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ABSTRACT

Wavefront Sculpture Technology introduced line source arrays for large scale sound reinforcement, aiming
at the synthesis of highly spatial-aliasing free sound fields for full audio bandwidth. The paper revisits this
technology and its criteria for straight arrays using a signal processing model from sound field synthesis.
Since the latest array designs exhibit very small driver distances, the sampling condition for grating lobe
free electronic beam forming regains special interest. Furthermore, a discussion that extends the initial
derivations of the spatial lowpass characteristics of circular and line pistons, and line pistons with wavefront
curvature applied in subarrays is given.

1. INTRODUCTION

In [1, 2] we started to revisit the Wavefront Sculp-
ture Technology1 (WST) [3, 4, 5] that constitutes
the fundamentals of line array technology for full
audio bandwidth public address. An acoustic signal
processing model initially developed for sound field
synthesis (SFS) [6, 7, 8, 9] was utilized, that is also
well known in array processing and antenna theory
[10, 11]. In essence, the first three WST criteria deal

1Wavefront Sculpture TechnologyR© is a registered trade-
mark of L-ACOUSTICS US, LLC. We omit the labeling in the
remainder of the paper and will only use the relevant research
results.

with the avoidance or attenuation of grating lobes in
the farfield radiation pattern of straight line source
arrays (LSA), which consequently avoids or reduces
spatial aliasing in the Fresnel and Fraunhofer region.
In this paper we revisit these WST criteria and give
some extended analysis. The WST criteria under
discussion are summarized as, cf. [5, p.929]:
The active radiating factor (ARF) criterion

WST #1: ARF =
l

∆y
≥ 0.82 (1)

for a uniformly driven, straight LSA relates the dis-
cretization step ∆y between adjacent line pistons



Schultz et al. Discussion of WST

with individual length l and a tolerated grating lobe
level (i.e. the occurrence of spatial aliasing). The
criterion ensures, that the maximum grating lobe
level does not exceed -13.5 dB relative to the in-
tended main lobe and holds for a large number of
active line pistons. The criterion aims at avoiding
or reducing spatial aliasing by utilizing the spatial
lowpass characteristics of highly directive sources,
i.e. waveguides.
The 2nd WST criterion

WST #2: ∆y <
λmin

2
(2)

is the general spatial baseband sampling condi-
tion. It ensures complete grating lobe avoidance
for electronically steered arrays built from spheri-
cal monopoles with the highest operating frequency
fmax = c/λmin denoting the speed of sound c =
343m/s and the wave length λ in m. In [5, p.917]
the criterion was derived in order to avoid strong off-
axis lobes for a uniformly driven LSA. The criterion
limits the temporal frequency bandwidth – matching
the spatial base band – of the loudspeaker’s driving
function in order to avoid spatial aliasing.
The 3rd WST criterion relates an occurring wave-

front curvature of horns, i.e. the arc in Fig. 1 and a
tolerated grating lobe level for an LSA built without
gaps between the horns. For the so called sagitta S

WST #3: S <
λmin

4
, (3)

must hold in order that the LSA exhibits a grating
lobe attenuation larger than 10 dB relative to the
intended main lobe, cf. [5, Fig. 9,10], [12, Fig. 19].
This criterion also aims at reducing spatial aliasing
by utilizing the spatial lowpass characteristics of the
sources that construct the LSA.

y

x
xPS

r l/2

l/2
S

ϑxPS

Fig. 1: Geometry for the wavefront curvature model,
cf. [5, Fig. 8], [13, Fig. 38].

2. WST SIGNAL PROCESSING MODEL

For convenience the WST signal processing model is
shortly revisited here, the nomenclature and conven-
tions of [2] are used. The model is depicted in Fig. 2,
given in the temporal and spatio-temporal Fourier
spectrum domain. The spatio-temporal spectrum
P (ky, ω) of a sound pressure function over space and
time p(y, t) is given by the Fourier transform

P (ky, ω) =

+∞∫

−∞

+∞∫

−∞

p(y, t) e+j ky y dy e−jω t dt, (4)

its inverse reads

p(y, t) =
1

4π2

+∞∫

−∞

+∞∫

−∞

P (ky, ω) e
−j ky y dky e

+jω t dω.

