dimensionless directivity function
H(kx, ky) [22, (26.7)]. The freefield Green’s func-
tion is usually interpreted as a velocity potential
stemming from a unit source, so (28) is rewritten
accordingly:

ΦFar(x) = 2QG(x,x0)H(kx, ky) (29)

using P (x) = jω %0 Φ(x) [22, ch. 13.8]. For our half-
space problem at hand, the volume flow is normal-
ized to Q = 1/2 (m3/s)/Hz to be consistent with the
unit volume flow of the freefield (full space) Green’s
function. The Green’s-like function for our 2.5D SFS
problem – we only consider kx– then reads

ΦFar,unitQ(x) = G′(x,x0) = G(x,x0) ·H(kx) (30)

and the spatial Fourier transform with respect to x
simply yields

G′(kx, 0, z) = G0(kx, 0, z) ·H(kx) (31)

using (10). We recognize (31) as (25) with H(kx) =
HPost(kx), that we previously interpreted as the

product of the freefield Green’s function and a spa-
tial postfilter. Also recall that kx = ω

c sin θ, so
HPost(kx) could be denoted as a function of θ as
well, which is a more familiar representation of loud-
speaker directivity patterns.

A single spherical monopole located at x0 = 0 fea-
tures a postfilter HMonopole(kx) = 1.

A baffled circular piston with radius r0 (r2
0 = x2

0+y2
0)

located in the xy-plane and driven with constant
velocity is described by the postfilter [22, (26.42)],
[23, (7.4.17)]

HCirc(kx) =
2 J1(kx r0)

kx r0
=

2 J1(ωc sin θ r0)
ω
c sin θ r0

, (32)

where J1(·) denotes the cylindrical Bessel function
of 1st kind of 1st order [26, (10.2.2)].

A baffled linear piston of length L and infinitesimal
width located at |x0| ≤ L/2 with constant velocity
is characterized by the postfilter [22, (26.44)], [23,
(7.3.3)]

HRect(kx) =
sin
(
kx

L
2

)
kx

L
2

=
sin
(
ω
c sin θ L2

)
ω
c sin θ L2

. (33)

5. IDEAL INFINITE LINE SOURCE ARRAY
We now discuss LSA design criteria for spatial-

aliasing-free sound field reproduction. Recall our
problem at hand using (21) and (24) for a de-
sired spatial-aliasing-free cylindrical wave into z-
direction, i.e. kx = 0, ky = 0, kz = ω

c .
Tab. 1 indicates the frequency range for discretized
SSDs. We recognize that the spacing between sec-
ondary sources must not exceed a few mm to repro-
duce a full band spatial-aliasing-free sound field, cf.
[3, pg. 918]. This is not a feasible approach.
Instead of, an LSA element is designed with electro-
dynamic loudspeakers for the low and mid frequen-
cies and employs a waveguide for the high frequen-
cies.

5.1. Reproduction with Circular Pistons
We model an electrodynamic loudspeaker for λ > r0

with a circular piston using the reconstruction filter
(32). Circular pistons with radius r0 = 15”/2 and
r0 = 6.5”/2 as indicated in tab. 1 are discussed due
to their practical usage for LSA element designs.
In fig. 5a, 5b the Green’s-like functions G′circ(kx) are
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(a) 15” circular piston (b) 6.5” circular piston

Fig. 5: |G′circ(kx)| for two circular pistons with radius r0 = 0.1905 m (left) and r0 = 0.08255 m (right).
|G′circ(kx)| exhibits spatial lowpass characteristics. Sampled driving function’ angular spectrum DS(kx) with
∆x = 2 r0 ↔ ∆kx = 2π

∆x indicated by vertical lines. Note the scaling of the frequency axis.

