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ABSTRACT

The achievable accuracy of sound field synthesis (SFS) techniques, such as Wave Field Synthesis (WFS),
is mainly limited in practice due to the limited loudspeaker density. Above the so called spatial aliasing
frequency, considerable artifacts are introduced in the synthesized sound field. In local SFS, the accuracy
within a local listening area is increased at the cost of degradations outside. In this paper a new approach
for local WFS is proposed. The WFS driving functions are computed based on an order-limited harmonics
expansion of the target sound field. A local listening area is created around the shifted expansion center
where the synthesized sound field exhibits higher accuracy. The size of the local area is controlled by the
expansion order of the driving function. The derivations of 2D, 3D and 2.5D driving functions are given,
and the synthesized sound fields are evaluated by numerical simulations.

1 Introduction

Sound field synthesis (SFS) is a spatial sound re-
production technique where a desired sound field
is physically reconstructed by a loudspeaker array.
The loudspeakers, termed secondary sources, are
driven individually in such a way that the super-
position of the reproduced sound fields approaches
the target sound field. Two well established SFS
methods are Wave Field Synthesis (WFS) and
near-field compensated higher-order Ambisonics
(NFC-HOA) [1, 2, 3, 4]. Theoretically, a continu-
ous distribution of secondary sources is required
for a perfect synthesis. In practice, only a finite
number of secondary sources can be placed at dis-

crete positions. The spatial discretization results
in spatial aliasing and a prominent artifacts are in-
troduced in the synthesized sound field. In general,
the amount of artifacts depends on the number and
the distribution of the secondary sources, as well
as on the virtual source position and the listener
position [5].

Instead of considering the entire listening area,
local SFS techniques aim at increasing the physi-
cal accuracy inside a predetermined local listening
area [6, 7, 8, 9]. This is typically achieved at the
cost of stronger artifacts outside the local area. In
NFC-HOA, for instance, the local listening area
can be shifted by translating the expansion cen-
ter to a target listening position [7]. The size of
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the local area is controlled by the spatial band-
width (circular/spherical harmonic order) of the
driving function. Some extensions of local NFC-
HOA were introduced and investigated in [10]. For
local WFS, two approaches are known so far. In [8],
a virtual loudspeaker array is created using focused
sources. By choosing a dense distribution of virtual
loudspeakers, the spatial aliasing frequency is in-
creased and a better performance can be achieved
in the local area. The second local WFS method
proposed in [9] employs the equivalent scattering
approach [11]. Here, the boundary of the local lis-
tening area is assumed to be a sound-soft scatterer.
For a given incident field (target field), the local
WFS driving functions are computed based on the
sound field scattered by the virtual boundary.

In this paper, an alternative method for local WFS
is presented. Unlike the above mentioned local
WFS methods, no explicit boundary is consid-
ered. It rather exploits the properties of a spatially
band-limited sound field which exhibits higher ac-
curacy around the expansion center. Similar to
(local) NFC-HOA, the desired sound field is de-
scribed as a circular/spherical harmonics expansion
with a limited order. The local WFS driving func-
tions are obtained by (i) computing the directional
gradient at each secondary source position and
(ii) applying a spatial window that activates only
the secondary sources illuminated by the virtual
source [12]. Since the derivatives of the spheri-
cal/circular harmonics and the Bessel functions
are known, analytic driving functions can be de-
rived for typical virtual sources, e.g. plane waves
and point sources.

The derivation of WFS driving function based on a
harmonics representation was also presented in [13],
but in a slightly different context. It was assumed
that the sound field is captured e.g. by a spherical
microphone array and thus the direction of arrival
of the source is unknown. The captured sound
field is thus decomposed into plane waves so that
the selection of active secondary sources becomes
more convenient. In this paper, it is assumed
that the position of the virtual source is known.
The driving functions are thus computed directly
from the harmonics coefficients. The focus is on
increasing the local accuracy of the synthesized
sound field.

