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ABSTRACT

Analytic driving functions for Near-field Compensated Higher-order Ambisonics (NFC-HOA) are derived
based on the spherical harmonics expansions of the desired sound field and the Green’s function that
models the secondary sources. In the frequency domain, the radial part of the driving function is given by
spherical Hankel functions compensating the near-field effect of the secondary sources. By exploiting the
polynomial expansion of the spherical Hankel functions, the radial filters can be implemented as cascaded
biquad filters in the time domain, thereby reducing the computational complexity significantly. In this
paper, three practical issues regarding the design of the radial filters are addressed: pole-zero computation,
pole-zero mapping, and gain normalization. Improvements in terms of stability and numerical accuracy
are demonstrated by numerical simulations.

1 Introduction

Near-field compensated higher-order Ambisonics
(NFC-HOA) [1, 2] is a well established sound field
synthesis technique along with Wave Field Synthe-
sis (WFS) [3, 4]. The aim of these methods is to
recreate a desired sound field within a target re-
gion by using a loudspeaker array. The individual
loudspeakers, called secondary sources, are driven
in such a way that the superimposed sound fields
match the target sound field.

NFC-HOA is based on the spherical harmonics
expansion of the desired (either captured or mod-

elled) sound field, and the driving functions are
also represented with a spherical harmonics ex-
pansion. The corresponding expansion coefficients
include radial filters which perform the range ex-
trapolation of the sound field between the source
radius and the array radius [1]. Motivated by the
work of [5], the radial filters for NFC-HOA were
realized as biquad (second-order section structure)
filters in [6] thereby enabling an efficient implemen-
tation in the time-domain. The approach exploits
an explicit series expansion of the spherical Han-
kel functions, which is given as the reverse Bessel
polynomial. The poles and zeros of a radial filter
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are obtained by scaling the roots of the reverse
Bessel polynomial of the respective degree. After
transforming the poles and zeros from the Laplace
domain into the z-domain, digital biquad filters
are composed.

Although the theory of radial filters is well un-
derstood, some practical issues arise for radial fil-
ters of higher orders. As discussed recently in [7],
general-purpose root-finding algorithms often fail
to find the true roots of the reverse Bessel poly-
nomial, leading to inaccurate and unstable radial
filters. In this paper, this is tackled by using the
Aberth-Ehrlich method with appropriate initial val-
ues (Sec. 3.1). The effects of the choice of pole-zero
mapping are examined by comparing the bilinear
transform and the matched-z transform (Sec. 3.2).
It is also pointed out that a proper normaliza-
tion of the biquad filters is crucial to achieve the
desired magnitude response in the frequency do-
main (Sec. 3.3). The improvements accomplished
by the proposed approach are demonstrated by
numerical simulations (Sec. 4).

Nomenclature Throughout this paper, the fol-
lowing notational conventions are used. A sound
field in the time-frequency domain is denoted by
uppercase S(x, ω), where the position vector is
denoted by x. The angular frequency ω is defined
as ω = 2πf with f being the time-frequency. The
imaginary unit is denoted by i. The spherical co-
ordinate representation (r, θ, φ) is related to the
Cartesian coordinate representation by

x = r cosφ sin θ

y = r sinφ sin θ

z = r cos θ

where θ and φ denote the colatitude and azimuth
angles, respectively.

Spherical harmonics expansion A homogeneous
sound field can be expanded by spherical harmon-
ics with respect to the origin of the coordinate
system [8, Eq. (6.140)],

S(x, ω) =

∞∑
n=0

n∑
m=−n

S̆mn (ω)jn(ωc r)Y
m
n (θ, φ), (1)

where S̆mn (ω) denote the expansion coefficients and
jn(·) the spherical Bessel function of the first kind

of order n. The spherical harmonic Y mn (φ, θ) is
defined as

Y mn (θ, φ) =
√

2n+1
4π

(n−m)!
(n+m)!P

m
n (cos θ)eimφ, (2)

where Pmn (·) denotes the associated Legendre poly-
nomial. The expansion coefficient of a plane wave
is given as