depicted in the angular spectrum domain. They fea-
ture the directivity pattern of (32) compared to the
spherical monopole in fig. 2a. The amplitude decay
w.r.t increasing |kx| indicates spatial lowpass charac-
teristics. The Green’s-like function will be triggered
by the spectral repetitions of the sampled driving
function’s angular spectrum DS(kx) (21). Due to
the spatial lowpass, repetitions are attenuated. This
produces a sound field with less spatial aliasing. In
order to avoid it completely, band limitation in the
temporal frequency domain has to be applied to the
driving function, cf. [29, sec. 3.1.2]. In our ideal ex-
amples this would require a temporal frequency low-

∆x = 15” = 0.381 m fno aliasing < 900 Hz
∆x = 6.5” = 0.1651 m fno aliasing < 2078 Hz
∆x = 3” = 0.0762 m fno aliasing < 4501Hz
∆x = 1” = 0.0254 m fno aliasing < 13504Hz

Table 1: Anti-aliasing condition (23) for a dis-
cretized SSD that should reproduce a cylindrical
wave front perpendicular to the SSD. ∆x indicates
the theoretically minimum possible spacing between
circular membranes of radius ∆x/2.

pass with cut frequencies at 900 Hz and 2078 Hz re-
spectively. For multi-way loudspeaker designs band-
pass crossovers are employed. In real applications
the crossover lowpass frequency is much lower than
the critical anti-aliasing frequency (tab. 1) due to
electro-acoustical concerns. We therefore conclude
that the WST criterion 2 for perfect spatial-aliasing
suppression is uncritical for the low and mid frequen-
cies.

5.2. Reproduction with an Ideal Waveguide
Since the required small distances between the sec-

ondary sources for high frequencies are not feasi-
ble, waveguides were introduced in the literature [2,
fig. 11]. Recall that we want to realize the driv-
ing function D(x0) = 1 (15). From [1, I.3.] and [3,
fig. 6] we deduce that a waveguide can be modeled as
a line piston of length L. The resulting driving func-
tion using waveguides is piece-wise constant with
amplitudes D(x0) ∈ {0, 1}. This is illustrated in
fig. 6 and represents the reconstructed driving func-
tion DS,Rect(x0). A similar visualization was used in
[3, fig. 6] to motivate waveguide modeling.
We proceed to derive DS,Rect(x0) analytically. The
postfilter HPost(x0) = HRect(x0) is expressed as the
rect-function, cf. [27, (9.19)]
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HRect(x0) = rect
(x0

L

)
=

{
1 for |x0| ≤ L

2

0 else
(34)

and is convolved with the ideally sampled driving
function DS(x0) (17), cf. fig. 3. This can be written

DS,Rect(x0) =

[
1 ·

+∞∑
µ=−∞

δ(x0 − µ∆x)

]
∗x rect

(x0

L

)
. (35)

The Dirac comb stemming from DS(x0) (fig. 6,
red) is ’smoothed’ by the convolution with the rect-
function yielding DS,Rect(x0) (fig. 6, blue). By split-
ting the postfilter from the sampling process and
merging it with the Green’s function (cf. (25)) we
see that the Green’s-like function becomes an ideal,
baffled, linear piston with length L and constant po-
tential, instead of an ideal monopole.
From fig. 6 we graphically deduce that the driv-
ing function D(x0) = DS,Rect(x0) = 1 is perfectly
reconstructed for L = ∆x as intended for spatial-
aliasing-free sound field reproduction. This is proven
within the angular spectrum domain: With the spa-
tial Fourier transform

HRect(kx) = L
sin
(
kx L

2

)
kx L

2︸ ︷︷ ︸
=: sinc( kx L2 )

(36)

[27, (9.24)] we re-identify the stated Green’s-like
function (33). Note the normalization mismatch by

x

D(x0)

∆x

L

D(x0) DS(x0) DS,Rect(x0)

Fig. 6: Spatial discretization and reconstruction:
continuous driving function D(x0), ideally sampled
driving function DS(x0) and reconstructed driving
function DS,Rect(x0) with the rect-function used as
the postfilter.