It is worth noting that the presented derivations
are mathematically similar to the works in [14],
[15] and [16]. In the latter studies, the source
directivity is represented by spherical/circular har-
monics. The center of expansion is placed outside
the listening area, and thus the sound field is ex-
pressed as an exterior expansion using singular
basis functions. The expansion order depends on
the complexity of the directivity. In this paper,
on the contrary, the expansion center has to be
located within the listening area, and the sound
field is described by an interior expansion using
regular basis functions. The expansion order of
the sound field is determined by the size of the
local area.

This paper is structured as follows. Notational and
mathematical conventions are defined in Sec. 1.1.
The concept of local SFS are reviewed and the
local WFS driving functions are derived in Sec. 2.
The proposed method is evaluated by numerical
simulations and the properties of the synthesized
sound field are discussed in Sec. 3.

1.1 Nomenclature and Mathematical
Preliminaries

In this paper, the complex sound pressure at posi-
tion x is denoted by uppercase S(x, ω) where the
radial frequency ω is related to the temporal fre-
quency by ω = 2πf . The complex unit i is defined
as i2 = −1, and the speed of sound is denoted by
c and assumed to be constant.

The cylindrical coordinates (ρ, ϕ, z) is related to
its Cartesian coordinates (x, y, z) by

x = ρ cosϕ

y = ρ sinϕ

z = z

where ρ denotes the radial distance from the z-axis
and ϕ the polar angle from the x-axis. The spheri-
cal coordinates (r, θ, φ) is related to the Cartesian
coordinates by

x = r cosφ sin θ

y = r sinφ sin θ

z = r cosφ
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where r denotes the radial distance from the origin,
φ the azimuth angle from the x-axis, and θ the
colatitude angle measured from the z-axis.

Within a source-free region, a propagating sound
field can be represented as a combination of the
regular basis solutions of the wave equation. A two-
dimensional homogeneous sound field independent
to the z-coordinate can be expanded with respect
to a line (ρ = ρc, ϕ = ϕc) parallel to the z-axis [17,
Eq. (4.49)]

S(ρ′, ϕ′, ω) =
∞∑

µ=−∞
S̊µ(ω)Jµ(ωc ρ

′)eiµϕ
′

(1)

where Jµ(ωc ρ
′) denotes the Bessel function of the

first kind of order µ, eiµϕ
′
the µ-th circular har-

monic and S̊µ(ω) the corresponding expansion co-
efficient. The primed variables (ρ′, ϕ′) denote the
radial distance and the polar angle from the line
of expansion, respectively.

A three-dimensional homogeneous sound field can
be represented as a spherical harmonics expan-
sion [17, Eq. (6.140)]

S(x−xc, ω)

=

∞∑
n=0

n∑
m=−n

S̆mn (ω)jn(ωc r
′)Y mn (θ′, φ′) (2)

where jn(ωc r
′) denotes the spherical Bessel function

of the first kind of order n, Y mn (θ′, φ′) the spherical
harmonic, and S̆mn (ω) the corresponding expansion
coefficient. The spherical harmonic is defined as

Y mn (θ′, φ′) =
√

2n+1
4π

(n−m)!
(n+m)!P

m
n (cos θ′)eimφ

′
(3)

with Pmn (·) denoting the associated Legendre poly-
nomial. The primed variables are defined as
x− xc = (r′, θ′, φ′).

Inside a cylindrical (ρ′ < R) or spherical (r′ < R)
region, the sound field can be approximated by a
finite number of harmonics with bounded error [18].
Both for (1) and (2), the required order is typically
approximated by N ≡ dωcRe where d·e denotes
the ceiling function. The corresponding number
of harmonics is 2N + 1 for the circular harmonics
expansion

SN (x− xc, ω) =
N∑

µ=−N
S̊µ(ω)Jµ(ωc ρ

′)eiµϕ
′

(4)

virtual
source

x0

n0

V

∂V

P (x, ω)

Vl

∂Vl

Fig. 1: Local sound field synthesis. The desired
sound field is synthesized inside the local
listening area Vl by using the secondary
sources distributed on ∂V .

and (N+1)2 for the spherical harmonics expansion

SN (x− xc, ω)

=
N∑
n=0

n∑
m=−n

S̆mn (ω)jn(ωc r
′)Y mn (θ′, φ′). (5)

In the remainder, N is frequently referred to as
the spatial bandwidth of a sound field.

