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ABSTRACT

For a physically accurate reproduction of a complex virtual sound
field, the interaction of sound waves with objects or boundaries have
to be taken into account. In this paper, we attempt to synthesize a
sound field scattered by an acoustic obstacle. Based on an analytic
representation of the incident and scattered sound fields, the loud-
speaker driving functions are derived. We explicitly pay attention to
the sound obstruction effect behind the scatterer, which is caused by
the destructive interference of the incident sound field and the for-
ward scattering. The physical properties of the presented approach
are examined through numerical simulations, and the perceptual as-
pects are discussed in an informal listening test.

1. INTRODUCTION

Sound field synthesis techniques aim at the physical reconstruc-
tion of a target sound field within a defined listening area. Typi-
cally, a large number of loudspeakers are used, which are termed
secondary sources. The secondary sources are driven by individ-
ual signals in such a way that the superposition of the reproduced
sound fields approximates the desired sound field within the target
region. The driving signals are obtained by filtering a source sig-
nal with the driving functions, the computation of which depends
on the employed sound field synthesis method. Wave Field Syn-
thesis (WFS) [1], near-field compensated higher-order Ambison-
ics (NFC-HOA) [2], and the spectral division method (SDM) [3]
are the best-known analytic methods for sound field synthesis.

The majority of earlier studies on sound field synthesis have fo-
cused on the synthesis of virtual sound sources situated in free-field
conditions. Real acoustic scenes, however, consist of several ob-
jects and boundaries which potentially disturb the sound field. It is
known that human auditory perception is influenced by the interac-
tion of sound waves with structures, such as reflection, diffraction,
and obstruction [4, 5, 6]. In this study, we are interested in the scat-
tering of an object which causes local variations in the sound field,
rather than global modifications due to multiple reflections as in the
case of enclosed spaces [7, 8]. In other sound reproduction tech-
niques, scattering and diffraction by a virtual object are often sim-
ulated by means of geometrical acoustics, or a digital waveguide
model [9, 10, 11]. However, the authors are not aware of similar
work in the context of sound field synthesis.

The aim of this paper is to synthesize a sound field scattered
by a virtual object, using NFC-HOA (Sec. 2). The analytic driv-
ing functions are derived based on the representation of the desired
sound field in the spherical harmonics expansion domain (Sec. 3).
The presented method is demonstrated by numerical simulation of
the synthesized sound field (Sec. 4).

Nomenclature The following notational conventions are used:
Vectors are denoted by lowercase boldface x. The spherical co-
ordinate representation of a position vector (r, α, β) is related to
the Cartesian coordinate as x = r cosα sinβ, y = r sinα sinβ,
and z = r cosβ, where r denotes the distance from the origin, α
the azimuth angle, and β the colatitude angle. A sound field in
the temporal frequency domain is denoted by uppercase S(x, ω),
where the angular frequency ω is related to the temporal frequency
ω = 2πf . Monochromatic plane waves are represented with the
convention of e−i〈k,x〉 where the operation 〈·, ·〉 denotes the scalar
product, i the imaginary unit, and k = (k, φPW, θPW) the wave vec-
tor which indicates the propagation direction. The latter is rep-
resented in the Cartesian coordinate as kx = k cosφPW sin θPW,
ky = k sinφPW sin θPW, and kz = k cos θPW. The norm of k sat-
isfies the dispersion relation, ‖k‖2 = k2 =

(
ω
c

)2, with c denoting
the speed of sound.

2. NEAR-FIELD COMPENSATED HIGHER-ORDER
AMBISONICS

NFC-HOA is based on the explicit solution of the synthesis equa-
tion [12, Sec. 1.3]

S(x, ω) =

∫
Ω0

D(x0, ω)G(x−x0, ω)dΩ0, (1)

where S(x, ω) denotes the desired sound field, Ω0 the surface on
which the secondary sources are distributed, D(x0, ω) the driving
function of the secondary source at x0 = (r0, α0, β0) ∈ Ω0, and
G(x−x0, ω) the spatial transfer function of the corresponding sec-
ondary source. NFC-HOA considers only radially symmetric sec-
ondary distributions, such as spherical or circular loudspeaker ar-
rays. The synthesis equation is solved with respect to D(x0, ω), by
expanding the variables of (1) into the basis solutions of the wave
equation, and comparing the expansion coefficients.