L that stems from our chosen definition of a unit
source Green’s-like function which is independent
of the piston’s length. Inserting (21) and (36) into
DS,Rect(kx) = DS(kx, 0, z) ·HRect(kx) of (24) we ob-
tain

DS,Rect(kx) =

[
1

∆x

+∞∑
µ=−∞

2π δ(kx − µ
2π

∆x
)

]
×

L
sin
(
kx L

2

)
kx L

2

.

(37)

Hence for L = ∆x follows

DS,Rect(kx) =

[
+∞∑

µ=−∞
2π δ(kx − µ

2π

∆x
)

]
·

sin
(
kx ∆x

2

)
kx ∆x

2

.

(38)

The individual impulses in the Dirac comb with
spacing ∆kx = 2π/∆x = 2π/L are weighted by
the sinc-function, for which finally

DS,Rect(kx) =

{
D(kx) = 2π δ(kx) if µ = 0

0 otherwise.

(39)

This proves the perfect reconstruction.

Fig. 7: |G′Rect(kx)| for a line piston with length L =
3” = 0.0762 m. DS(kx) for an SSD discretization
∆x = L is indicated.
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(a) Ideal line piston |G′Rect(kx)|. (b) Measured waveguide |G′Waveguide(kx)|.

Fig. 8: |G′(kx)| and DS(kx) with ∆x = L = 0.36 m.

In fig. 7 the Green’s-like function G′Rect(kx) and
DS(kx) (21) are depicted for a line piston with length
L = ∆x = 0.0762 m. The intended driving func-
tion D(kx) = 2π δ(kx) is perfectly reconstructed
and no spatial aliasing occurs. This is due to the
complete suppression of the driving function’s en-
ergy for µ 6= 0 by the zeros of the sinc-term in
the Green’s-like function (38). Note that the zeros
of the sinc-function are equidistantly spaced with
∆kx = 2π/∆x which does not hold for the Bessel
function J1(·) that was used for circular pistons.
We conclude that the usage of a line piston is supe-
rior compared to a circular piston for high frequen-
cies: In the ideal case all spatial aliasing energy is
suppressed and the practical design is feasible.
Note that for ∆x > L (this case is depicted in fig. 6,
cf. [3, fig. 6]) the repetitions exhibit smaller steps
∆kx compared to fig. 7. The spectral repetitions
no longer coincide with the zeros of the Green’s-like
function. A criterion for tolerable aliasing contri-
bution was introduced with the Active Radiation
Factor (ARF) in [3, sec. 3.2]. For a large num-
ber of LSA elements the WST criterion 1 defines an
ARF = L/∆x ≥ 0.82 in order that aliasing con-
tributions are at least 13.5 dB lower than that of
the desired wave front. This is confirmed in our
treatment. We can furthermore deduce that for
a smaller chosen waveguide length L a potentially

smaller ∆x – and therefore increased ∆kx – can be
realized for an intended ARF. This might be useful
for ’ARF<1’- LSA designs since the spatial aliasing
energy is triggered at increased temporal frequencies
leaving a larger frequency band uncorrupted from
spatial aliasing. We do not propose a design crite-
rion for the optimal waveguide length in this contri-
bution and leave it for discussion in [21] due to the
interaction of spatial discretization and truncation.

5.3. Reproduction with a Real Waveguide
This subsection examines the spatial lowpass char-
acteristics of a commercial LSA element. An equian-
gular 2◦-spherical balloon dataset of impulse re-
sponses from the single loudspeaker box was mea-
sured in the far- and freefield, cf. (27). The verti-
cal isobars, i.e. the plane wave propagation angles
−π/2 ≤ θ ≤ +π/2 for ϕ = π/2 were extracted,
smoothed in magnitude by 1/6 oct. and mapped to
kx = ω

