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ABSTRACT
We propose a continuous measurement technique which can be used
to capture a large number of impulse responses within short time.
The response of an acoustic system is continuously captured by a
moving microphone, and the instantaneous impulse responses are
computed by post-processing. The time-variance due to the move-
ment of the microphone is compensated by employing a recently
proposed system identification method. In this method, each sam-
ple of the captured signal is interpreted as the expansion coefficient
corresponding to the orthogonal component of the instantaneous im-
pulse response. The impulse responses are computed from the inter-
polated orthogonal coefficients. This method is applied to the mea-
surement on a circle. Based on the modal bandwidth of the spatio-
temporal impulse response, the relation among the length of impulse
response, the angular speed of the microphone, and the effective
number of measurements is revealed. The presented measurement
technique was used to measure a large number of room impulse re-
sponses, and the results were compared to a conventional sequential
measurement technique.
Index Terms— Continuous measurement, circular array, sound field
analysis, time-variant system identification

1. INTRODUCTION

In sound field analysis, a sound field or a spatio-temporal impulse
response is commonly captured at multiple positions, and the de-
sired information is extracted from these [1, 2]. Most frequently,
the captured sound field is decomposed into directional components,
e.g., by a plane wave decomposition. Such an encoding is advanta-
geous as it is compatible with many sound reproduction techniques,
like sound field synthesis or binaural synthesis. In sound field syn-
thesis, each plane wave component is filtered by the corresponding
plane wave driving functions, and in binaural synthesis, by the cor-
responding far-field head-related impulse responses [3, 4].

The spatial resolution of sound field analysis is mainly determined
by the number of measurements. The measurement points have to
be distributed sufficiently dense, such that the spacing of adjacent
points is shorter than half the wavelength of the highest temporal fre-
quency component [5]. The required number of measurements com-
monly ranges from a few hundreds to several thousands. Performing
such a huge amount of measurements is a challenge in sound field
analysis. Two conventional strategies are usually used. (1) Simulta-
neous measurement using a microphone array. Although this is very
time-efficient, the original sound field is disturbed by the array itself
which is not acoustically transparent. Synchronously capturing such
a large number of audio signals is also limited by currently avail-

able hardware. Calibration and accurate placement of individual mi-
crophones is also not a trivial task [1, 6]. (2) Sequential measure-
ment using a single or few microphone(s). This circumvents most of
above-mentioned problems, at the cost of long measurement time.
As the measurement time increases, the time-variance of the system
cannot be ignored, which is often caused by temperature drift in the
room or voice coil heating of the loudspeaker. Such systems changes
are known to limit the signal-to-noise ratio improvement by averag-
ing [7, 8], and also degrade the performance of modal analysis [9].

Alternatively, the impulse responses can be measured continuously
by using a single microphone moving on a predefined trajectory. In
a continuous measurement, the system of interest is excited, not nec-
essarily but commonly, by a periodic signal, and the response is cap-
tured by a continuously moving microphone. The instantaneous im-
pulse responses are computed from the captured signal. Due to its re-
markable time-efficiency, continuous measurement techniques may
be preferred in high-resolution sound field analysis, where a mas-
sive number of impulse responses are needed. A series of continuous
measurement techniques have been proposed in the past decade [10–
14]. The main differences among the proposed methods are the
choice of the excitation signal, the underlying system model, and
the compensation of the time-variance due to the movement of the
microphone. The methods in [11] and [12] were employed for room
impulse responses, while the others were used for head-related im-
pulse responses or binaural room impulse responses [10, 13–15].

In this paper, the method proposed by the authors [14] is used to mea-
sure the room impulse responses on a circle using a uniformly mov-
ing microphone. It is shown that the effective number of measure-
ments is determined by the maximum length of the impulse response
and the angular speed of the microphone. The maximum allowable
angular speed is derived for a given configuration and required spa-
tial resolution. In the following section, the properties of the im-
pulse responses on a circle are reviewed, and its spatial sampling is
discussed. Section 3 introduces the employed system identification
method, and applies it to circular measurements. The measurement
results are presented and compared with sequential measurements in
Sec. 4.

Nomenclature We consider discrete-time signals s(n) with a sam-
pling rate of fs. The discrete index n and k is used for time-domain
signals and impulse responses h(k), respectively. For convenience,
the discrete-time Fourier transform is denoted by S(ω), rather than
by S(eiΩ), where ω = Ωfs. The angular frequency is related to the
temporal frequency by ω = 2πf , and its maximum is given by the
Nyquist frequency ωmax = πfs. The speed of sound is denoted by c,
and the imaginary unit is defined by i2 = −1. Only the horizontal
plane (z = 0) is considered, and a polar coordinate representation is
used, x = (r, φ), where r =

√
x2 + y2, and φ = tan−1( y

x
).