(5)

In the remainder only temporal, e.g. P (x, y, ω) and
spatio-temporal spectra, e.g. P (x, ky, ω) are con-
sidered. A monochromatic propagating sound field
with angular temporal frequency ω0 and correspond-
ing wave length λ0 = 2π c

ω0
is assumed. Thus, the

term 2π δ(ω − ω0) is omitted in all temporal and
spatio-temporal spectra.
The LSA is located on the y-axis with y0 indicat-

ing a position within the array. The xy-plane for
x > 0 is considered as the the sound field synthe-
sis region, thereby ignoring the horizontal radiation
characteristics of the LSA, cf. [14, Sec. 4].
Following the signal processing model, the spatio-

temporal spectrum of the sound pressure P (x, ky, ω)
can be obtained by different driving functions’
spatio-temporal spectra

P (x, ky, ω) =







D(ky, ω)
Dw(ky, ω)
Dw,S(ky, ω)
Dw,S,H(ky, ω)







·G0(x, ky, ω). (6)

D(ky, ω) models an infinite, continuous LSA;
Dw(ky, ω) a finite length, continuous LSA;
Dw,S(ky, ω) a finite length, discretized LSA
built from spherical monopoles and Dw,S,H(ky, ω)
a finite length, discretized LSA built from identical
baffled pistons.
G0(x, ky, ω) is the spatio-temporal spectrum of

the 3D free-field Green’s function

G(x,x0, ω) =
1

4π

e−j ω
c
‖x−x0‖

‖x− x0‖
(7)
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D(y0, ω) ·

w(y0)

∆y

HPost(y0, ω)

∗

G(x,0, ω)

∗ P (x, y, ω)

truncation
sampling model

D(ky, ω) ∗

1
2π

w(ky)

∗

1
2π

X(
ky∆y

2π
)

HPost(ky, ω)

·

G0(x, ky, ω)

· P (x, ky, ω)

truncation & sampling speaker & radiation

Dw,S(ky, ω)Dw(ky, ω) Dw,S,H(ky, ω)

Fig. 2: WST signal processing model. Representation in temporal (top) and spatio-temporal spectrum
domain (bottom). Convolution w.r.t. y is denoted by ∗ (not to be confused with the circular convolution),
multiplication w.r.t. ky by · .

of the Helmholtz equation, placed at the origin
x0 = 0 [15, (52)].
The initial derivations of the WST criteria con-

sider a uniformly driven and rectangular truncated
LSA. Thus, with unity gain normalization, the driv-
ing function for an infinite, continuous LSA reads

D(y0) = 1 ❝ s D(ky, ω) = 2π δ(ky), (8)

indicating the spatial Fourier transform with the
❝ s symbol. Spatial truncation with the rectan-
gular window

w(y0) =

{
1
L for |y0| ≤

L
2

0 else
❝ s

w(ky) =

{
sin(ky

L
2
)

ky
L
2

for ky 6= 0

1 for ky = 0,
(9)

leads to the driving function of a finite length, con-
tinuous LSA

Dw(y0) =

{
1
L for |y0| ≤

L
2

0 else
❝ s

Dw(ky, ω) =

{
sin(ky

L
2
)

ky
L
2

for ky 6= 0

1 for ky = 0.
(10)

Equidistant spatial sampling of the driving function

w.r.t. the discretization step ∆y with ν, µ ∈ Z

+∞∑

ν=−∞

δ(y0 − ν∆y)

︸ ︷︷ ︸

=: 1
∆y

X(
y0
∆y

)

❝ s
2π

∆y

+∞∑

µ=−∞

δ

(

ky − µ
2π

∆y

)

︸ ︷︷ ︸

=: X(
ky ∆y

2π
)

(11)

and spatial truncation leads to the driving function
of the finite length, discretized array built from an
odd number N of spherical monopoles

Dw,S(y0) =

+N−1
2∑

ν=−N−1
2

1

N
· δ(y0 − ν∆y) ❝ s

Dw,S(ky, ω) =







sin(ky ∆y N
2 )

N sin(ky ∆y 1
2 )

for ky 6= 2π
∆y µ

1 for ky = 2π
∆y µ.

(12)

Dw,S(ky, ω) is the so called aliased sinc function. For
odd N it is periodic with the spatial sampling fre-
quency ky,S = 2π

∆y and exhibits spectral repetitions

of the ’base band’ |ky| ≤
π
∆y . For µ = 0 the main

lobe is obtained, for all other µ grating lobes of the
same level as the main lobe occur. This LSA con-
figuration exhibits an equivalent length L = ∆y N ,
that a continuous, finite length LSA would have.
The sampling model requires a spatial reconstruc-

tion filter to suppress the spectral repetitions. This
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filter has to be applied in the acoustic domain. As
spatial reconstruction filter HPost(ky, ω), the line
piston on y-axis with length l

HRect(y0) =

{
1
l for |y0| ≤

l
2

0 else
❝ s

HRect(ky, ω) =

{
sin(ky

l
2
)

ky
l
2

for ky 6= 0

1 for ky = 0
(13)

and the circular piston within the yz-plane with ra-
dius r0

HCirc(y0, z0) =

{
1

π r20
for y20 + z20 ≤ r20

0 else
❝ s

HCirc(ky, ω) =

{
2 J1(ky r0)

ky r0
for ky 6= 0

1 for ky = 0
(14)

were considered for the derivation of the first WST
criterion, denoting the cylindrical Bessel function of
1st kind of 1st order [16, §10.2] with J1(·). Under
the assumption that the LSA is built from identical
pistons, the driving function’s spatio-temporal spec-
trum