For convenience, the coordinate system is always
translated by −xc so that the expansion center
coincides with the origin of the coordinate sys-
tem. Thus, (ρ′, ϕ′, z′) = (ρ, ϕ, z) and (r′, θ′, φ′) =
(r, θ, φ).

2 Local WFS

2.1 Problem Statement

As illustrated in Fig. 1, local SFS techniques aim at
the physical reconstruction of a desired sound field
S(x, ω) within a local region x ∈ Vl by using mul-
tiple loudspeakers distributed on x0 ∈ ∂V . The
synthesized sound field P (x, ω) is a superposition
of the sound fields emitted by the individual sec-
ondary sources. For a continuous secondary source
distribution, the reproduced sound field reads

P (x, ω) =

∫
∂V

D(x0, ω)G(x− x0, ω)dA0 (6)
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where D(x0, ω) denotes the driving function of
the secondary source at x0 and G(x − x0, ω)
the Green’s function characterizing the spatio-
temporal transfer function of the secondary sources.
Equation (6) is either a surface integral or a con-
tour integral depending on the dimensionality of
the problem. The goal is to find D(x0, ω) that sat-
isfies P (x, ω) = S(x, ω) for x ∈ Vl. If Vl coincides
with V it becomes a conventional SFS problem.

2.2 Driving Function

WFS constitutes a high-frequency/far-field solu-
tion of (6) based on the Kirchhoff-Helmholtz inte-
gral equation. A detailed theoretical introduction
on WFS can be found in [2]. The WFS driving
function is given as the directional gradient of the
sound field evaluated at the secondary source posi-
tion x0 ∈ ∂V ,

D(x0, ω) = −2a(x0)
〈
∇S(x, ω)|x=x0

,n0
〉

(7)

where n0 denotes the normal vector on ∂V point-
ing inward, and

〈
·, ·
〉
the scalar product of two

vectors. The window function a(x0) activates only
the secondary sources where the inner product of
the propagation direction and n0 is positive [12].
In the following derivation, a(x0) is omitted for
convenience. The gradient ∇ is defined as

∇Cart ≡ êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
(8)

in Cartesian coordinates,

∇cyl ≡ êρ
∂

∂ρ
+ êϕ

1

ρ

∂

∂φ
+ êz

∂

∂z
(9)

in cylindrical coordinates, and

∇sph ≡ êr
∂

∂r
+ êθ

1

r

∂

∂θ
+ êφ

1

r sin θ

∂

∂φ
(10)

in spherical coordinates where ê denotes the re-
spective unit vector.

2.3 Local WFS by Spatial Band-limitation

In this paper, the sound field in the local listening
area is controlled by limiting the spatial band-
width of S(x, ω) in the circular/spherical harmon-
ics domain. Due to the properties of a spatially
band-limited sound field discussed in Sec. 1.1, only

circular/spherical local listening area is considered.
The virtual sound field S(x, ω) is expanded with
respect to the center of the local area Vl. If a local
area with a radius of Rl is desired, the spatial band-
width is limited by N = dωcRle. The larger the
spatial bandwidth, the bigger the local listening
area.

In the following, WFS driving functions are derived
for different secondary source distributions and
dimensionalities of the virtual sound field. The
driving functions are summarized in Table. 1.

2.4 2D Local WFS Driving Function

Two-dimensional (2D) WFS is first considered.
Here a height-invariant sound field is synthesized
by using secondary line sources having a 2D dis-
tribution, e.g. linear or circular array. The sec-
ondary line sources are aligned perpendicular to
the horizontal plane, i.e. parallel to the z-axis.
The spatio-temporal response of a line source is
given by the 2D Green’s function [17, Eq. (8.51)]

G2D(x− x0, ω) = − i
4H

(2)
0 (ωc ‖x− x0‖) (11)

where H(2)
0 (·) denotes the 0-th Hankel function of

the second kind.