2.1. Spherical secondary source distribution

Three-dimensional (3D) NFC-HOA considers spherical distribu-
tions of secondary sources. In a spherical configuration, (1) consti-
tutes the surface integral on a sphere with radius r0, i.e.,

∫
Ω0

dΩ0 =∫ 2π

0

∫ π
0
r2
0 sinβ0dβ0dα0. The sound field S(x, ω) can be expanded

into spherical harmonics with respect to the origin [13, Sec. 6.8] as

S(x, ω) =

∞∑
n=0

n∑
m=−n

S̆mn (ω)jn(ω
c
r)Y mn (β, α), (2)
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where S̆mn (ω) denotes the expansion coefficient, jn(·) the n-th or-
der spherical Bessel function of the first kind, and Y mn (β, α) the
spherical harmonics. The latter are defined as

Y mn (β, α) = (−1)m
√

2n+1
4π

(n−|m|)!
(n+|m|)!P

|m|
n (cosβ)eimα, (3)

where Pmn (·) denotes the m-th order associated Legendre polyno-
mial of degree n. According to the convolution theorem [14, (82)],
the spherical harmonics representation of (1) is

S̆mn (ω)jn(ω
c
r) = r2

0

√
4π

2n+ 1
D̆m
n (ω)Ğ0

n(ω)jn(ω
c
r), (4)

where Ğmn (ω) is defined similarly for G(x−x0, ω) with x0 =
(r0, 0, 0). Thus, the expansion coefficients of the driving function
are given as [12, (3.20)]

D̆m
n (ω) =

1

r2
0

√
2n+ 1

4π

S̆mn (ω)

Ğ0
n(ω)

. (5)

The non-uniqueness problem due to the zeros of jn(ω
c
r) can be

overcome and does not affect the solution [15]. Finally, the driving
function is given as the spherical harmonics expansion,

D3D(α0, β0, ω) =

∞∑
n=0

n∑
m=−n

D̆m
n (ω)Y mn (β0, α0). (6)

In case S(x, ω) is independent of the vertical axis, it can be
represented in the circular harmonics domain [13, Sec. 4.3],

S(x, ω) =

∞∑
m=−∞

S̊m(ω)Jm(ω
c
r sinβ)eimα, (7)

where S̊m(ω) denotes the expansion coefficient and Jm(·) the m-
th order Bessel function of the first kind. The circular harmonics
representation can then be converted to spherical harmonics repre-
sentation by exploiting [16, Sec. 2.3]

S̆mn (ω) = 4πim−nY mn (π
2
, 0)∗S̊m(ω), (8)

where (·)∗ denotes the complex conjugate. The expansion coeffi-
cients of the driving function thus read

D̆m
n (ω) =

1

r2
0

√
2n+ 1

4π

4πim−nY mn (π
2
, 0)∗S̊m(ω)

Ğ0
n(ω)

. (9)

2.2. Circular secondary source distribution

In practical systems, circular loudspeaker arrays are frequently
used, and only a two-dimensional (2D) target field is considered.
Theoretically, the synthesis of a 2D sound field requires a circu-
lar distribution of secondary line sources, which cannot be realized
reasonably so far. A typical loudspeaker rather exhibits a point-
source-like radiation. Thus, secondary point sources are considered
also for circular arrays. Such a configuration is referred to as 2.5D
synthesis, as 2D target sound fields are synthesized by using 3D
secondary point sources. Due to the dimensionality mismatch, per-
fect reconstruction of the desired sound field is not possible, most
noticeably due to amplitude deviations [12, Sec. 3.5.2 and 5.3.4].