S̆mn,pw(ω) = 4πi−nY m∗n (θpw, φpw), (3)

where (θpw, φpw) defines the propagation direction.
The asterisk (·)∗ denotes the complex conjugate.
The expansion coefficient of a point source reads

S̆mn,ps(ω) = −iωc h
(2)
n (ωc rps)Y

m∗
n (θps, φps), (4)

where (rps, θps, φps) defines the source position in
the spherical coordinate system. h(2)

n (·) denotes
the spherical Hankel function of the second kind
of order n.

2 NFC-HOA

The problem of sound field synthesis is formulated
by the synthesis equation,

S(x, ω) =

∫
∂Ω0

D(x0, ω)G(x− x0, ω)dA(x0) (5)

for ∀x ∈ Ω0, where the desired sound field S(x, ω)
is recreated as a superposition of the individual
sound fields emitted by the secondary sources. The
secondary sources are distributed on the boundary
of the target region x0 ∈ ∂Ω0. The surface element
is denoted by dA(x0). The integral equation has
to be solved with respect to the driving function
D(x0, ω) for all x within the target region Ω0.
The Green’s function G(x − x0, ω) describes the
spatio-temporal transfer function of each secondary
source.

Since NFC-HOA considers only spherical and cir-
cular distributions of secondary sources, (5) consti-
tutes a spatial convolution of D(x, ω) and G(x, ω)
on a sphere or a circle. The NFC-HOA driving
functions are derived in the spherical/circular har-
monics domain, where the spatial convolution is
converted to a multiplication [9]. For spherical
distributions of secondary point sources, the NFC-
HOA driving functions are derived in the spherical
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harmonics domain and referred to as 3D NFC-
HOA driving functions. For circular distributions
of secondary line sources, 2D NFC-HOA driving
functions are obtained in the circular harmonics
domain. Although not fulfilling the theoretical
requirements for sound field synthesis, circular dis-
tributions of secondary point sources are often
considered in practical systems. Such a configu-
ration is termed 2.5D due to the dimensionality
mismatch between the desired sound field (2D)
and the secondary source type (3D). Secondary
point sources can be realized reasonably well by
currently available loudspeakers at lower frequen-
cies. In thie paper, 3D and 2.5D NFC-HOA are
considered.
In the following, the 3D and 2.5D driving functions
for virtual plane waves and point sources are briefly
introduced. For detailed derivations, the readers
are referred to [10, Sec. 3.3 and 3.5].

2.1 3D Driving Functions

The 3D NFC-HOA driving function reads [10,
Sec. 3.3.1]

D3D(x0, ω) (6)

=

∞∑
n=0

n∑
m=−n

1

r2
0

√
2n+ 1

4π

S̆mn (ω)

Ğ0
n(ω)︸ ︷︷ ︸

D̆m
n (r0,ω)

Y mn (θ0, φ0)

where the properties of the spatial convolution on
a spherical surface are exploited [9, (82)]. The
secondary source position is represented in the
spherical coordinate system, x0 = (r0, θ0, φ0). The
coefficient of the Green’s function is defined for
the secondary point source at θ0 = 0 and φ0 = 0,

Ğ0
n(ω) = −iωc h

(2)
n (ωc r0)Y 0∗

n (0, 0)︸ ︷︷ ︸
=

√
2n+1

4π

. (7)

Note that only the 0-th order of Ğmn is needed.
For a virtual plane wave, the expansion coefficient
of the 3D driving function is obtained by plugging
(3) and (7) into (6),

D̆m
n,pw(r0, ω) (8)

=
1

r2
0

4πi−n

−iωc h
(2)
n (ωc r0)︸ ︷︷ ︸

Hn,pw(ω)

Y m∗n (θpw, φpw).