The virtual sound field is represented by a circular
harmonics expansion (4). To derive the driving
function by (7), the individual components of the
directional gradient are computed [19],

∂
∂ρS(x, ω) =

N∑
µ=−N

S̊µ(ω) ω2c
[
Jµ−1(ωc ρ)− Jµ+1(ωc ρ)

]
eiµϕ

(12)

and

∂
∂ϕS(x, ω) =

N∑
µ=−N

S̊µ(ω)Jµ(ωc ρ)(iµ)eiµϕ (13)

while
∂
∂zS(x, ω) = 0 (14)

due to the height invariance. In (12), the recur-
rence relation of Jµ(·) is exploited [19, Eq. (9.1.27)].
The directional gradient is computed by substitut-
ing (12), (13) and (14) into (9). The 2D WFS
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driving function is then obtained by substituting
(9) into (7)

D2D(x0, ω) = −2
N∑

µ=−N
S̊µ(ω)eiµϕ0

×
[
〈êr,n0〉 ω2c

{
Jµ−1(ωc ρ0)− Jµ+1(ωc ρ0)

}
+ 〈êϕ,n0〉iµJµ(ωc ρ0)

]
. (15)

Although not considered in this paper, the large
argument approximation of Jµ(·) may be consid-
ered to reduce the computational complexity [19,
Eq. (9.2.1)].

2.5 3D Driving Function

In three-dimensional (3D) WFS, a virtual sound
field is synthesized by using secondary point
sources that have a 3D distribution, e.g. planar or
spherical array. The spatio-temporal transfer func-
tion of a point source is given as the 3D Green’s
function [17, Eq. (8.41)],

G3D(x− x0, ω) =
1

4π

e−i
ω
c ‖x−x0‖

‖x− x0‖
. (16)

The virtual sound field exhibits three-dimensional
properties and can be represented by its spherical
harmonics expansion. The individual components
of the directional gradient in (10) are

∂
∂rS(x, ω) =

N∑
n=0

n∑
m=−n

S̆mn (ω) (17)

× ω
c

njn−1(ωc r)− (n+ 1)jn+1(ωc r)

2n+ 1
Y mn (θ, φ),

∂
∂θS(x, ω) =

N∑
n=0

n∑
m=−n

S̆mn (ω)jn(ωc r) (18)

× −1
sin2 θ

[
(n+ 1) cos θY mn (θ, φ)

−
√

2n+1
2n+3 ((n+ 1)2 −m2)Y mn+1(θ, φ)

]
and

∂
∂φS(x, ω)

=
N∑
n=0

n∑
m=−n

S̆mn (ω)jn(ωc r)(im)Y mn (θ, φ). (19)

In (17) the recurrence relation of jn(·) is ex-
ploited [19, Eq. (10.1.20)], and in (18) the recur-
rence relation of Pmn (·) is used [19, Eq. (8.5.3) and
(8.5.4)]. The directional gradient is computed by
substituting (17), (18) and (19) into (10). The
WFS driving function is computed by substituting
(10) into (7). The resulting driving function (25)
is listed in Table 1.

Obviously, a SFS system with a 3D secondary
source distribution is capable of synthesizing a 2D
sound field that is represented by S̊µ(ω). One may
directly use the driving functions derived in (15).
If necessary, S̊µ(ω) can be converted to S̆mn (ω) by
using the relation in [20, Eq. (14)] and plugging it
into the 3D driving function (25).

2.6 2.5D Driving Function I – S̊µ(ω)

In practice, 2D WFS is infeasible since secondary
line sources are not available. A typical loud-
speaker exhibits a point-source-like characteristic.
Therefore a 2D distribution (e.g. linear or circular
array) of secondary point sources is often used in
SFS systems. This constitutes a dimensionality
mismatch and the 2D driving functions in (15)
cannot be used directly.

According to the large argument approximation of
H(2)
m (·) [19, Eq. (9.2.4)], the 2D Green’s function

is related to the 3D Green’s function by

G2D(x−x0, ω) ≈

√
2π‖x−x0‖

iωc
G3D(x−x0, ω)

(20)
for ωc ‖x−x0‖ � 1. The latter is also known as the
stationary phase approximation. If (20) is plugged
into (6), the synthesis equation reads

P (x, ω) =∫
∂V

D2D(x0, ω)

√
2π‖x−x0‖

iωc
G3D(x− x0, ω)dA0.

