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Abstract—Wave Field Synthesis aims at the accurate reproduc-
tion of a sound field inside an extended listening area which is
surrounded by individually driven loudspeakers. Recently a Local
Wave Field Synthesis technique has been published which utilizes
focused sources as a distribution of virtual loudspeakers in order
to increase the reproduction accuracy in a particular local region.
Similar to conventional Wave Field Synthesis, this technique relies
heavily on delaying and weighting the input signals of the virtual
sound sources. As these delays are in general not an integer
multiple of the input signals’ sample rate, delay interpolation
is necessary. This paper analyses in how far the accuracy of
the delay interpolation influences the spectral properties of the
synthesised sound field. The results show, that an upsampling of
the virtual source’s input signal is an computationally efficient
tool which leads to a significant increase of accuracy.

Index Terms—fractional delay filter, delay interpolation, sound
field synthesis, wave field synthesis, local wave field synthesis,
Lagrange interpolation

I. INTRODUCTION

Sound Field Synthesis (SFS) techniques synthesize a desired
acoustic scenario within an extended listening area. Wave Field
Synthesis (WFS) is a well established representative. In theory,
WFS creates a reproduction of a virtual wave field using a
continuous distribution of acoustic sources. A limited number
(up to hundreds) of individually driven loudspeakers placed
at discrete positions around the listening area realizes this
distribution in practical implementations. The finite spatial
resolution of this discretization may induce spatial aliasing
artefacts to the reproduced wave field and therefore limits the
synthesis accuracy. Current setups for WFS do not allow for an
accurate synthesis within the extended area for the full audible
frequency range up to 20 kHz.

For application scenarios where the listeners’ position is
restricted to a smaller region of interest, Local Sound Field
Synthesis (LSFS) techniques are useful. They aim at a more
accurate synthesis within a (local) area which is smaller than
the area surrounded by the loudspeaker array. This improve-
ment in terms of accuracy comes at the cost of stronger arte-
facts outside the local listening area. Among other approaches
[1]–[4] for LSFS, a technique [5] has been proposed which
utilizes focused sources as virtual loudspeakers surrounding
the local listening area. Analogue to conventional SFS, these
virtual loudspeakers are driven by a suitable SFS technique
in order to reproduce the desired sound field within the local
listening area. The focused sources are then synthesized by the
real loudspeaker setup. It has been shown in [5], that WFS is
a computationally efficient tool for implementing this LSFS
technique: The resulting driving signal essentially consists of

a weighted sum of delayed versions of the virtual source’s
input signal.

The required delays are generally not an integer multiple of
the sample period of the discretised source signal. It is hence
necessary to interpolate signal values between the known sam-
ples. The reproduction system has furthermore to cope with
time varying delays in dynamic scenarios, e.g. moving virtual
sources. Extensive studies w.r.t. an efficient implementation of
such interpolation techniques in the context of conventional
WFS have been conducted by [6]. Perceptual experiments for
stationary WFS scenarios were conducted by Ahrens et al.
[7]: At a sampling frequency of 44.1kHz, the test subjects
where not able to distinguish between a method rounding the
delays to nearest sample position and interpolation techniques
of higher accuracy.

This paper presents an analysis of the effects of imperfect
fractional delay (FD) interpolation on the reproduction accu-
racy of Local Wave Field Synthesis (LWFS) for stationary
scenarios. The accuracy is evaluated by the spectral properties
of the synthesized sound field. We investigate the interaction
of delay interpolation and spatial aliasing. We furthermore
compare different standard FD filters with regard to their
applicability to this synthesis technique.

This paper is organized as follows: In the next section, the
theory of Local Wave Field Synthesis is revisited. Selected
methods for delay interpolation are presented in Sec. III.
Sec. IV presents an analysis of the spectral properties of
the sound field reproduced using LWFS with various delay
interpolation techniques. A conclusion is in given Sec. V.

II. LOCAL WAVE FIELD SYNTHESIS

A. Basic Theory

LSFS aims at the synthesis of a desired sound field S(x)
within a defined listening area Ωl ⊆ Ω0 (cf. yellow area
in Fig. 1). The dependency on the angular frequency ω is
omitted for brevity’s sake. A distribution of loudspeakers is
positioned along the boundary ∂Ω0 as so-called secondary
sources. The sound field emitted by an individual secondary
source is modelled by a monopole point source. It is given
by the three-dimensional Green’s free field function [8, Eq.
(8.41)] G(x|x0) with x0 ∈ ∂Ω0. Each secondary source is
driven by its individual driving function D0(x0) such that the
superposition of all secondary sources yields the reproduced
sound field