The 3D driving function for a virtual point source
is obtained by plugging (4) and (7) into (6),

D̆m
n,ps(ω) (9)

=
1

r2
0

h
(2)
n (ωc rps)

h
(2)
n (ωc r0)︸ ︷︷ ︸
Hn,ps(ω)

Y m∗n (θps, φps). (10)

The underbraced terms in (8) and (10), denoted
by Hn,pw(ω) and Hn,ps(ω) respectively, constitute
the radial parts of the driving functions.

2.2 2.5D Driving Functions

The 2.5D NFC-HOA driving function is repre-
sented as a circular harmonics expansion [10,
Sec. 3.5.1]

D2.5D(x0, ω) =

∞∑
m=−∞

1

2πr0

S̆m|m|(ω)

Ğm|m|(ω)︸ ︷︷ ︸
D̊m(r0,ω)

eimφ0 , (11)

where D̊m(r0, ω) denotes the expansion coefficient.
Note that only a subset of the coefficients of S̆mn (ω)
and Ğmn (ω) are used, i.e. n = |m|. Here, the
coefficients of the Green’s function are defined for
the secondary point source at θ0 = π/2, φ0 = 0,

Ğm|m|(ω) = −iωc h
(2)
|m|(

ω
c r0)Y m∗|m| (

π
2 , 0). (12)

The driving functions for virtual plane waves and
point sources can be obtained by substituting (3),
(4) and (12) into (11),

D̊m,pw(ω) =
1

2πr0

4πi−|m|

−iωc h
(2)
|m|(

ω
c r0)︸ ︷︷ ︸

Hm,pw(ω)

e−imφpw (13)

and

D̊m,ps(ω) =
1

2πr0

h
(2)
|m|(

ω
c rps)

h
(2)
|m|(

ω
c r0)︸ ︷︷ ︸

Hm,ps(ω)

e−imφps , (14)

respectively.

Note that the radial parts (underbraced) in (13)
and (14) are identical to the radial parts of the
3D NFC-HOA driving functions, (8) and (10), re-
spectively.
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Fig. 1: Magnitude responses of the radial filters for virtual point sources (left) and virtual plane waves
(right) for different orders n. The gray lines indicate the responses computed directly from
the spherical Hankel functions, (10) and (8), while the dashed lines are computed from the
polynomial expansion (20) and (21). The red cross indicates the gain at the passband of each
radial filter, r0

rps
for the point source and 4πr0 for the plane wave. The radius of the secondary

source distribution is r0 = 1.5 m, and the source radius is rps = 3 m.

3 Radial Filter Design

The radial part of the NFC-HOA driving functions
are realized by a digital filter, termed radial filter.
The corresponding frequency response depends
on the radius of the array r0 and on the source
radius rps (for virtual point sources). In Fig. 1, the
magnitude responses of radial filters are shown for
different virtual source types and different orders
n. The radial filters are low-frequency shelving
filters for virtual point sources and high-pass filters
for virtual plane waves. The cut-off frequency
increases with the filter order. For a given virtual
source, the gain at the passband (indicated by red
crosses) is constant,

|Hn,pw(ω)|ω→∞ =
r0

rps
(15)

|Hn,ps(ω)|ω→∞ = 4πr0. (16)

independent to the order n. As shown in Fig. 2,
the gain in inversely proportional to the source
distance rps (left) and proportional to the radius
of the secondary source distribution r0 (right).

Due to the spherical Hankel functions, a direct
implementation of the radial filters in the fre-
quency domain is computationally demanding. In

[5, Sec. 3.5.3], an efficient implementation was in-
troduced where the radial filters were realized as
digital biquad filters, i.e. first- and second-order
section structures [11, Sec. 6.3.2]. The filter design
process is as follows:

1. The roots of the reverse Bessel polynomial are
numerically computed and the poles and zeros
of the radial filters are obtained by scaling the
roots.

2. The poles and zeros in the Laplace domain
are transformed to the z-domain by using a
pole-zero mapping.

3. Digital biquad filters are composed by group-
ing the z-domain poles and zeros.

In the remainder of this section, each step is de-
scribed in detail. Some useful suggestions are given
for improved stability and numerical accuracy.