We assume that the circular array is placed in the xy-plane
(β = π

2
) centered at the origin. Then, (1) constitutes a circular

convolution,
∫

Ω0
dΩ0 =

∫ 2π

0
r0dα0. The expansion coefficients of

the 2.5D NFC-HOA driving function are [12, (3.49)],

D̊m(ω) =
1

2πr0

S̆m|m|(ω)

Ğm|m|(ω)
. (10)

Note that Ğm|m|(ω) is defined for G(x − x0, ω) where x0 =
(r0,

π
2
, 0). The driving function is given as the inverse circular har-

monics transform of (10),

D2.5D(α0, ω) =

∞∑
m=−∞

D̊m(ω)eimα0 . (11)

Similar to (9), if the desired sound field is 2D and represented with
S̊m(ω), the expansion coefficients of the driving function are [16]

D̊m(ω) =
1

2πr0

4πim−|m|Y m|m|(
π
2
, 0)∗S̊m(ω)

Ğm|m|(ω)
. (12)

2.3. Spatial discretization and modal truncation

In real NFC-HOA systems, only a finite number of loudspeakers
can be used, and the driving function (6) or (11) has to be spatially
discretized. This results in spectral repetitions in the harmonics
domain, and introduces spatial aliasing artifacts in the reproduced
sound field. Also, the driving functions can be computed only up to
a finite order. The maximum order is commonly, but not necessar-
ily, chosen in such a way that the spectral repetitions do not over-
lap. Then, the synthesized sound field has an artifact-free region
around the center of the array. Note that, even if spectral overlaps
are avoided, spatial aliasing does occur, due to the spatial bandwidth
of practical loudspeakers. A detailed discussion on this topic can be
found in [12, Ch. 4].

3. SOUND FIELDS WITH SCATTERING OBJECTS

In this section, we introduce the analytic description of a sound field
scattered by an object. The resulting total sound field is given as the
superposition of the incident sound field Si(x, ω) and the scattered
sound field Ss(x, ω) [17],

S(x, ω) = Si(x, ω) + Ss(x, ω). (13)

The total sound field must satisfy the boundary condition at the sur-
face of the object. If the acoustic impedance at the surface is infi-
nite, or sufficiently larger than the characteristic impedance of the
surrounding medium (Z0), the normal component of the pressure
gradient must be equal to zero. This is called sound-hard or rigid
boundary condition. If the acoustic impedance equals zero, or neg-
ligibly small compared to Z0, the sound pressure at the surface van-
ishes. This is called sound-soft or pressure-release boundary condi-
tion. The scattered sound field can be computed in the harmonics
domain by applying the boundary condition to the individual har-
monics. Analytic solutions are known for simple geometries, such
as spherical, cylindrical, and planar boundaries.

3.1. Cylindrical scatterers

In this study, we consider a particular example, where an incident
plane wave, Si(x, ω) = e−i〈k,x〉, propagates parallel to the xy-
plane (θPW = π

2
) and impinges on an infinitely long cylinder, as
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illustrated in Fig. 1. This scenario is considered as a first approxi-
mation of the scattering by a human body. The axis of the cylinder
is assumed to be parallel to the z axis. The radius of the cylinder is
denoted by a, and the position of the cylinder is defined as the inter-
section of its axis with the xy-plane, denoted by xc = (rc, αc,

π
2

).
Due to the two-dimensional properties, we only consider the sound
field in the xy-plane, in the following.

The spherical and circular harmonics representations of a
plane wave are well known, S̆mi,n(ω) = 4πi−nY mn (π

2
, φPW)∗ and

S̊i,m(ω) = i−me−imφPW , respectively. The driving function can be
computed using either of these, leading to the same result.

To represent the scattered field, we employ a local coordinate
system as illustrated in Fig. 1. The scattered field is expanded in
circular harmonics with respect to xc [17, Sec. 2.3.3],

S′s (x
′, ω) =

∞∑
µ=−∞

e−i〈k,xc〉i−µe−iµφPWBµ(ω
c
a)︸ ︷︷ ︸

S̊′
s,µ(ω)

×H (2)
µ (ω

c
r′)eiµφ

′
, r′ > a, (14)

where H (2)
µ (·) denotes the µ-th order Hankel function of the second

kind. The term Bµ(ω
c
a) is determined according to the boundary

condition on the scatterer as

Bµ(ω
c
a) =


−
J ′µ(ω

c
a)

H (2)′
µ (ω

c
a)

sound-hard

−
Jµ(ω

c
a)

H (2)
µ (ω

c
a)

sound-soft,
(15)

where J ′m(·) and H (2)′
m (·) denote the derivatives of the respective

functions. Equation (14) is valid only in the exterior region, r′ > a.
Note that the scattered sound field can be interpreted as the sound
field emitted by a cylindrical radiator.