P (x) =

∮
∂Ω0

D0(x0)G(x|x0) dA0
!
= S(x)∀x ∈ Ωl . (1)
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Thereby, dA0 = dA0(x0) is a suitably chosen differential
boundary element. Some SFS techniques, such as WFS, allow
for the reproduction of so-called focused sources Gfs(x|xfs)
which approximate the sound field of a monopole point source
G(x|xfs) located inside Ω0. A set of focused sources is utilized
as a virtual secondary source distribution, which is driven like
a real loudspeaker setup. The virtual secondary sources are
distributed along ∂Ωl (cf. Fig. 1). The loudspeakers’ driving
function is given as [9, Eq. (9)]

D0(x0) =

∮
∂Ωl

Dl(xl)Dfs(x0|xl) dAl , (2)

where Dl(xl) denotes the driving function for each virtual
secondary source to reproduce S(x) inside Ωl. The driving
function to reproduce a particular focused source located at
xl ∈ ∂Ωl is denoted by Dfs(x0|xl).

B. Driving Functions

Many practical setups restrict the reproduction to the hor-
izontal plane using circular or rectangular loudspeaker distri-
butions. For such a two-dimensional scenario, theory requires
line sources instead of point sources. This dimensionality
mismatch is usually subsumed under 2.5D synthesis and leads
to a systemic deviation of the amplitude decay between the
reproduced and the desired sound field. In WFS the stationary
phase approximation [10, Eq. (A2)] is utilized to derive the
driving functions for 2.5D synthesis. For a focused source
located at xl it is given by [11, Eq. (A.14)]

Dfs(x0|xl) =

√
−jk

2π

√
|x0 − xref |

| |x0 − xref | − |xl − x0| |

× afs(x0|xl)
(xl − x0)Tn0

|xl − x0|
3/2

e+jk|xl−x0| ,

(3)

whereas xref defines the reference position, where the am-
plitude of the reproduced sound field matches the virtual
one for high temporal frequencies. The wavenumber k is
thereby defined as the quotient of ω and the speed of sound c.
The secondary source selection criterion afs(x0|xl) ensures
that only secondary sources which contribute to the main
propagation direction nl are active. Within this treatise a
monopole point source G(x|xps) emitting a source signal
Ŝ(ω) will serve as the desired sound field S(x). The respective
2.5D driving function is given as [12, Eq. (3.10)]

Dl(xl) = Ŝ(ω)

√
jk

2π

√
|xl − xref |

|xl − xref |+ |xl − xps|

× aps(xl|xps)
(xl − xps)

Tnl

|xl − xps|
3/2

e−jk|xl−xps| ,

(4)

where aps(xl|xps) denotes the respective selection criterion for
a virtual point source. It is evident from the definitions in (3)
and (4), that Dl(xl) and Dfs(x0|xl) consist of three essential
components: The exponential terms state a delay depending on
the geometry. Furthermore, a position independent pre-filter√
±jk/2π is applied. The remaining terms can be subsumed

n0

x0

Ω0

∂Ω0

S(x)

virtual source

Ωl

∂Ωl

nl

xl

Fig. 1: The secondary sources are indicated by the loudspeaker
symbols, while the focused sources, i.e. virtual secondary sources,
are marked by black circles.

under a geometry dependent weighting. Hence, D0(x0) may
be expressed as

D0(x0) = Ŝ(ω)
k

2π︸︷︷︸
Hpre(ω)

∮
∂Ωl

w(x0,xl)︸ ︷︷ ︸
weighting

e−jωτ(x0,xl)︸ ︷︷ ︸
delaying

dAl (5)

where the dependencies on xps and xref are skipped for
brevity’s sake. The multiplication of the two pre-filters in (3)
and (4) yields Hpre(ω). Applying the inverse Fourier transform
to (5) yields

d0(x0, t) = hpre(t) ∗t
∮
∂Ωl

w(x0,xl)ŝ(t−τ(x0,xl)) dAl (6)

and discloses, that the driving function is a weighted superpo-
sition of the delayed source signal filtered by hpre(t).

C. Spatial and Temporal Discretization

A continuous secondary source distribution cannot be imple-
mented with today loudspeaker technology. Hence, a limited
number of loudspeakers has to be placed at discrete points on
the boundary ∂Ω0. It is furthermore necessary to discretise the
virtual secondary source distribution as well due to computa-
tional limitations. Hence, the integrals in (1) and (2) transform
to sums over finite sets of positions x0 ∈ X0 and xl ∈ Xl,
respectively. It is known, that this discretisation may lead to
spatial aliasing in the reproduced sound field which degrades
the reproduction accuracy most prominently at high temporal
frequencies. As a rule of thumb, spatial aliasing decreases
if the distance between adjacent (virtual) secondary sources
decrease.

The temporal sampling of the continuous signal ŝ(t) is
conveniently modelled by multiplying it with a Dirac comb.
The sampled signal ŝs(t) is given as a sequence of samples
ŝ[n] := ŝ(nTs), where Ts defines the sampling period as
the reciprocal of the sample rate fs. Thus, the spatially and
temporally discretised driving function is given as

d0[x0, n] = hpre[n] ∗n
∑
xl∈Xl

w(x0,xl) ŝ

[
n− τ(x0,xl)

Ts

]
.