(21)

The above equation can be interpreted as SFS
where secondary point sources are driven by the
2.5D driving function

D2.5D(x0, ω) =

√
2π‖x− x0‖

iωc
D2D(x0, ω). (22)
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Fig. 2: Virtual point source at (1, 1.7, 0) with frequency of f = 4 kHz was synthesized by using a circular
loudspeaker array (56 loudspeakers, r0 = 1.5 m). Local WFS was used in (a) and (b) whereas
the conventional WFS was used in (c) and (d). For local WFS, the local area is centered at
(0.75, 0, 0) with a radius of 0.3 m which is indicated by dashed circles. The driving functions
were computed from the spherical harmonics expansion with the maximum order of N = 22.

The driving function (22) depends on x, and the
synthesized sound field is accurate only at x, This
is a well-known property of 2.5D SFS, which is
attributed to the mismatch of the sound field (2D)
and the secondary source distribution (3D). The
driving function is typically computed for a ref-
erence point which is, in this case, obviously the
center of the local listening area x = 0. The driv-
ing function thus reads

D2.5D(x0, ω) =

√
2πρ0
iωc

D2D(x0, ω). (23)

Note that the additional term corrects the ampli-

tude decay and compensates the low-pass charac-
teristic of the secondary line sources.

2.7 2.5D Driving Function II – S̆mn (ω)

Another type of 2.5D WFS is considered where
S(x, ω) is represented by a spherical harmonics
expansion but the secondary sources have a 2D dis-
tribution, e.g. linear or circular array. While the
virtual sound field exhibits 3D properties, only a
2D sound field can be synthesized. It is thus conve-
nient to convert the spherical harmonics expansion
into a circular harmonics expansion. This process
reduces one dimension of the sound field, and thus
the conversion is non-invertible. One possibility

AES 140th Convention, Paris, France, 2016 June 4–7
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Fig. 3: Virtual plane waves (φPW = −π2 ) synthesized by using a circular loudspeaker array (56 loudspeak-
ers, radius of r0 = 1.5 m). Local WFS was used in (a) and (b) whereas the conventional WFS
was used in (c) and (d). The local listening area is centered at (0.75, 0, 0) with radius of 0.3 m
which is indicated by dashed circles. The driving functions were computed from the circular
harmonics expansion where the expansion order depends on the frequency N (f) = d 2πfc Rle. The
maximum order was 122 for f = fs/2.

is to project the sound field onto the horizontal
plane, as suggested in [13]. In this paper, only
the horizontal slice of the virtual sound field is
synthesized, i.e. S(x, ω)|z=0.

In order to convert S̆mn (ω) to S̊µ(ω), the order of
summation in (5) is exchanged,

∞∑
m=−∞

 ∞∑
n=|m|

S̆mn (ω)jn(ωc r)Y
m
n (θ, 0)

 eimφ

(28)
where Y mn (θ, φ) = Y mn (θ, 0)eimφ is exploited. Com-

paring (28) with (4) on the xy-plane (θ = π
2 ) yields

∞∑
n=|m|

S̆mn (ω)jn(ωc r)Y
m
n (θ, 0) = S̊mJm(ωc r) (29)

where ρ is substituted by r. As shown in [20,
Eq. (13)], the Bessel function can be represented
as a weighted sum of spherical Bessel functions,

Jm(ωc r) =
∞∑

n=|m|

4πim−nY −mn (π2 , 0)jn(ωc r)Y
m
n (π2 , 0), (30)

AES 140th Convention, Paris, France, 2016 June 4–7
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Driving functions Section

D2D(x0, ω) = −2a(x0)
N∑

µ=−N
S̊µ(ω)eiµϕ0

×
[
〈êr,n0〉 ω2c

{
Jµ−1(ωc ρ0)− Jµ+1(ωc ρ0)

}
+ 〈êϕ,n0〉iµJµ(ωc ρ0)