By exploiting the translation theorem of the Hankel func-
tions [18, Sec. 8.53], the exterior expansion in (14) can be trans-
formed to an interior expansion, thereby translating the expansion
center from xc to the origin of the global coordinate system,

Ss(x, ω)

=

∞∑
µ=−∞

S̊′s,µ(ω)

∞∑
m=−∞

H (2)
m−µ(ω

c
rc)e

−i(m−µ)φcJm(ω
c
r)eimφ︸ ︷︷ ︸

H(2)
µ (

ω
c
r′)eiµφ′

=

∞∑
m=−∞

∞∑
µ=−∞

S̊′s,µ(ω)H (2)
m−µ(ω

c
rc)e

−i(m−µ)φc

︸ ︷︷ ︸
S̊s,m(ω)

Jm(ω
c
r)eimφ.

(16)

Note that this is valid in the interior region, r < rc−a, indicated by
the dashed circle in Fig. 1. When substituting S̊′s,µ(ω) in (16) with
the terms in (14) and rearranging it, S̊s,m(ω) can be represented in
terms of S̊i,m(ω),

S̊s,m(ω) = S̊i,m(ω)Fm(xc, a, ω) (17)

where

Fm(xc, a, ω) = e−i〈k,xc〉
∞∑

µ=−∞

i−(µ−m)e−i(µ−m)φPW

×Bµ(ω
c
a)H (2)

m−µ(ω
c
rc)e

−i(m−µ)φc . (18)

S(x, ω)

a

r = rc−a
k = (ω

c
, φPW,

π
2

)

x′

y′

x

y

xy-plane (β = π
2

)

φ φc

φ′

rc

r

r ′

Figure 1: A plane wave propagating parallel to the xy-plane im-
pinges on a cylindrical scatter at xc. The dashed line indicates the
interior region (r < rc−a) of the cylinder.

Therefore, the expansion coefficients of the total sound field are

S̊m(ω) = S̊i,m(ω)
(
1 + Fm(xc, a, ω)

)
. (19)

In (18), an infinite summation appears which originally emerges
from the exterior expansion in (14). For a given frequency ω, the
higher-order terms beyond dω

c
ae decrease rapidly, and can be ne-

glected in practice. A similar observation for a spherical scatterer
can be found in [19, Sec. 4.2].

3.2. NFC-HOA driving functions

We assume that the secondary sources are monopole point sources,
and thus, Ğmn (ω)=−iω

c
h(2)
n (ω

c
r0)Y mn (β0, α0)∗ [13, (8.22)], where

h(2)
n (·) indicates the spherical Hankel function of the second kind.

The 3D driving function is obtained by plugging (19) into (9),

D̆m
n (ω) =

1

r2
0

4πi−nY mn (π
2
, φPW)∗

(
1 + Fm(xc, a, ω)

)
−iω

c
h(2)
n (ω

c
r0)

, (20)

and the 2.5D driving function is obtained by plugging (19) into (12),

D̊m(ω) =
2

r0

i−|m|e−imφPW
(
1 + Fm(xc, a, ω)

)
−iω

c
h(2)
|m|(

ω
c
r0)

. (21)

4. EVALUATION

The presented approach was implemented in MATLAB using the
Sound Field Synthesis toolbox [20]. The driving function for the
scattered sound field was additionally implemented in the toolbox
for this study. The results for 2.5D NFC-HOA are shown here. A
circular loudspeaker array with a radius of r0 = 1.5 m was con-
sidered. It consists of N = 60 uniformly spaced point sources.
The incident plane wave propagates in the negative y-direction, i.e.,
φPW =−π

2
. A cylindrical scatterer with a radius of a= 0.4 m was

placed on the y-axis, xc = (2, π
2
, π

2
). Both sound-hard and sound-

soft boundary conditions were considered. The driving functions
were computed up to a truncated order of 29.