Dw,S,H(ky, ω) = Dw,S(ky, ω) ·HPost(ky, ω) (15)

follows as a consequence of the product or pattern
multiplication theorem [17, p.174], [10, Ch. 2.8].
Note that all driving function and postfilter

Fourier transform pairs are chosen for amplitude
normalization at ky = 0, such that the main lobes
exhibit unity gain. In doing so, relative grating and
side lobe amplitudes can be conveniently discussed
in terms of their absolute values.
The propagating part of G0(x, ky, ω) is bounded

and thus bandlimited to the region where |ky| <
ω0

c
allows propagating wave synthesis. This is referred
to as the visible region [10, Ch. 2.3] or physical

region [3] of the array. Evanescent wave radiation
occurs for |ky| > ω0

c , this part of the spectrum
is not bandlimited, however it is decaying rapidly
for increased x. By restricting the spatio-temporal
spectra of the driving functions to the visible region
−ω0

c < ky < +ω0

c , the nonlinear mapping between
ky and the propagating wave radiation angle φ

ky =
ω0

c
sinφ (16)

leads to the farfield radiation patterns Dw(φ),
Dw,S(φ) and Dw,S,H(φ) of finite length LSAs for a
given temporal frequency ω0. Dw,S(φ) is usually re-
ferred to as the array factor [10, p.45] or the form

factor [3, II.2.a], whereas Dw,S,H(φ) is termed fi-

nal array factor, e.g. [18]. Those exclusively trigger
the propagating part of the Green’s function spatio-
temporal spectrum [15, (52)]

G0(x, ky, ω) = −
j

4
H

(2)
0

(√
(ω

c

)2

− k2y · x

)

, (17)

denoting the 0th order cylindrical Hankel function

of 2nd kind [16, §10.2] as H
(2)
0 (·). The propagating

contributions of the sound field can be consequently
obtained by inverse spatial Fourier transform

P (x, y, ω) =
1

2π
×

+
ω0
c∫

−
ω0
c

Dw,S,H(ky, ω)G0(x, ky, ω)
︸ ︷︷ ︸

P (x,ky,ω)

e−j ky y dky, (18)

which is known as the ’method of decomposition into
wavelengths’ [19, Ch. 13.5.4] and correctly synthe-
sizes the sound fields of the Fresnel and Fraunhofer
region. In (18) the LSA is exemplarily modeled
with Dw,S,H(ky, ω) but any other LSA model can
be employed with another driving function’s spatio-
temporal spectrum, cf. [2, (24,45)].
Grating lobes within the array factor that enter

the visible region of the array are the most critical
contributions to spatial aliasing. If not sufficiently
suppressed, those contributions interfere with the
intended main lobe beam. This results in a heav-
ily corrupted Fresnel region, that was referred to
as the chaotic region of an LSA [3, Fig. 16]. The
sound field in this region is not amenable for equal-
ization, since the sound pressure is highly dependent
on the listener point and the frequency. The grating
lobes furthermore are included in the farfield radi-
ation pattern, as discussed above, which describes
the Fraunhofer region of the LSA.
The first three WST criteria introduced differ-

ent approaches for LSA applications (i) to com-
pletely avoid grating lobes within the visible region
(WST#2) or (ii) to attenuate them, if entering into
the visible region cannot be avoided (WST#1,#3).
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(a) Line piston LSA, ARF = q, the ratio q = 0.812797
with a resulting 1st grating lobe attenuation of 13.26 dB is
indicated with lines.
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(b) Circular piston LSA, ARF = π
4
q2, the ratio q =

0.9635792 with a resulting 1st grating lobe attenuation of
13.26 dB is indicated with lines.

Fig. 3: Grating lobe level vs. q for (a) a line piston LSA and (b) a circular piston LSA. Relative grating
lobe levels for ky = µ 2π

∆y , 1 ≤ µ ≤ 5 are given. Only for a large number N of pistons this level corresponds

to the real local maxima/minima of (19) and (25).

3. DISCUSSION OF WST #1:

The maximum tolerated grating lobe level of -13.5
dB relative to the intended main lobe can be under-
stood as the essence of the 1st WST criterion (1).
[3, 4, 5] concluded that this is only realizable with
line pistons, i.e. waveguides. We present a discus-
sion for both, the line and the circular piston for
completeness.

3.1. The ARF for a Line Piston LSA

The initial derivation of the ARF-theorem [3, (8)],
[5, Sec. 3.2] was performed by defining a continu-
ous, uniformly driven, finite length line source and a
polarity-inverted disruption grid and thus, by inher-
ently modeling a line piston LSA. We give another,
yet consistent derivation using the product theorem
(15) with (12) and (13)

Dw,S,H(ky, ω) =
1

N

sin(ky ∆y N/2)

sin(ky ∆y/2)
·
sin
(
ky

l
2

)

ky
l
2

.