(7)
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It is evident from this equation that the number of delay
operations for one virtual sound source grows linearly with
the number of secondary sources N0 := |X0| and the number
of focused sources Nl := |Xl|.

III. FRACTIONAL DELAY FILTERS

In order to determine the value of a delayed input signal
ŝs(t − τ), the continuous signal ŝ(t) has to be reconstructed
from the input sequence ŝ[n] and evaluated at t − τ . It is
known from sampling theory, that this is achieved by filtering
the sequence with an ideal reconstruction filter hideal(t).
This filter is an ideally bandlimited function with a cut-
off frequency of fs/2. The samples of its discretized im-
pulse response are therefore given by the sinus cardinalis
hideal [n, τ/Ts] = sinc (n− τ/Ts). This filter has a constant
phase and group delay of τ/Ts over the whole frequency range.
However, as this filter is noncausal and of infinite length
it is not suited for practical implementations. It has to be
reasonably approximated by

hideal

[
n,

τ

Ts

]
≈ δ[n− dint] ∗nhfrac[n, dfrac] . (8)

whereas τ = (dint + dfrac)Ts and dint ∈ Z and dfrac ∈ Q.
The FD filter is given as hfrac[n, dfrac]. The accuracy of the
delay interpolation is evaluated by the discrete time frequency-
domain error function [13, Eq. (15)]

E(ejωTs) = Hfrac(ejωTs)−Hideal(e
jωTs) . (9)

The optimal integer delay dint w.r.t. accuracy of the delay
interpolation is in general not the closest integer of τ/Ts, as a
specific FD filter might introduce additional constraints to the
fractional part dfrac.

A. Lagrange Interpolation

The optimal filter w.r.t a maximally flat E(ejωTs) at ω = 0
[13, Eq. 37] is given by the N th-order Lagrange interpolator
[13, Eq. 42]

hfrac[n, dfrac] =
N∏
m=0
m6=n

dfrac −m
n−m

, n = 0, 1, ..., N. (10)

It was shown by Välimäki [14, Sec. 3.3.6], that the accuracy
of this filter is best for (N−1)/2 ≤ dfrac ≤ (N+1)/2 and hence

dfrac =
τ

Ts
− dint =

τ

Ts
− round

(
τ

Ts
− N

2

)
. (11)

Another well-known reconstruction method from analog-to-
digital converters, named zero-order hold (ZOH), is closely
related to the Lagrange interpolator of zeroth order: Instead
of rounding τ/Ts to nearest integer delay (cf. 11 for N = 0)
ZOH always rounds up the next larger integer delay. ZOH
can therefore be regarded as a Lagrange interpolator with a
sub-optimal choice of dint w.r.t accuracy. It however does not
lead to causality issues as dint never underestimates the actual
delay.
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Fig. 2: The upper two graphs show the magnitude response and the
phase delay of Lagrange interpolation filters of different order N for a
fractional delay of dfrac = 0.5+bN/2c. The bottom depicts the phase
delay for Thiran filters for a fractional delay of dfrac = 0.5 +N .

B. Thiran’s Allpass Infinite Impulse Response (IIR) Filter
The benefit from using IIR allpass filters compared to Finite

Impulse Response (FIR) filters are a lower number of multi-
plications needed [13, p. 46] and their unit magnitude over
all frequencies. However, their drawback becomes evident, if
the filter coefficients have to be changed over time, e.g. due
to a time-varying delay: The state variables of the filter store
intermediate results of the filtering. As these might belong to
a former coefficient set, so-called transient errors are likely to
occur [14, Sec. 3.5]. Although such problems also occur for
FIR filters, their handling is more challenging for IIR filters
[14, Sec. 3.5.2].

The coefficients of an N th-order allpass filter are given by
its z-transform

Hfrac(z) =
z−NA(z−1)

A(z)
=

∑N
n=0 anz

n−N∑N
n=0 anz

−n . (12)

Thiran’s Filter [15] is the only known IIR FD Filter, whose
coefficients can be given in closed-form [13, p. 49], namely

an = (−1)n
(
N

n

) N∏
m=0

dfrac −N −m
dfrac −N +m+ n

, n = 0, 1, ..., N.