3.1 Pole-zero Computation

As a first step, the spherical Hankel function is
represented as a series expansion [12, Eq. (10.1.17)]

h(2)
n (s) = −ine−s

∑n
k=0 βn(k)sk

sn+1
(17)
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Fig. 2: Magnitude responses of the radial filters for virtual point sources (left) and virtual plane waves
(right). For a given filter order n, the passband gain and the stopband gain depend on the
source distance rps while the cut-off frequency is constant. The radius of the array r0 affects the
passband gain as well as the cut-off frequency (right).

where the expansion coefficient βn(k) is given as

βn(k) =
(2n− k)!

(n− k)!k!2n−k
. (18)

Equation (17) is known as the reverse Bessel poly-
nomial of degree n. By using complex conjugate
roots σl ± iωl of the polynomial, the spherical
Hankel function can be represented as a factored
polynomial,

h(2)
n (s) =− ine−s

× (s− σ0)µ
∏ν
l=1(s− σl)2 + ω2

l

sn+1
(19)

where ν = div(n, 2) and µ = mod(n, 2). For odd
n, the first root is real-valued, i.e. s0 = σ0.

By exploiting (19), the radial filters for a virtual
point source can be represented as a cascade of
first- and second-order section filters [6, Eq. (11)],

Hn,ps(s) =
r0

rps
e−

s
c (rps−r0) (20)

×

(
s− c

rps
σ0

s− c
r0
σ0

)µ ν∏
l=1

(
s− c

rps
σl
)2

+
(
c
rps
ωl
)2(

s− c
r0
σl
)2

+
(
c
r0
ωl
)2

where the poles and zeros are obtained by scaling
the roots of the reverse Bessel polynomial by c

rps

and c
r0

respectively. Similarly, the radial filter for
a virtual plane wave reads [6, (10)]

Hn,pw(s) = 4πr0(−1)ne
s
c r0 (21)

×

(
s

s− c
r0
σ0

)µ ν∏
l=1

s2(
s− c

r0
σl
)2

+
(
c
r0
ωl
)2

where the poles are obtained by scaling the roots
by c

r0
. The zeros are at s = 0.

Since the zeros and poles of the radial filters are de-
termined by the roots of the reverse Bessel polyno-
mials, it is crucial to compute the roots accurately.
However, exact algebraic roots are not known for
the polynomial. The roots can be obtained only
by numerical methods. The most commonly used
root finding algorithm is based on the companion
matrix of the polynomial [13, Sec. 7.4.6]. The roots
are obtained by computing the eigenvalues of the
companion matrix. The method is implemented in
Matlab (roots) and Python (numpy.roots).

Unfortunately, the algorithm is not suited for re-
verse Bessel polynomials, in particular for higher
degrees. It was shown in [14] that the real and
imaginary part of the roots can be approximated
by cubic and quadratic functions. However, the
roots computed by the companion matrix method
deviate from the expected locations in the com-
plex plane. This is shown in Fig. 3 for different
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Fig. 3: Roots of the reverse Bessel polynomials of different degrees n = 30, 45, 80. The roots computed
with the companion matrix method are indicated by blue circles whereas the roots computed
with the Abert-Ehrlich method are indicated by red dots . Note the different ranges of the axes.

degrees. The deviation is more severe in higher
degrees. For n = 80, some of the roots are on the
right half plane which will result in an unstable
filter. Increasing the numerical precision does not
seem to overcome the problem [7].

In this study, the Aberth-Ehrlich method is sug-
gested instead which is an iterative algorithm for
a simultaneous computation of the roots of a poly-
nomial [15, 16]. The initial values for the iteration
are chosen as the approximate roots proposed in
[14]. The resulting roots are shown in Fig. 3. Since
the algebraic roots (ground truth) are not known,
absolute errors of the roots cannot be evaluated.
Still, the improvements over the companion ma-
trix method are apparent, as the roots are placed
on a smooth curve as observed in [14]. In this
study, a Python implementation of the Aberth-
Ehrlich method (scipy.signal.besselap) is
used. This allows to compute the roots of the
reverse Bessel polynomial up to the degree of
m = 150 using double precision numbers.