] (24) 2.4

D3D(x0, ω) = −2a(x0)
N∑
n=0

n∑
m=−n

S̆mn (ω)[
〈êr,n0〉 1

2n+1
ω
c

{
njn−1(ωc r0)− (n+ 1)jn+1(ωc r0)

}
Y mn (θ0, φ0)

+ 〈êθ,n0〉 −1
r0 sin2 θ0

jn(ωc r0)
{

(n+ 1) cos θ0Y
m
n (θ0, φ0)

−
√

2n+1
2n+3 ((n+ 1)2 −m2)Y mn+1(θ0, φ0)

}
+ 〈êφ,n0〉 im

r0 sin θ0
jn(ωc r0)Y mn (θ0, φ0)

]
(25) 2.5

D2.5D(x0, ω) =

√
2π‖x− x0‖

iωc
×D2D(x0, ω) (26) 2.6

D2.5D(x0, ω) = −2a(x0)
N∑

m=−N

S̆m|m|(ω)eimϕ0

4πi|m|−mY −m|m| (π2 , 0)

×
[
〈êr,n0〉 ω2c

{
Jm−1(ωc ρ0)− Jm+1(ωc ρ0)

}
+ 〈êϕ,n0〉imJm(ωc ρ0)

] (27) 2.7

Table 1: WFS driving functions derived from circular/spherical harmonics expansions.

and thus

S̊m(ω) = (31)∑∞
n=|m| S̆

m
n (ω)jn(ωc r)Y

m
n (π2 , 0)∑∞

n=|m| 4πi
m−nY −mn (π2 , 0)jn(ωc r)Y

m
n (π2 , 0)

.

The conversion of the coefficients is only valid
for a distinct radius r and θ. Thus, the sound
pressures of the spherically and the cylindrically
expanded sound fields do only coincide at that
coordinate. Choosing the origin and applying the

rule of l’Hospital results in

S̊m(ω) =
S̆m|m|(ω)

4πim−|m|Y −m|m| (π2 , 0)
. (32)

The 2.5D driving function can be computed by
substituting (32) into (26) (see Table 1). The
resulting driving function (27) is listed in Table 1.

Note that the driving function only requires a
subset of S̆mn (ω) where n = |m|. Not surprisingly,
NFC-HOA also uses the same coefficients for 2.5D
synthesis using a circular array [4, Eq. (20)].
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Fig. 4: Frequency responses of a broadband plane wave (φPW = −π2 ) synthesized by a circular loudspeaker
array (56 loudspeakers, r0 = 1.5 m). For local WFS, the local area (Rl = 0.3 m) in (a) and (b)
are centered at (0, 0, 0) and (0.5, 0, 0), respectively. The driving functions were computed from
the circular harmonics expansion with a fixed order N = 22.

3 Evaluation

The driving functions derived in the previous sec-
tion are used in numerical simulations of various
scenarios. Only 2.5D WFS is considered where
either a circular or rectangular array is used. The
circular array consists of 56 loudspeakers as the
system installed in the Technical University of
Berlin. The rectangular array with 64 loudspeak-
ers is identical to the system installed in the Uni-
versity of Rostock [21]. The loudspeakers are as-
sumed to be monopole point sources. Free-field
sound propagation was considered and the speed of
sound was set to 343 m/s. The sampling frequency
was fs = 44.1 kHz. All simulation results were
obtained by the Sound Field Synthesis Toolbox
ver. 2.1.0 [22].

The advantage of local WFS compared to (non-
local) WFS is demonstrated in Fig. 2. A monochro-
matic sound field of a point source is synthesized
where the frequency (4 kHz) is well above the spa-
tial aliasing frequency (≈ 1 kHz) of the system.
The driving functions are computed by using (27)
together with the spherical harmonics expansion
coefficients of a point source,

S̆mn (ω) = −iωc h
(2)
n (ωc rPS)Y −mn (θPS, φPS) (33)

where (rPS, θPS, φPS) is the spherical coordinates
of the source position. The reproduced sound field
for conventional WFS suffers from strong artifacts
regardless of the listening position. In local WFS,
on the other hand, the sound field within the lo-
cal listening area (dashed circle) exhibits a better
spatial structure. The amplitude is more evenly
distributed and also the phase is correctly synthe-
sized.