c sin θ. All frequency responses were normal-
ized by the temporal spectrum of kx = 0, therefore
linearizing the spectrum on the main axis θ = 0.
This yields the reconstruction filter HPost(kx) =
HWaveguide(kx). Subsequently a 3 dB/oct. lowpass
was applied to all spectra to obtain the Green’s-
like function G′Waveguide(kx), cf. (31). This allows
for direct comparison of the theoretical line piston
Green’s-like function (31),(33) with the measured
one. For the interesting frequencies >1 kHz the
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Fig. 9: Measured waveguide |G′Waveguide(kx)| from
fig. 8b as an isobar plot. Magnitude is normalized to
θ = 0. Hence the absolute attenuation values of the
spatial aliasing energy contributions are presented.
The spectral repetitions |µ| ≤ 4, µ 6= 0 due to the
discretized SSD are shown as red curves.

behavior of the measured waveguide can be con-
sidered as baffled due to the loudspeaker box di-
mension/wavelength ratio. Because of the nonlinear
mapping kx = ω

c sin θ the balloon dataset is not con-
sidered optimal for this examination. We rather sug-
gest a measurement along a line and a subsequent
spatial Fourier transform (5) to obtain an equidis-
tant kx-resolution, instead of an equiangular resolu-
tion, cf. [30, 31].
We assume a sampling distance ∆x = 0.36 m due
to the LSA element height, and an ARF=1. In
fig. 8a the Green’s-like function G′Rect(kx) of an ideal
waveguide corresponding to sec. 5.2 is depicted for
∆x = L. In fig. 8b the measured Green’s-like func-
tion G′Waveguide(kx) is shown for comparison. The
model and measurement are in good agreement.
An additional analysis with a common vertical iso-
bar plot is conducted, which requires a remapping
of the data in fig. 8b. The isobar plot is depicted
in fig. 9 up to 20 kHz. We normalized all spec-
tra to get a linearized, flat spectrum on its main
axis (i.e. for kx = 0, θ = 0). The spatial-aliasing
energy contributions are then given as absolute at-
tenuation values within the surface plot. The black

horizontal line again represents the intended driv-
ing function. The repetitions |µ| ≤ 4, µ 6= 0 are
indicated with red curves. We recognize that the
driving function repetitions are coincident with the
zeros of the Green’s-like function and thus will be
suppressed. This confirms our modeling in sec. 5.2
and good spatial lowpass characteristics of the mea-
sured waveguide. Above 11 kHz the attenuation
slightly becomes less than 10 dB for the first rep-
etition |µ| = 1. For |µ| > 4 the Green’s-like function
attenuates the driving function repetitions > 20 dB.
It is worth to note that fig. 9 does not visualize the
directivity of a whole LSA but rather that of a single
waveguide in its farfield.

6. CONCLUSION
The Wavefront Sculpture Technology criteria 1&2

for line source array design were reinforced by dis-
cussing the problem from a different viewpoint.
Based on sound field synthesis fundamentals the
sound field radiation from a discretized infinite lin-
ear source was described. The radiation synthesis
problem was formulated for a continuous secondary
source distribution. Spatially sampling of a suitable
driving function models discrete loudspeaker posi-
tions. This sampling process was then discussed in
the angular spectrum domain and the importance
of a suitable postfilter was emphasized. In practice
the used loudspeakers act as spatial reconstruction
filters. By introducing loudspeaker directivities the
WST criteria for required spatial-aliasing-free sound
field reproduction with a line source array were con-
firmed. It was verified that for high frequencies a
waveguide fulfills the criteria. An ideally operating
waveguide modeled as a line piston with an active
radiation factor of 1 completely suppresses all spatial
aliasing energy. This ideal spatial lowpass character-
istics has to be approached in practical waveguide
designs. A real waveguide measurement was pre-
sented that complies with the criteria and is in good
agreement with the proposed modeling. An alterna-
tive interpretation of commonly used vertical isobar
plots of loudspeaker directivities was introduced.
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