2. SPATIAL SAMPLING OF A SPATIO-TEMPORAL
IMPULSE RESPONSES ON A CIRCLE

The acoustic transmission from a sound source at xs = (rs, φs) to
a receiving point x = (r, φ) is characterized by the spatio-temporal
impulse response h(x,xs, k), or equivalently by the spatio-temporal
transfer function H(x,xs, ω). Throughout this paper, the sound
fields are assumed to be produced by a static sound source, and thus,
the source position vector xs is omitted. For convenience, the term
spatio-temporal is also omitted, in the remainder.

Consider the transfer function on a circle with radius r0 6= rs, cen-
tered at the origin. Due to the 2π-periodicity along the polar angle
φ, it can be represented by the circular harmonics expansion,

H(r0, φ, ω) =

∞∑
ν=−∞

H̊ν(r0, ω)eiνφ, (1)

where eiνφ is the ν-th circular harmonic (mode), and H̊ν(r0, ω) the
corresponding expansion coefficient (modal strength) given as

H̊ν(r0, ω) =
1

2π

∫ 2π

0

H(r0, φ, ω)e−iνφdφ. (2)

If a bounded circular region r < r0 is free of source and scatterer,
the modal spectrum H̊ν(r, ω) has a low-pass characteristic, but is
not perfectly band-limited [1, 2]. While most of the modal energy
is concentrated in |ν| < ω

c
r0, it rapidly decreases as |ν| increases

beyond ω
c
r0. Thus, ω

c
r0 can be considered as the approximate modal

bandwidth for a given frequency.

In practice, the transfer function is measured at a finite number of
positions. Typically, H(r0, φ, ω) is spatially sampled at equiangular
positions, φm = 2π

M
m,m = 0, . . . ,M − 1, which can be modeled

as multiplication with an impulse train [5],
∑M−1
m=0

M
2π
δ(φ − 2πm

M
),

where δ(·) is the Dirac delta function. In the modal domain, this
corresponds to the convolution with an impulse train with periodM .
This results in spectral replications that appear at inter multiples of
M ,

H̊ ′ν(r, ω) =
∑
µ∈Z

H̊ν+µM (r, ω), (3)

where H̊ ′ν(r, ω) denotes the modal coefficient of the discretized
transfer function. The replicated spectra (µ 6= 0) are superimposed
with the original modal spectrum (µ = 0), and thus, modal aliasing
occurs. Spatial sampling also limits the maximum modal order that
can be obtained [1].

We are interested in the minimum value of M that avoids modal
aliasing in the high-energy part of the modal spectrum (|ν| < ω

c
r0),

such that the aliased energy is kept sufficiently low. As the modal
bandwidth is proportional to the temporal frequency ω, the band-
width of a wide band sound field is determined by its maximum fre-
quency ωmax. Considering that the first spectral replications appear
at ν = ±M , the following condition can be derived,

M ≥ 2ωmaxr0

c
. (4)

This is often considered as the rule of thumb in modal analysis using
circular arrays [2, Eq. (3.43)] [16, Eq. (17)]. Clearly, the modal alias-
ing can be suppressed, by increasing the number of spatial sampling
points.

3. SYSTEM IDENTIFICATION

In this section, a system identification method is reviewed that is
suited for linear time-varying systems [14]. We assume that the
sound field captured by the microphone is represented by a linear
time-varying finite impulse response (FIR) model,

p(n) =

N−1∑
k=0

s(n− k)h(k, n), (5)

where p(n) is the captured (output) signal, s(n) the source (input)
signal, and h(k, n) the k-th coefficient of the impulse response at
time n. The length of h(k, n) satisfies N > Tmaxfs, where Tmax is
the maximum impulse response length, in seconds. In the employed
method, the system is periodically excited by a so-called perfect se-
quence, ψ(n) = ψ(n + N), which satisfies the ideal periodic auto-
correlation property,

ρψψ(m) =

N−1∑
n=0

ψ(n)ψ(n+m) = E × δ(m mod N)0 (6)

where δnm denotes the Kronecker delta, and E is the energy per
period. Without loss of generality, E is set to unity.