(13)
The filter is optimal w.r.t. a maximally flat group delay
E(ejωTs) at ω = 0. It was experimentally shown in [14,
Sec. 3.4.3/4] that this filter is stable for dfrac > N − 1 and
reaches close-to-optimal accuracy for N − 1/2 ≤ dfrac ≤
N + 1/2, hence

dfrac =
τ

Ts
− dint =

τ

Ts
− round

(
τ

Ts

)
+N . (14)
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Fig. 3: Reproduction setup for evaluation

C. Upsampling of the Input Signals

As the number of delay operation increases linearly with
N0 and Nl, treating each delay operation separately leads
to tremendous computational effort, especially for high filter
orders. It was mentioned by [16, Sec. 3] in the context of WFS,
that it is sensible to apply a delay independent pre-processing
to the input signals. Among other techniques, an upsampling
of the source signal was suggested, as the FD filters presented
in Sec. III-A and III-B achieve the highest accuracy for low
frequencies. The individual delay operation is then applied to
the upsampled signal using FD filters of lower order.

Increasing the sample rate about an integer ratio R is
efficiently implemented using polyphase structures. Within in
this treatise, a linear-phase FIR filter with R · 64 taps is used
to interpolate the upsampled signal. It is designed using the
algorithm of [17].

IV. EVALUATION

A. Experimental Setup

A circular secondary source distribution of R0 = 1.5 m
radius with an equi-angular spacing of ∆0 = 2π/N0 is used
(see. Fig. 3). The distribution is centred at coordinates’ origin.
The local listening area is bounded by a circle of radius Rl =
0.3 m centred at xref . The focused sources are positioned along
its boundary with an equi-angular spacing of ∆l = 2π/Nl.
The desired sound field S(x) is given as a virtual point
source located at xps = [0, 2.5, 0]T m. A reproduction setup
with N0 = 256 loudspeakers driven by LWFS incorporating
Nl = 256 focused sources is used as a reference setup.
Although such parametrisation is infeasible for many practical
applications it allows for studying the effect of fractional
delays isolated from spatial aliasing. The sample rate fs is set
to 44.1 kHz. As the reference, i.e. high accuracy, FD method
an upsampling of the input signal about R = 8 together
with a 9th-order Lagrange interpolator for the individual delay
operation is chosen.

B. Spectral Properties of Reproduced Sound Field

1) Influence of FD Filter without Spatial Aliasing: In order
to investigate the influence of the FD filters on the spectral
properties of the reproduced sound field, the sound field’s
spectrum is evaluated at xref . Fig. 4 shows it for different
FD methods and two different xref : As expected, deviations
of the magnitude from the reference method filter are generally
reduced when using a filter with higher complexity. Note,
that the response for the reference method is not flat at
low frequencies as the driving functions of LWFS are based
on high-frequency approximations. For the Lagrange filter
of third order, the lowpass characteristics of its magnitude
response shown in Fig. 2 lead to a lowpass filtering of
the reproduced sound field. As Thiran filters have a unit
magnitude, the reproduced sound field is mainly influenced
by phase distortions (cf. bottom graph in Fig. 2). Hence,
more complex interference patterns are observed in Fig. 4.
For both filter types an upsampling of the input signal about a
factor of 2 leads to significant increase of accuracy. The sub-
optimal choice of the delay’s integer part (cf. See. III-A) of
ZOH negatively effects its accuracy compared to zeroth-order
Lagrange interpolator.

2) Interaction between FD Filters and Spatial Aliasing: A
comparison of ZOH and the reference FD method for different
reproduction setups is shown in Fig. 5: As the number of
loudspeakers and/or the number of focused source decreases,
more artefacts are introduced due to spatial aliasing. These
artefacts are recognizable by strong amplitude fluctuations. For
Nl = 128, ZOH introduces stronger fluctuations compared
to the reference FD filter. For Nl = 64 however, it is hard
to determine, whether reference filter outperforms the ZOH,
as the aliasing artefacts dominate the spectra. These findings
agree with the results of the listening test for WFS [7], which
showed that the test subjects where not able to distinguish
ZOH from any higher order interpolation scheme. As sound
fields reproduced by typical WFS setups only remain aliasing-
free for frequency below 2 kHz, this indistinguishability is
most probably related to spatial aliasing.

V. CONLUSION & FUTURE WORK

This paper presents a comparison of different delay in-
terpolation techniques for LWFS. The study focuses on the
reproduction of stationary scenes. The results serve as a
prerequisite for the synthesis of dynamic scenarios where
delay interpolation is mandatory to avoid audible artefacts.
Independent of the FD filter type, an oversampling of the input
signal significantly improves the reproduction accuracy. In
terms of computational complexity this is an important finding,
as the computational effort of oversampling is independent of
the number of required delay operations. After upsampling
the signals by a factor of two, a FD filter of third order is
suitable. The artefacts of delay interpolation superimpose to
the spatial aliasing artefacts. Since both are most prominent
for high frequencies, the effects of delay interpolation seem
to be not so relevant for higher frequencies. The presented
evaluation shows that a real-time realisation of listener-tracked
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LWFS is feasible using resampling and low-order FD filters.
Further work includes the evaluation of dynamic scenarios and
listening tests.
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