(19)

Finding the local minima and maxima, especially of
grating lobes

dDw,S,H(ky, ω)

dky
= 0, (20)

besides the main lobe, in order to minimize its
largest occurring magnitude does not lead to a
general closed form solution, which also holds for
Dw(ky) and Dw,S(ky). However, for large N the
grating lobe maxima are approximately located at
ky = µ 2π

∆y , µ ∈ Z, 6= 0 in (19). The grating lobes
decrease in level – except for the case l = 0 – for in-
creasing |ky| due to the spatial lowpass characteristic
of (13). Hence, the first grating lobes at |µ| = 1 de-
termine the maximum occurring and tolerated level
of grating lobes. With the initial definition [5, p.917]

ARF = q =
l

∆y
0 ≤ q ≤ 1 (21)

(19) is evaluated at ky = ∆ky = 2π
∆y to

A(q) = Dw,S,H(ky = ∆ky, ω) =
sin (π q)

π q
, (22)

for which A(q) ∈ R
+ is valid for the given range

of q. For q = 0 a linear array built from spheri-
cal monopoles is modeled, due to the limit HRect =
1. All grating lobes will not be suppressed –
Dw,S,H(ky = µ∆ky, ω) = 1 – due to the missing
spatial lowpass characteristic of a monopole. The
limit q = 1 perfectly suppresses all grating lobes –

AES 138th Convention, Warsaw, Poland, 2015 May 7–10
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Dw,S,H(ky = µ∆ky, ω) = 0 for µ 6= 0 –, which fur-
thermore leads to

Dw(ky, ω) = Dw,S(ky, ω) ·HRect(ky, ω)
∣
∣
l=∆y

, (23)

i.e. the reconstruction towards the driving function’s
spectrum of the continuous, finite length LSA (10).
Note that this perfect reconstruction holds only for
∆y = l and the WST driving function (12), i.e. for
wave radiation perpendicular to the LSA. Note also,
that in this case the reconstruction is independent
of the temporal frequency and of the chosen length
∆y = l. The maximum tolerated grating lobe level
thus can be controlled between 0 dB and −∞ dB by
setting 0 ≤ q ≤ 1. This is depicted in Fig. 3a.
In [3, 5] the maximum tolerated level of grating

lobes was set to the largest occurring relative side
lobe level of -13.26 dB2 of a uniformly driven, con-
tinuous linear array, i.e. the maximum side lobe
level of a continuous rectangular window. Therefore
solving (22) for A(q) = 10−13.26/20 numerically, the
ARF is given as

ARF = q ≈ 0.812797. (24)

This is in accordance with [5, p.917], where the ap-
proximation ARF ≥ 0.82 for large N is given. Note
that (22) is independent of N in first instance. A
discussed above, only for large N (19) exhibits also
the local maximum at exactly ky = ∆ky.

The ARF is a temporal frequency independent
measure since the derivation was performed in the
ky-domain. The occurrence of (attenuated) grating
lobes depends on the visible region −ω0

c < ky < +ω0

c
of the LSA. This indicates that if (2) can be fulfilled,
the ARF criterion is of secondary importance and
conversely, if (2) cannot be met, the grating lobe
suppression is heavily dependent on the characteris-
tics of the spatial reconstruction filter. An LSA with
smaller ∆y and smaller ARF may produce a bet-
ter spatial-aliasing-free sound field for an intended
frequency range, than an LSA with larger ∆y and
larger ARF. This is important realizing when aim-
ing for electronic beam steering, that was initially
not intended for the first LSA generation.

3.2. The ARF for a Circular Piston LSA

A treatment similar to Sec. 3.1 is given for the
circular piston LSA. Applying the circular piston’s

2To be precise, [3] uses -12dB and [5] uses -13.5 dB

postfilter characteristics (14) and the driving func-
tion (12) to the product theorem (15) yields

Dw,S,H(ky, ω) =
1

N

sin(ky ∆y N/2)

sin(ky ∆y/2)
·
2J1(ky r0)

ky r0
,

(25)

We define a ratio of lengths

q =
d0
∆y

0 ≤ q ≤ 1, (26)

by introducing the piston’s diameter d0 = 2 r0. The
ARF can be deduced to

ARF =
π r20
∆y2

=
π
(
q
2 ∆y

)2

∆y2
=

π

4
q2, (27)

by modeling a quadratic enclosure of side length ∆y.
Note that the ARF here is truly a ratio of surface
areas (ARF 6= q), whereas for the line piston a ratio
of line lengths is defined (ARF = q). Therefore, care
must be taken when comparing the definitions of the
ARF and q and its implications.
Evaluating (25) at ky = ∆ky = 2π

∆y yields the
relative level of the first grating lobe

A(q) = Dw,S,H(ky = ∆ky, ω) =
2J1(π q)

π q
. (28)

The level of the first grating lobe (µ = 1) over q
is depicted in Fig. 3b. For q = 1 the maximum
possible ARF = π/4 is obtained for directly adjacent
pistons ∆y = d0. This yields the maximum possible
attenuation of grating lobes. For the first grating
lobe (28) is evaluated to