Equation (6) states that a circularly shifted sequence ψ(n − m) is
orthogonal to the original sequence ψ(n), whenever m is not an in-
teger multiple of N . We define a set of functions which consists of
N time-reversed and time-shifted perfect sequences,{

ψ(−n), ψ(1− n), . . . , ψ(N − 1− n)
}
. (7)

Note that it can be considered as an orthonormal basis set for RN .
The impulse response can be represented as a weighted sum of the
bases in (7),

h(k, n) =

N−1∑
m=0

am(n)ψ(−k +m), k = 0, . . . , N − 1, (8)

where am(n) is the time-dependent expansion coefficient. If the
system is excited by a perfect sequence s(n) = ψ(n),

p(n) =

N−1∑
k=0

ψ(n− k)

N−1∑
m=0

am(n)ψ(−k +m) (9)

=

N−1∑
m=0

am(n)

N−1∑
k=0

ψ(n− k)ψ(m− k)︸ ︷︷ ︸
=δ(m−(n mod N))

(10)

= a(n mod N)(n), (11)

which means that the output of the system is the (n mod N)-th or-
thogonal expansion coefficient at time n [14, 17]. In words, the in-
dividual orthogonal components of the system are sequentially ex-
cited, and the corresponding coefficients are captured by the micro-
phone. As each am(n) is observed only one time per period (N
samples), it is decimated by a factor of N ,

a′m(n) =

{
am(n) , if n mod N = m

0 , else
, (12)

where a′m(n) denotes the decimated coefficients.
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Fig. 1. Continuous measurement on a circle (N = 4, L = 16). The
sound field is produced by a loudspeaker on the x-axis driven by
the source signal s(n). A microphone is moving on the circle at an
angular speed of Ωφ. The gray circles indicate the position where the
discrete-time signals are captured. As shown in (b), the individual
expansion coefficients are observed one time per N samples. The
red circles indicate the positions where the coefficients are captured.
In this example, the effective number of spatial sampling positions
is L
N

= 4.

Now we consider that the microphone is moving on a circle r = r0

at a constant angular speed of Ωφ > 0, starting from φ0 = 0,
as shown in Fig. 1(a). The position of the microphone on the cir-
cle is φn =

Ωφ

fs
n, and thus, h(n, k) = h(φn, k) and am(n) =

am(φn). The length of the captured signal within 2π-rotation is
L = 2πfs/Ωφ samples. According to (12), each orthogonal coef-
ficient is observed at L

N
equiangular points on the circle, as illus-

trated in Fig. 1(b). The effective number of spatial sampling points
is Meff = L

N
= 2πfs

ΩφN
. The consecutive orthogonal coefficients are

sampled at angularly shifted positions. The impulse responses can-
not be directly computed by (8), as the expansion coefficients belong
to different impulse responses. The intermediate values have to be
interpolated from the decimated coefficients. Note that, am(n) also
satisfies the physical properties discussed in Sec. 2. Therefore, to
recover am(n) accurately, Meff has to fulfill the condition given in
(4),

Meff ≥
2ωmaxr0

c
r0. (13)

When we substitute Meff = 2πfs
ΩφN

and ωmax = πfs into (13), the
condition for the angular speed is obtained,

Ωφ ≤
c

r0N
<

c

r0Tmaxfs
, (14)

where N > Tmaxfs is used in the second inequality. Interestingly,
this is very similar to the maximum allowable angular speed derived
in [12, Eq. (29)], c

r0(Tmaxfs−1)
, although the approach for continu-

ous measurement is quite different. When (14) is formulated with

respect to the tangential speed of the microphone vt = r0Ωφ,

vt
c
≤ 1

N
, (15)

meaning that the Mach number should be less than or equal to 1
N

.

If the condition in (13) or (14) is fulfilled, the expansion coefficients
can be computed by interpolation filters gm(φn),

âm(φn) =

M−1∑
l=0

a′m(φm+lN )gm(φn − φm+lN ), (16)

and finally, the impulse response coefficients are computed from (16)
using (8). The employed system identification method is flexible in
terms of the types of interpolation filter. If L is an integer multiple
of N , for instance, the Dirichlet sinc function can be used,

gm(n) =
1

M

sin
(
Mπ
L

(n−m)
)

cos
( (M−1)π

L
(n−m)

)
sin
(
π
L

(n−m)
) (17)

which is an ideal low-pass filter in the modal domain. In [15], we
observed that even a low-order interpolation method, like linear in-
terpolation, gives plausible results when applied to binaural room
impulse responses measurement in dynamic acoustic scenes.

4. MEASUREMENT RESULTS AND DISCUSSION

The presented method was used to measure the impulse responses
in a rectangular room (W × L ×H = 5.8 m × 5.0 m × 3.0 m) at
the Institute of Communications Engineering, University Rostock.
The room is moderately damped with absorptive materials.The mea-
surement setup is similar to Fig. 1(a). The loudspeaker and the
measurement circle were placed at the same horizontal plane, at a
height of 1.62 m. The radius of the circle was r0 = 0.5 m. An
omni-directional microphone was mounted on a motorized arm [18].
The sampling frequency of the reproduced and recorded signals was
fs = 44.1 kHz. The system was excited by the perfect sequence
proposed in [19]. The period was 2 s (88200 samples), sufficiently
longer than the impulse response of the room. The approximate
maximum modal bandwidth of the impulse response was 202 for
c = 343 m/s. According to (4), the required number of measure-
ment was 404, and the corresponding angular speed was 0.45◦/s.
We chose Ωφ = 0.25◦/s instead, and thus, the effective number
of measurement was Meff = 720. The orthonormal expansion co-
efficients were interpolated by using a sinc function, symmetrically
truncated to a length of 6N+1. For comparison, the same number of
impulse responses were sequentially measured using a logarithmic
sweep with a length of 217 samples (≈ 3 s). The measurement time
was 26 minutes for the continuous measurement, and about three
times longer for the sequential measurement.