In Fig. 3, a broadband plane wave is synthesized
carrying a Dirac shaped signal. The driving func-
tion is computed for discrete frequencies and trans-
formed to the time domain by inverse Fourier trans-
form. In conventional WFS, shown in Fig. 3(c) and
3(d), the first wavefront is perfectly synthesized
but it is followed by multiple wavefronts arriving
from different directions. In local WFS, a sharp
wavefront is observed in the middle of the local
area. Interestingly, the sound field in Fig. 3(a)
looks very similar to the sound field synthesized
by NFC-HOA [23, Fig. 1(c)] except the spatial
shift by (0.5, 0, 0). This is not surprising because
both in NFC-HOA and local WFS, spatial band-
limitation is applied to the target sound field. This
representation of the sound field seems to have a
strong influence on the synthesized sound field.

AES 140th Convention, Paris, France, 2016 June 4–7
Page 9 of 12



Hahn et al. Local WFS by Spatial Band-limitation

x / m
-1 0 1

y
/
m

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Local WFS

x / m
0.4 0.6 0.8 1 1.2

y
/
m

-0.4

-0.2

0

0.2

0.4

(b) Local WFS (zoom)

x / m
-1 0 1

y
/
m

-1.5

-1

-0.5

0

0.5

1

1.5

(c) Conventional WFS

x / m
0.4 0.6 0.8 1 1.2

y
/
m

-0.4

-0.2

0

0.2

0.4

(d) Conventinal WFS (zoom)

Fig. 5: Virtual plane wave (φPW = −π4 , f = 4 kHz) synthesized by local WFS and conventional WFS
using a rectangular loudspeaker array (64 loudspeakers). Local WFS was used in (a) and (b)
whereas the conventional WFS was used in (c) and (d). The local listening area is indicated
by dashed circles centered at (0.75, 0, 0) with a radius of 0.3 m. The driving functions were
computed from the spherical harmonics expansion with maximum order of N = 22.

The frequency responses for different listening po-
sitions are shown in Fig. 4. Two different local
listening areas centered at (0, 0, 0) and (0.5, 0, 0)
are considered. The radius of the listening area
is 0.3 m in both cases. Below the aliasing fre-
quency (≈ 1 kHz) the magnitude responses are
almost identical, but at high frequencies the ad-
vantage of local WFS is clearly visible. In con-
ventional WFS, spatial aliasing adds more energy
in high frequencies thereby resulting in a high-
pass characteristic. Due to the strong fluctuation,
only an approximate equalization is possible. In
typical WFS systems, a pre-equalization filter is
applied to the input signal [24]. Local WFS, on
the other hand, exhibits better spectral properties.

The fluctuation is in the order of ±1 dB. Both for
conventional and local WFS, a low-pass character-
istic is observed below 100 Hz which is attributed
to the high-frequency assumption in the derivation
of WFS.

WFS can be applied for arbitrary secondary source
distributions. In Fig. 5, a monochromatic sound
field is synthesized by using a rectangular array.
The advantage of local WFS is clearly observable.

4 Conclusion

A new approach for local WFS is presented in
this paper. It is based on the representation of
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the virtual sound field by a band-limited circu-
lar/spherical harmonics expansion. Due to the
property of spatial band-limitation, the sound field
within a local region can be synthesized with higher
precision than conventional WFS. Local WFS driv-
ing functions are derived for 2D, 2.5D and 3D
WFS as summarized in Table 1. Two variations of
2.5D WFS driving functions are presented where
circular and spherical harmonics representations
are considered, respectively.

As demonstrated by numerical simulations, the
local SFS method improves the technical perfor-
mance inside a predetermined target region. There-
fore, local SFS can be applied where the listener(s)
can be assumed to be in a fixed region or if the
listener position can be estimated by a tracking
system. The achievable perceptual improvement,
however, is still under investigation. The compari-
son between different local SFS methods is an open
topic and will be addressed in following studies.
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