A(q = 1) =
2J1(π)

π
≈ 0.181192, (29)

which corresponds to -14.84 dB. This is in contrast
to the line piston, for which perfect suppression
(−∞dB) of the first grating lobe (and all others)
is achieved for q = 1. This due to the fact that
the first zero of the Bessel function cannot be coin-
cidentally located to ky = ∆ky without overlapping
pistons, which is physically not meaningful.
Regarding the initial intention of the 1st WST cri-

terion, solving (28) for A(q) = 10−13.26/20 yields

q = 0.9635792 ARF =
π

4
q2 = 0.72923. (30)

AES 138th Convention, Warsaw, Poland, 2015 May 7–10
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Hence, the circular piston postfilter is also able to at-
tenuate the first grating lobe by 13.26 dB and there-
fore would be WST #1-compliant. This deduction
is in contrast to that given in [3, 5]. In fact, the
postfilter of the circular piston has a better spatial
lowpass characteristic than the line piston since the
Bessel function has a larger amplitude decay for in-
creasing arguments than the sin(x)/x function. This
can also be graphically deduced in Fig. 3. Only for
q ≈ 1 the grating lobe suppression for a line piston
LSA is superior to a circular one.
While this discussion provides the whole picture

of the ARF theorem from a theoretical viewpoint,
LSAs nevertheless should be designed with wave-
guides for high audio frequencies due to the follow-
ing reasons: (i) The circular piston model assumes a
constant velocity over the membrane surface which
is in practice much more demanding than designing
an appropriate waveguide with an intended wave-
front curvature; (ii) LSAs aim at a frequency inde-
pendent horizontal coverage. This is much easier to
control with the design of an appropriate waveguide
than using circular pistons, i.e. electrodynamic loud-
speakers.

4. DISCUSSION OF WST #2:

Some recent LSA designs exhibit a very small source
spacing ∆y for high audio frequencies to shift spatial
aliasing to very high audio frequencies and to relax
the ARF requirements. Those LSA designs can be
fixed straightly and aim at electronic beam forming
and -steering, instead of controlling the LSA radi-
ation characteristics with geometric curving. The
most simple beam steering method is the delay-and-
sum approach [10, Ch. 2.5], for which [17, p.175]

∆y <
λmin

2

N − 1

N
(31)

ensures that no grating lobe beams enter the visible
region for all possible steering angles |φSteer| < 90◦

of a rectangular windowed LSA built from spherical
monopoles. For a very large source number N (31)
merges into (2). Instead of using the spatial lowpass
characteristics to avoid or attenuate spatial aliasing,
this criterion relies on the limitation of the excitation
signal’s temporal frequency bandwidth. The condi-
tion (31) may be relaxed if only a limited steering
angle |φSteer| < |φSteer,max| is allowed. For an infinite

0 15 30 45 60 75 90
1

2

3
4
5

10

16
20

|φ
Steer

| / deg

f m
ax

 / 
kH

z

 

 

∆y=0.45", N=437
∆y=1", N=195
∆y=3", N=65
∆y=5", N=39
∆y=6.5", N=31

Fig. 4: Aliasing frequency over steering angle (33).

linear array [20, (10)], [15, (38)]

∆y <
λmin

1 + | sinφSteer,max|
(32)

is known from SFS of a plane wave, as well as from
antenna design [10, (2.129)]. For a finite length, rect-
angular windowed array with N spherical monopoles
the condition reads

∆y <
λmin

1 + | sinφSteer,max|

N − 1

N
, (33)

which is consistent with the result given in [21, (12)]
for φSteer = 0. Note that due to the non-linear
mapping of ky ↔ φ the beamwidth broadens for
increased φSteer [10, Ch. 2.5], which is not further
discussed here, since this paper is primarily inter-
ested in avoiding spatial aliasing.
For typical source spacings in LSA designs the

maximum allowed frequency fmax for grating lobe
free beam steering over the steering angle φSteer is
depicted in Fig. 4, assuming q = 1. The LSA length
is always L ≈ 5m. For the lowest audio frequen-
cies typical larger electrodynamic loudspeakers are
used and the range is approximately given as e.g.
400Hz < fmax < 800Hz for 90◦ ≥ φSteer ≥ 0◦

(N = 13, ∆y = 15”) and 500Hz < fmax < 1000Hz
for 90◦ ≥ φSteer ≥ 0◦ (N = 17, ∆y = 12”). The low
frequency band is thus uncritical for grating lobe
free beam steering. However large waveguides of
about the same dimension are not capable of pure
electronic beam steering for high audio frequencies
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due to the comparably low fmax [2, 22]. Therefore
such LSAs have to be curved geometrically in addi-
tion and delay-and-sum beamforming should there
be avoided for the high frequencies. The mid-band
of audio frequencies is very often driven by 5” or
6.5” speakers and an appropriate trade-off between
the crossover lowpass cut-frequency and the allowed
maximum steering angle has to be defined. The
high-band of audio frequencies is still the most crit-
ical w.r.t. spatial aliasing and requires very small
distances between drivers to avoid it. While this
was not considered feasible when approaching LSA
designs in the early 1990s for the first time, such
techniques have been engineered nowadays. In the
given example the 1”-piston would allow grating lobe
free sound fields up to 10 kHz, when restricting
|φSteer,max| < 20◦, while the 0.45”-design would al-
low endfire beams up to 15 kHz.