The radial filters computed with (20) and (21) are
shown in Fig. 1, indicated by dashed lines. The
magnitude responses are compared with the radial
parts computed with (10) and (8) respectively.

3.2 Pole-zero Mapping

Once the zeros and poles of the radial filters are
obtained in the Laplace domain, these have to be

transformed into the z-domain in order to imple-
ment the filter in the discrete-time domain. In this
study, the bilinear transform and the matched-z
transform are used and their influences on the ra-
dial filter design are compared [17]. Only virtual
point sources (rps = 3 m) are considered.

The frequency responses using two different map-
pings are compared in Fig. 4. The magnitude and
phase errors with respect to the desired response
are shown. For both methods, the errors increases
with the filter order. In the passband, the differ-
ence between the two methods is almost negligible.
The matched-z transform exhibits a slightly better
performance in the transition band. The difference
in the phase responses are marginal except in the
transition band.

3.3 Gain Normalization

Finally, the poles and zeros in the z-domain are
used to compose first- and second-order section
filters. In this stage, the gain of each second-order
section filter has to be taken into account. Its
importance is twofold. Since the driving functions
are obtained by adding up the radial filters, the
relative gain has to be maintained. Otherwise
spectral distortions will occur. The absolute gain
is also of importance in order to obtain a correct
amplitude decay for varying source distances. As
shown in Fig. 5, the magnitude responses in the
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Fig. 4: Frequency response errors of the radial filters for different pole-zero mappings. The solid
lines indicates the bilinear transform while the dashed line indicates the matched-z
transform. The magnitude errors with respect to the desired response are shown in the left,
while the phase errors are shown in the right. The radial filters are computed for a virtual point
source (rps = 3, r0 = 1.5).

passband suffer from unwanted amplification if the
gain is not normalized.

The gain should not be normalized to an arbitrarily
chosen value, e.g. 0 dB, but to the true value. The
magnitude response at z = −1 (Nyquist frequency)
in the z-domain is matched with the magnitude
response at s = iπfs in the Laplace domain. The
gain correction term thus reads

gn =
|Hn(s)|s=iπfs
|Hn(z)|z=−1

. (22)

This improved the accuracy of the magnitude re-
sponses of the radial filters, as shown in Fig. 5.

3.4 Summary

The discrete-time radial filters read

Hn,ps(z) =
r0

rps
B(z,

rps−r0
c ) (23)

× gn
(
z − z0,0

z − z∞,0

)µ ν∏
l=0

(z − z0,l)(z − z∗0,l)
(z − z∞,l)(z − z∗∞,l)

.

for virtual point sources and

Hn,pw(z) = 4πr0(−1)nB(z,− r0c ) (24)

× gn
(

z

z − z∞,0

)µ ν∏
l=0

z2

(z − z∞,l)(z − z∗∞,l)

for virtual plane waves. The complex conjugate
pairs z0,l, z

∗
0,l and z∞,l, z

∗
∞,l denote the z-domain

zeros and poles, respectively. B(z, τ) realizes the
time shift of τ either by using integer delay lines
or fractional delay filters. The normalization gain
gn is given in (22).

Finally, the discrete-time driving functions are ob-
tained by substituting (23) and (24) into the 3D
driving functions (10) and (8) or the 2.5D driv-
ing functions (14) and (13). As shown in Table 1,
the driving functions can be decomposed into four
parts: overall delay, overall gain, order-dependent
radial part, and order-dependent angular part. For
instance, the 2.5D driving function can be realized
as illustrated in Fig. 6.

