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Introduction

Wave Field Synthesis (WFS) is a well-established sound
field synthesis technique that uses a dense spatial dis-
tribution of loudspeakers (secondary sources) arranged
around an extended listening area [1]. Practical systems
are often of rectangular shape. It has been shown that
the edges of such a loudspeaker array may result in con-
siderable amplitude and spectral deviations in the syn-
thesized sound field. This holds especially when using
standard WFS driving functions [2].
In order to further investigate this effect, an analytic
solution to the synthesis of a sound field by two semi-
infinite secondary source distributions forming an edge
is derived. This geometry serves as a prototype for the
edges in rectangular setups. We use the equivalent scat-
tering approach (ESA), that links the theory of sound
field synthesis to acoustic scattering, for the derivation
of the novel driving functions.
This paper is organized as follows: We briefly review the
ESA in the next section, followed by the theory of scat-
tering the field of a line source at an edge. This basis is
then used to derive the novel driving functions which are
finally evaluated by numerical simulations.

Equivalent Scattering Approach

We aim at synthesizing a sound field S(x, ω) within a re-
gion V by a continuous distribution of monopoles (single
layer potential) on the boundary ∂V . The synthesized
sound field reads

P (x, ω) =

∫
∂V

D(x0, ω)G(x− x0, ω) dA(x0), (1)

where x0 ∈ ∂V , dA(x0) denotes a suitably chosen el-
ement for integration and D(x0, ω) the weight (driving
function) of the secondary sources.
For ease of illustration we will first consider a two-
dimensional (2D) scenario. For 2D synthesis, the free-
field Green’s function G(x− x0, ω) is given by [3]

G2D(x− x0, ω) = − j

4
H

(2)
0

(ω
c
|x− x0|

)
, (2)

where H
(2)
0 (·) denotes the Hankel function of second kind

and zeroth-order, and x0 the position of the line source.
We aim at the synthesis of the sound field of a line source
S(x, ω) = G2D(x− xs, ω) where xs denotes its position.

Various approaches have been published to derive the
driving function D(x0, ω) for the synthesis of a desired

sound field S(x, ω). One of these is the equivalent scat-
tering approach [4]. It states that the synthesis of a
sound field by a single layer potential can be interpreted
in terms of an equivalent acoustic scattering problem.
The secondary source distribution acts as a notional ob-
ject with homogeneous Dirichlet (i.e. sound-soft, pres-
sure release) boundary conditions scattering the desired
incident sound field S(x, ω). Denoting the scattered field
with Ssc(x, ω), the total sound field reads

Pt(x, ω) = S(x, ω) + Ssc(x, ω). (3)

The total sound field has to fulfill the Dirichlet boundary
condition on ∂V

Pt(x, ω)
∣∣
x=x0

= 0. (4)

The driving function for the ESA is given as the direc-
tional gradient of the total sound field [4, eq.(17)]

D(x0, ω) = −∂Pt(x, ω)

∂n(x0)
, (5)

where

∂P (x, ω)

∂n(x0)
= 〈∇xP (x, ω)

∣∣
x=x0

,n(x0)〉 (6)

with 〈·, ·〉 denoting the scalar product and n(x0) the in-
ward pointing normal vector on ∂V at position x0.

Scattering of a Line Source at an Edge

In order to apply the ESA, we need to consider the scat-
tering of a line source at an edge with a Dirichlet bound-
ary condition imposed. Solutions for this scattering prob-
lem under Neumann (sound-hard) or Dirichlet boundary
conditions are presented in [5, 6, 7].
It is convenient to elaborate this scattering problem with
the polar coordinate system. The geometry illustrated
in Figure 1a is underlying the following considerations.
The edge is located at the origin of the coordinate sys-
tem. The outer angle of the edge is denoted by α. The
position x of a field point is given in polar coordinates
by its angle ϕ and distance r from the origin. The same
holds for the position of the source xs /∈ V with ϕs and
rs. Note that these angles have to be in the range 0 . . . 2π.
As outlined in [6], the solution [7, eq.(5.89) and (5.99)]
for scattering at a sound-hard edge can be reformulated
for sound-soft scattering. This results in the following
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(a) Geometry (b) Total sound field for f = 500 Hz, rs = 2.83 m,
ϕs = 135o, N = 400