5. DISCUSSION OF WST #3:

The 3rd WST criterion was derived for an LSA with
directly adjacent horns (with no gaps) that exhibit a
specified wavefront curvature (WFC). By discussing
the 1st (1) and 3rd (3) WST criterion separately in
[5, 13], one may erroneously assume that they are
not interrelated. However, both criteria interact and
determine the quality of grating lobe avoidance and
suppression, which is discussed in this section.

5.1. Line Piston with Wavefront Curvature

Since a line piston with wavefront curvature exhibits
a specific postfilter characteristics HPost(ky, ω), the
discussion remains consistent within the signal pro-
cessing in Fig. 2 by interpreting the resulting spatio-
temporal spectrum Dw,S,H(ky, ω). This discussion –
based on the product theorem – was already given
in [12, 13], however the farfield radiation pattern of
a physically arc-shaped, uniformly driven source is
utilized, i.e. the Huygens principle is applied. We
propose to use Rayleigh-Sommerfeld diffraction of a
baffled, infinitesimal narrow slit of finite length that
is ’illuminated’ by a point source. The wavefront
curvature can be controlled by the point source po-
sition xPS = (−xPS, 0, 0)

T behind the slit on y-axis,
i.e. the distance xPS in Fig. 1. With the line piston’s
length l and a desired wavefront curvature in terms
of a wave length ratio S = αλ, the geometric length

and angle relations

xPS =
l2

8S
−

S

2
=

l2

8αλ
−

αλ

2
, (34)

r =
l2

8S
+

S

2
=

l2

8αλ
+

αλ

2
, (35)

tanφ =
l
2

l2

8S − S
2

=
l
2

l2

8αλ − αλ
2

(36)

are derived according to Fig. 1. We require the dis-
tance xPS > 0, which is valid if l2/4 > (αλ)2.
SFS of a virtual point source using a linear, fi-

nite length, continuous secondary source distribu-
tion that models the slit is employed. The diffracted
sound field is synthesized with [23, (16,31)]

P (x, ω) =

+l/2∫

−l/2

DWFC(y0, ω)GN (x,x0, ω) dy0, (37)

using the slit x0 = (0, y0, 0)
T on y-axis, x =

(x > 0, y, 0)T and the 3D Neumann Green’s func-
tion GN (x,x0, ω) = 2G(x,x0, ω). Using (34), the
Spectral Division Method driving function [23, (24)]

x / m

y 
/ m
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Fig. 5: Diffracted sound field ℜ{P (x, ω)} of a point
source synthesized by a baffled line piston with l =
0.343m for f = 5kHz using a wavefront curvature
α = 1/2, xPS = 0.4116m, ϑ = 22.62◦, c = 343m/s.
Normalized to ℜ

{
P (x = (λ/2, 0, 0)T , ω)

}
= −1/2.

AES 138th Convention, Warsaw, Poland, 2015 May 7–10

Page 8 of 13



Schultz et al. Discussion of WST

0 10 20 30 40 50 60 70 80 90
−36

−30

−24

−18

−12

−6

0

|φ| / deg

A
 / 

dB

 

 
D

w,S

H
Post

D
w,S,H

(a) α = 1/2, ARF = q = 1, N = 13, ∆y = 0.343m
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(b) α = 1/4, ARF = q = 1, N = 13, ∆y = 0.343m
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(c) α = 1/8, ARF = q = 1, N = 13, ∆y = 0.343m
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(d) α = 1/50, ARF = q = 0.812797, N = 11, ∆y = 0.422m

Fig. 6: Uniformly driven LSA with line pistons that exhibit a specified wavefront curvature. The excita-
tion function Dw,S(φ) (12), the postfilter HPost(φ) (39) and the resulting LSA farfield radiation pattern
Dw,S,H(φ) = Dw,S(φ) ·HPost(φ) for f = 5kHz, l = 0.343m, c = 343m/s are visualized.

reads

DWFC(y0, ω) =
1

4

√
xref

xref + xPS
j
ω

c
(−xPS)× (38)

1

‖x0 − xPS‖
·H

(2)
1

(ω

c
‖x0 − xPS‖

)

,

denoting the Hankel function of second kind of order

one as H
(2)
1 (·) [16, §10.2]. In contrast to Wave Field

Synthesis driving functions [23, 24], (38) is also valid
for point sources close to the slit, when the reference
point xref – at which the sound field is to be synthe-
sized correctly in amplitude and phase – is chosen

very large. This is in accordance for the quested
farfield radiation pattern. Since the driving func-
tion is proportional to the normal source velocity,
the spatial-temporal spectrum [19, Ch. 3.6]