In Fig. 3, the impulse responses are shown both for continuous and
sequential measurements. Only the earlier parts (0–36 ms) are plot-
ted, where most of the energy is concentrated and the temporal fine
structure has perceptual importance. No significant difference can
be observed in the temporal structure of the impulse responses. The
reflections appearing just after the direct sound (≈7 ms) are caused
by the motorized arm that was positioned in the center of the mea-
surement circle. To evaluate the similarities and difference of the two
data sets, the cross-correlation ρ(φ, τ) of each impulse response pair
was computed for every φ. Prior to the computation, the impulse re-
sponses were upsampled by a factor of 10. The cross-correlation was
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Fig. 2. Comparison of the continuous measurements and the se-
quential measurements. (a) The maximum value of the normalized
cross-correlation, and (b) the corresponding time lag.

normalized by the root mean squares of both impulse responses. The
maximum value of ρ(φ, τ) was considered as a similarity measure of
the waveforms. The time-lag giving the maximum cross-correlation
was computed, τmax = arg maxτ{ρ(φ, τ)}, which is an estimate
of the time delay difference of the two impulse responses. For two
perfectly identical impulse responses, the maximum value of the nor-
malized cross-correlation would be equal to 1 appearing at τ = 0. In
Fig. 2, the results are indicated by dark blue lines. In 2(a), the maxi-
mum correlation is mostly in the range between 0.97 and 0.98. The
value of τmax is quantized with an interval of 1

10fs
≈ 2.27 µs. It has

only non-positive values, meaning that the continuous measurements
tend to be delayed with respect to the sequential measurements. The
maximum difference is about 15 µs, corresponding to about 0.7 sam-
ples in the original sampling rate fs = 44.1 kHz. As a reference, the
cross-correlation and the time delay were also computed for impulse
responses measured 720 times at a fixed position. Among them, 720
combinations were selected and the cross-correlations were com-
puted. The mean value of the maximum cross-correlation (0.984)
is shown with a gray dashed line in Fig. 2(a), whereas the range cor-
responding to the standard deviation of the time delay (±0.5281 µs)
is shown with a shaded region in Fig. 2(b). It can be concluded that
the waveforms of the impulse responses are in a good accordance
with each other, whereas there exists a slight time shift which is less
than 1 sampling period. It has to be noted that the continuous and
sequential measurements have not been taken at the same time. This
might have caused some of the differences.

To observe the perceptual properties, the both measurements were
used to generate a number of listening examples. Speech, mu-
sic, and wide-band pink noise were filtered with the individual
impulse responses. In informal listening, no difference can be per-
ceived. The listening examples are available for download at http:
//spatialaudio.net/continuous_measurement/.

It is worth mentioning some practical issues in continuous measure-
ment. (1) As the microphone has to be accelerated until it reaches
the target angular speed, it has to be rotated slightly more than 2π
rad. The accelerating and decelerating parts of the captured signal
are discarded. (2) In our measurement setup, the motion of the mo-
tor and excitation signal were not perfectly synchronized. To tackle
this problem, an additional microphone was placed at a fixed posi-
tion, (r0, 0). The captured signal of that static microphone was later
used to estimate the time instant when the moving microphone was
at φ = 0. (3) The captured signal is often contaminated by vibration
and mechanical noise caused by the motorized arm, which strongly

depends on the rotational speed of the motor. In some cases, the
maximum angular speed derived in this paper might be impractical,
due to the resulting poor signal-to-noise ratio. Though, it is still an
open question how much noise is allowed in impulse response mea-
surements, e.g., for virtual acoustics applications.

5. CONCLUSION

We proposed a new continuous measurement technique for room im-
pulse responses. A massive number of impulse responses can be
measured within a short time frame. The maximum angular speed
of the microphone was derived based on the modal bandwidth of the
sound field on a circle. The presented method was used to contin-
uously measure a set impulse responses, and the results were com-
pared with conventional sequential measurements. While the pro-
posed method is much more time-efficient, the measurement results
were comparable. The proposed technique has to be further verified
by using the measured impulse responses in data-based sound field
synthesis or data-based binaural synthesis [3, 4].
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