Figure 1: Sound-soft scattering of a line source at a two-dimensional edge for α = 3
2
π.

modal expansion of the total sound field

Pt(ϕ, r, ω) = − jπ

α

∞∑
n=0

1

εn
sin(νϕ) sin(νϕs)

×

{
Jν(ωc r)H

(2)
ν (ωc rs) for r ≤ rs

Jν(ωc rs)H
(2)
ν (ωc r) for r > rs

, (7)

where ν = nπ
α and εn = 1 + δ[n]. Above series has to be

truncated for a practical implementation. In [7] a trun-
cation to N ≈ d2ωc r

α
π e elements is suggested. Figure 1b

exemplarily shows the total sound field for the scatter-
ing of an incident line source at an edge with sound-soft
boundaries.

Driving Function for a Virtual Line Source

As outlined above, the derivation of the driving function
using the ESA requires to calculate the directional deriva-
tive of the total sound field. The geometry depicted in
Figure 2 is underlying the following considerations. The
position x0 on the secondary source distribution ∂V is
denoted by ϕ0 and r0. Evaluating the gradient of the to-
tal sound field in polar coordinates and considering that

ϕ0 = 0

ϕ0 = α

α

(ϕ0, r0)

−~eϕ

~eϕ
V

Figure 2: Geometry used for derivation of the driving func-
tion.

the normal vector onto the secondary source distribution
has no component in the radial direction yields

D(ϕ0, r0, ω) = −∂Pt(x, ω)

∂n(x0)
= ±1

r

∂P (ϕ, r, ω)

∂ϕ

∣∣∣∣∣ϕ = ϕ0

r = r0

(8)
for ϕ0 = {0, α}. The signs have to be chosen accord-
ingly to the direction of the angular unit vector ~eϕ in
conjunction with the inward pointing normal vector n
of the secondary source distribution. The positive sign
holds for ϕ0 = 0 and the negative sign for ϕ0 = α.

The driving function is derived by introducing the total
sound field (7) into (8) leading to

D(ϕ0, r0, ω) = ∓ jπ

α

∞∑
n=0

1

εn
cos(νϕ0) sin(νϕs)

ν

r0

×

{
Jν(ωc r0)H

(2)
ν (ωc rs) for r0 ≤ rs

Jν(ωc rs)H
(2)
ν (ωc r0) for r0 > rs

, (9)

for ϕ0 = {0, α}. The negative sign holds for ϕ0 = 0, the
positive sign for ϕ0 = α. Equation (9) constitutes the
driving function for two-dimensional synthesis of a line
source by a semi-infinite edge-shaped secondary source
distribution. Its derivation required no approximations.
However, the series has to be truncated for a practical
implementation.

Driving Function for a Virtual Point
Source using 2.5-Dimensional Synthesis

So far we considered the two-dimensional synthesis of a
line source using secondary line sources. From a percep-
tual point of view, a line source is not desirable as virtual
source due to its frequency response. The synthesis of
a point source would be preferable. On the other hand,
typical loudspeakers synthesize the field of a point source
reasonable well. The do not synthesize the sound field of
a line source.
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(b) Level of synthesized sound field
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(c) Level of synthesized sound field WFS

Figure 3: Two-dimensional synthesis of a monochromatic line source with a frequency of 500 Hz using the ESA. The line
source is located at rs = 1.17 m, ϕs = 135o, the secondary source distribution is sampled with ∆x = 3 mm, the total length of
the distribution is 60 m. The real value of the complex pressure field P (x, ω) is shown.

Let’s assume the synthesis of a point source by monopole
secondary sources located in a plane which is leveled with
the listeners ears. This constitutes a 2.5-dimensional
(2.5D) synthesis problem [8] due to the fact that it is es-
sentially a two-dimensional problem but using secondary
sources with the characteristics of the three-dimensional
Green’s function. In order to derive the driving function
for this situation, the large argument approximation of
the Hankel function [9]

− j

4
H

(2)
0 (

ω

c
|x−x0|) ≈

√
1

jωc
·
√

2π|x− x0| ·
1

4π

e−j
ω
c |x−x0|

|x− x0|
(10)

is used, which holds for ω
c r � 1. This approximation

states that a line source can be approximated by a point
source when applying filtering and an amplitude correc-
tion. The amplitude correction depends on the field point
x and consequently on the listener position. Hence, we
have to consider a reference position xref.