HWFC(ky, ω) =

+l/2∫

−l/2

DWFC(y0, ω) e
+j ky y0 dy0,

(39)

normalized to unity gain at ky = 0 for consistency,
includes the farfield radiation pattern of the line pis-
ton with wavefront curvature. The integral is not
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treatable for an analytic closed form solution and
therefore numerical evaluation with a zero-padded
FFT of the spatially discretized version of (38) is
used. In Fig. 5 an example of the diffracted sound
field for a wavefront curvature of α = 1/2 is given.
The shown circles exhibit a radius increment of λ/2.
One circle intersects the line piston in the origin and
the subsequent circle with radius increment of λ/2
intersects the line piston at its ends, which defines
the sagitta S. In the following subsections the influ-
ence of the wavefront curvature w.r.t. grating lobe
suppression is discussed for exemplarily chosen LSA
setups and frequencies.

5.2. Single Waveguide LSA Element

For Fig. 6 different LSAs of about the same physical
length L = (N −1)∆y+ l ≈ 4.5m are modeled with
line pistons of the same length l = 0.343m that ex-
hibit different wavefront curvatures and ARF. The
specific postfilters and the resulting LSA farfield ra-
diation patterns over radiation angle φ are depicted
for f = 5kHz.
The line piston with α = 1/2 from Fig. 5 is used

to model an ARF=1, N=13 LSA in Fig. 6a. The
first grating lobes, with radiation angles ≈ ±10◦,
are attenuated by ≈ 2 dB (cf. [12, Fig. 20]), the sec-
ond by 9 dB. For Fig. 6b the wavefront curvature
is decreased to α = 1/4, the maximum grating lobe
level is about −10 dB relative to the main lobe level
(cf. [12, Fig. 19], [5, p.919]). According to the 3rd

WST criterion (3), α = 1/4 is the maximum tol-
erated wavefront curvature, which however violates
the 1st WST criterion (1) (min. 13.5 dB grating lobe
suppression), even for ARF = 1.
A wavefront curvature of α = 1/8 is depicted in

Fig. 6c (cf. [12, Fig. 18]). The maximum grat-
ing lobe level does not exceed approx. −16 dB for
ARF = 1 and approx. −11.5 dB for ARF = 0.82.
Hence, this wavefront curvature violates the 1st

WST criterion for ARF = 0.82. In compliance with
a tolerated maximum grating lobe level of −13.26 dB
a wavefront curvature of α = 1/6 is required, which
however holds only for ARF ≈ 1. If ARF = 0.82
is allowed, thus fulfilling the 1st WST criterion, the
curvature α > 1/50 ensures the maximum allowed
grating lobe level −13.26 dB, as shown in Fig. 6d.
For curvatures α > 1/50 the postfilter exhibits al-
most the same characteristics as the ideal line piston
without wavefront curvature.

y

x
l LB∆yl

LLSA

∆yB

Fig. 7: Schematical sketch of an LSA built from
NB = 3 boxes of physical height LB spaced by ∆yB.
Each box has Nl = 3 line pistons of height l spaced
by ∆yl. The total physical length of the LSA is
LLSA. NB and Nl are assumed to be odd-numbered.

5.3. Multiple Waveguide LSA Box

The discussion above is valid for a single waveguide
that spans about the entire height of a single LSA
cabinet. In practical designs an LSA cabinet is often
built from multiple and smaller waveguides each cou-
pled to an individual compression driver, cf. Fig. 7.
Ideally the waveguides should be driven individually,
since this improves the capability for electronic beam
forming, cf. Sec. 4. However, it is still common
practice to drive high frequencies uniformly, i.e. all
compression drivers per LSA cabinet get the same
signal. For a uniformly driven, straight LSAs this
can be modeled with the product theorem for nested
arrays, also referred to as subarrays, cf. eg. [18].
The spatio-temporal spectrum is then given as

Dw,S,H(ky, ω) =

Dw,S,l(ky,ω)
︷ ︸︸ ︷

1

Nl

sin(ky ∆yl Nl/2)

sin(ky ∆yl/2)
·HPost(ky, ω)×

1

NB

sin(ky ∆yB NB/2)

sin(ky ∆yB/2)
︸ ︷︷ ︸

Dw,S,B(ky,ω)