4 Evaluation

4.1 Modal Impulse Responses

The impulse responses of the radial filters are ob-
tained by filtering an unit impulse function with
the cascaded biquad filters. As shown in Fig. 7,
the 0-th modal impulse response corresponds to an
impulse. As n increases, the modal responses oscil-
lates with higher frequencies which agrees with the
high-pass characteristic of the radial filters. The
influence of the root finding methods discussed in
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Fig. 5: Magnitude responses of the radial filters with and without gain normalization. The
radial filters (n = 15, 40) are computed for a virtual point source with r0 = 1.5, rps = 3. The
gain is normalized using (22).

Sec. 3.1 is observed for higher orders. Due to the
poles in the right half plane in the Laplace domain,
or equivalently the poles outside the unit circle
in the z domain, the corresponding radial filters
suffer from instabilities (indicted by gray lines).

4.2 Synthesized Sound Fields

The driving functions were used to simulate the
synthesized sound field by using the Sound Field
Synthesis Toolbox [18]. A 2.5D configuration
was considered where 60 secondary point sources
are equiangularly placed on a circle of radius
r0 = 1.5 m. The driving functions for a virtual
point source and a virtual plane wave were com-
puted. A unit impulse signal was filtered with the
driving functions and reproduced by the individual
secondary point sources. Temporal snapshots of
the synthesized sound fields are shown in Fig. 8.
In the left column, the harmonics expansion in
(11) is truncated to the maximum order of M = 30
which avoids the overlap of the repeated circular
harmonic spectra [10, Sec. 4.4]. The sound field is
synthesized almost perfectly at the expansion cen-
ter (origin) but strong impairments are observed
elsewhere. In the right column, the harmonics
expansion is truncated to M = 120 which causes
spectral overlap of the circular harmonic spectra,
i.e. spatial aliasing. Compared to the case of
M = 30, the desired wavefronts are synthesized
more accurately throughout the target area. This

comes at the cost of the additional waves that fol-
low the main wavefront. If the maximum order
is further increased, the synthesized sound field
resembles the sound field of WFS. WFS driving
functions are computed based on the represen-
tation of the sound field with an infinite spatial
bandwidth.

5 Conclusion

In this paper, the design of radial filters for NFC-
HOA driving functions was revisited. It is shown
that the stability and numerical accuracy of the
driving functions are affected by the locations of
the poles and zeros of the radial filters. A sig-
nificant improvement can be achieved by using
an iterative root finding algorithm, the Aberth-
Ehrlich method. This allows to design radial filters
of order up to order of 150 without numerical in-
stabilities. Two pole-zero mappings, the bilinear
transform and the matched-z transform, were com-
pared but the difference was rather subtle. The
importance of normalizing the biquad filters was
also discussed.
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Weight Delay Radial part (biquad filters) Angular part

3D, ps 1
r0rps

rps−r0
c

gn

(
z−z0,0
z−z∞,0

)µ∏ν
l=0

(z−z0,l)(z−z∗0,l)
(z−z∞,l)(z−z∗∞,l)

Y m∗n (θps, φps)Y
m
n (θ0, φ0)

3D, pw 4π
r0

−ro
c gn

(
z

z−z∞,0

)µ∏ν
l=0

z2

(z−z∞,l)(z−z∗∞,l)
(−1)nY m∗n (θpw, φpw)Y mn (θ0, φ0)

2.5D, ps 1
2πrps

rps−r0
c

gm

(
z−z0,0
z−z∞,0

)µ∏ν
l=0

(z−z0,l)(z−z∗0,l)
(z−z∞,l)(z−z∗∞,l)

eim(φ0−φps)

2.5D, pw 2 −r0
c gm

(
z

z−z∞,0

)µ∏ν
l=0

z2

(z−z∞,l)(z−z∗∞,l)
(−1)meim(φ0−φpw)

Table 1: NFC-HOA driving functions. Each driving function consists of an overall weight, overall delay,
order-dependent radial filter, and an order-dependent angular term.
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Fig. 6: Block diagram illustrating the implementation of 2.5D NFC-HOA (redrawn from [6, Fig. 2]).
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