Assuming perfect synthesis of a line source, (10) can be
introduced into the left- and right-hand side of (1). Iso-
lating the point source contributions on both sides of
the resulting equation, allows to derive the following cor-
rected driving function for 2.5D synthesis

D2.5D(x0, ω) =

√
|xref − x0|
|xref − xs|

·D2D(x0, ω). (11)

Results

Both the driving function for 2D, as well as for 2.5D syn-
thesis of a line and point source are evaluated by numeri-
cal simulations. First the case of a continuous secondary
source distribution is considered by simulating discrete
secondary source distributions with a very high granular-
ity. This way the effects of spatial sampling are assumed
to be negligible.
Figure 3 illustrates the two-dimensional synthesis of a
line source by an edge-shaped secondary source distribu-
tion using the driving function (9) with secondary line

sources (2). The sound field is shown in Figure 3a indi-
cating accurate synthesis. Figure 3b shows the absolute
value (level in dB) of the synthesized sound field. The
color scale has been normalized with respect to the level
of the virtual line source at the indicated reference posi-
tion (×). The level decay of a line source is accurately
synthesized throughout the entire listening area. The re-
sult obtained for the same situation using a driving func-
tion for two-dimensional WFS is also shown for reference
in Figure 3c (refer to [2] for more results using WFS).
Figure 4 illustrates the 2.5D synthesis of a point source by
an edge-shaped secondary source distribution using the
driving function (11) with secondary point sources. The
theory of 2.5D synthesis outlined in the previous section
predicts an amplitude mismatch for listener positions off
the reference position. Figure 4a shows the level of the
synthesized sound field. The color scale has been normal-
ized with respect to the level of a virtual point source at
the indicated reference position (×). A level mismatch,
which decays with increasing distance to the secondary
sources can be observed. This is a consequence of the
secondary source type mismatch. The amplitude at the
reference position for different distances rs of the virtual
point source is shown in Figure 4b. This result shows
that the level of a point source is always reproduced cor-
rectly at the reference position.
The presented results have been derived by simulating a
quasi-continuous secondary source distribution. In prac-
tice, the distance between the secondary sources has to
be chosen larger. A detailed investigation of spatial sam-
pling is out of the scope of this paper. However, prelimi-
nary results indicate that the loudspeaker density has to
increase towards the edge.

Reproducible Research

All driving functions have been implemented in the
Sound Field Synthesis Toolbox for Python, Version
0.3.1 [10]. The toolbox also includes driving functions
for the synthesis of plane waves using the ESA. The code
to reproduce the figures in this paper has been made
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(a) Level of synthesized sound field for rs = 1.17 m.
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(b) Level at reference position for different distances rs of the
virtual point source.

Figure 4: 2.5-dimensional synthesis of a monochromatic point source with a frequency of 500 Hz using the ESA. The point
source is located at ϕs = 135o, the secondary source distribution is sampled with ∆x = 3 mm, the total length of the distribution
is 60 m. The real value of the complex pressure field P (x, ω) is shown.

available as an electronic publication accompanying this
paper [11].

Conclusions and Outlook

We have derived novel driving functions for the two-
dimensional synthesis of a line source and the 2.5-
dimensional synthesis of a point source with a semi-
infinite edge-shaped secondary source distribution. For
the former case it was shown that a perfect synthesis of
the desired sound field is possible. Consequently, the ar-
tifacts which can be observed for WFS can attributed to
the assumption of a smooth secondary source distribu-
tion ∂V in its foundations. In the 2.5-dimensional case,
unavoidable amplitude artifacts are present which can be
accounted to the secondary source type mismatch.
Following the same principles as outlined in this paper,
driving functions for the synthesis of a plane wave have
been derived. The show similar properties as the case of
virtual line/point sources. The edge-shaped secondary
source distribution serves as a prototype for the edges
present in rectangular setups. Refer to [12] for an exten-
sion of the presented principles to a rectangular setup.
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