, (40)

for which the first product models the farfield radi-
ation pattern of a single LSA cabinet build from Nl

pistons, each featuring the spatial postfilter charac-
teristics HPost(ky, ω) (39). The subsequent product
using (12) then models the complete farfield radi-
ation pattern of the LSA built from NB cabinets.
From Fig. 7 the geometrical relations between the
individual ARFs and physical lengths are derived to

ql =
l

∆yl
LB = (Nl − 1)∆yl + l, (41)

qB =
LB

∆yB
LLSA = (NB − 1)∆yB + LB. (42)
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Due to the interaction of three spatial spectra, the
discussion is slightly more complicated and for line
pistons with wavefront curvature no closed form so-
lution exists so far. We give some numerical exam-
ples of the farfield radiation pattern in Fig. 8 for an
assumed highest operating frequency f = 16 kHz for
a ’multiple waveguides per cabinet’-LSA design. For
Fig. 8a and Fig. 8b three rather large waveguides are
used per LSA element and the wavefront curvature
is varied. The chosen parameters closely match typ-
ical LSA designs, i.e. ql = 1 and ARF = qB = 0.82.
For Fig. 8c and Fig. 8d the waveguides are smaller,
thus fitting more of them per LSA element and the
ARF = qB is varied, while ql = 1.
For the chosen source spacing and frequency no

LSA is grating lobe free, due to violating the 2nd

WST criterion. The large wavefront curvature in
Fig. 8a leads to grating lobes larger than −12 dB for
small radiation angles, which can be reduced when
decreasing the curvature in Fig. 8b. When compar-
ing Fig. 8b (large waveguides) and Fig. 8c (small
waveguides) with otherwise same parameters, it is
observed that the grating lobes at small angles φ are
more attenuated for the latter LSA, due to the larger
decay of Dw,S,l(ky, ω). It is worth realizing at this
point, that grating lobes at small angles corrupt the
intended sound field in a much larger spatial region
than those radiated with large angles. This advan-
tage, however comes with a comparably larger grat-
ing lobe level at |φ| ≈ 30◦. Due to the almost perfect
coincidence of the aliased-sinc grating lobe maxima
of Dw,S,l(ky, ω) (1st maximum) and Dw,S,B(ky, ω)
(11th maximum) the postfilter only determines the
attenuation level, which yields over 30 dB in Fig. 8b
and about 16 dB in Fig. 8c. The coincidence of com-
mon maxima from Dw,S,l(ky, ω) and Dw,S,B(ky, ω)
can be controlled by

qB =
ql · LB

σ · l
σ ≥ Nl, σ ∈ N (43)

for which σ = Nl generally models qB = 1 if
ql = 1. This is an ARF=1 LSA, for which the grating
lobe suppression depends only on the spatial post-
filter characteristics. The example in Fig. 8c closely
matches σ = Nl + 2 = 9 + 2 → qB = 0.81. By in-
creasing the ARF in Fig. 8d compared to Fig. 8c the
grating lobes are generally more attenuated. Grat-
ing lobes at ≈ 30◦ differ significantly due to different

interaction of the involved functions.
In comparison to Sec. 5.2 larger wavefront cur-

vature (in the example α ≤ 1/8) is tolerated to
fulfill the 1st WST criterion when using multiple
smaller waveguides per LSA element. This is due
to the additional spatial lowpass filter characteris-
tic of Dw,S,l(ky, ω), which compensates the insuffi-
cient lowpass characteristic of a waveguide with large
wavefront curvature.
Despite the comparably large grating lobe level at

about 30◦, the LSAs in Fig. 8c, Fig. 8d could be pre-
ferred, due to the smaller discretization step (leaving
more frequency bandwidth uncorrupted from alias-
ing, improved capability for electronic beam form-
ing) and due to the larger decay of grating lobe lev-
els for small radiation angles (larger spatial region
without spatial aliasing).

CONCLUSION

This paper presents an extended analysis to the
first three Wavefront Sculpture Technology criteria
for straight line source arrays, that deal with dif-
ferent approaches to avoid or reduce grating lobes.
The correct ARF theorem for a circular piston ar-
ray is furthermore given. For arrays with rather
small source spacing the sampling theorem becomes
important, when aiming at electronic beam form-
ing and -steering. Meaningful radiation angles for
steered arrays are given in terms of grating lobe
avoidance. A line piston model for wavefront cur-
vature is introduced and the subarray product the-
orem is applied to arrays which exhibit more than
one waveguide per cabinet. In the latter case the al-
lowed maximum wavefront curvature of a line piston
is more relaxed.
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(a) α = 1/4, Nl = 3, l = 5.3”, ql = 1, NB = 11, qB = 0.82
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(b) α = 1/8, Nl = 3, l = 5.3”, ql = 1, NB = 11, qB = 0.82
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(c) α = 1/8, Nl = 9, l = (5.3/3)”, ql = 1, NB = 11,
qB = 0.82
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(d) α = 1/8, Nl = 9, l = (5.3/3)”, ql = 1, NB = 11,
qB = 0.86

Fig. 8: Grating lobe levels over |φ| for uniformly driven LSAs with line pistons of specified wavefront curvature
α using (40) with (38) and (39), f = 16 kHz, c = 343m/s. Fig. a) and b) use 3x 5.3” waveguides per LSA
cabinet, α is varied. Fig. c) and d) use 9x 1.76̄” waveguides per LSA cabinet, qB is varied. ql=1 for all cases.
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