4.1. Monochromatic sound field

The synthesized monochromatic sound fields in the xy-plane are
shown in Fig. 2. The secondary sources are indicated by black dots,
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Figure 2: Monochromatic sound field (N = 60, φPW = −π
2
,xc =

(2, π
2
, π

2
), a=0.4, sound-hard scatterer).
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(a) Sound-hard scatterer
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(b) Sound-soft release

Figure 3: Comparison of amplitude distributions (N = 60, φPW =
−π

2
,xc=(2, π

2
, π

2
), a=0.4, f=1 kHz).

and the cylindrical scatterer by a white circle. In Fig. 2a, the spa-
tial structure of the desired sound field is appropriately synthesized
within the listening area. As is typically the case in 2.5D synthe-
sis, the synthesized sound field suffers from amplitude errors. Even
though, the destructive interference of the incident field and scat-
tered field is properly synthesized. For a higher frequency, shown in
Fig. 2b, the desired sound field is correctly synthesized only within
a circular region, centered at the origin. This is a well-known prop-
erty of NFC-HOA [12, Ch. 4], as mentioned in Sec. 2.3.

In Fig. 3, we compared the amplitude distribution of the syn-
thesized sound fields for the same incident plane wave, but with
different boundary conditions. The most prominent difference be-
tween sound-hard and sound-soft scatterer is observed in the so-
called bright zone appearing right behind the cylinder. The bright
zone results from the constructive interference of the circumferen-
tial waves that propagate along the surface of the cylinder. For
sound-soft scatterers, the circumferential waves are more attenu-
ated compared to sound-hard cases, and thus the amplitude in the
bright zone is much lower.

4.2. Broadband sound field

To examine the temporal properties, the incident plane wave was
driven by a unit impulse in the discrete-time domain. Fig. 4 shows
snapshots of the synthesized sound fields at the moment when the
incident plane wave passes the origin. In the first case shown in
Fig. 4a, the excitation signal is low-pass filtered with a cut-off fre-
quency of 1 kHz which is slightly below the spatial aliasing fre-
quency of the system. The wavefront is deformed in the middle
due to diffraction by the scatterer. Figure 4b shows the synthesized
sound field for the full-band case. Here, the diffraction and obstruc-
tion effects are not clearly visible, due to the additional wavefronts
caused by spatial aliasing.
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Figure 4: Broadband sound field (N = 60, φPW = −π
2
,xc =

(2, π
2
, π

2
), a=0.4, sound-hard scatterer).

4.3. Informal listening

For informal listening, the ear signals were simulated for the central
listening position. Binaural room impulse responses (BRIRs) were
generated by filtering the driving signals with head-related impulse
responses [21]. A dynamic scenario was mimicked by concatenat-
ing static virtual scenes. A cylindrical scatterer was moved in the
positive x-direction along the line y=2 at a constant speed. BRIRs
were computed for subsequent scatterer positions on the trajectory
with an interval of 5 cm. The ear signals were generated by filtering
source signals (speech and castanets) with cross-faded BRIRs. The
head orientation was fixed to the positive y direction. The sampling
frequency was fs=44.1 kHz, and c was set to 343 m/s.

As the cylinder approaches the listener from the left, the direct
sound arriving on the left ear is first obstructed. The amplitude de-
crease and spectral change lead to the perception of a sound obstruc-
tion. When the cylinder casts a sound shadow on the listener, direct
paths are obstructed at both ears. Lower loudness was perceived and
the sound was also muffled. However, due to the spatial aliasing ar-
tifacts, the high frequency components are less attenuated than one
might expect in a real situation. In the case of sound-soft scatterer,
the attenuation within the sound shadow is apparently higher than
in the sound-hard case, but the spatial aliasing components are still
audible causing some unnaturalness.

The listening examples are available for download at http:
//spatialaudio.net/nfchoa_virtual_scatterer.
Compare them with the ear signals provided in [22], where the
BRIRs were measured in a similar scenario.

5. CONCLUSIONS

In this paper, sound fields interacting with scattering objects were
synthesized using NFC-HOA. Based on the analytic representation
of the sound field, the 3D and 2.5D driving functions for the scat-
tered field were derived in closed form. Despite the amplitude errors
introduced in 2.5D synthesis, the diffraction and sound occlusion of
the sound waves were properly synthesized for low frequencies. For
high frequencies, however, the spatial aliasing makes the task chal-
lenging, as it produces undesired high frequency components to the
sound shadow. Virtual sound fields in the presence of a pressure
release boundary were also synthesized, which can be rarely expe-
rienced in reality. The presented approach is expected to be used for
the synthesis of more complex sound fields, where multiple sound
sources interact with scattering objects.
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