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Introduction
In sound field analysis and spatial sound reproduction,
impulse responses are measured at multiple positions in
order to capture the spatio-temporal structure of a sound
field. This constitutes a spatial sampling [1, 2]. To
achieve a high spatial resolution, a large number of mea-
surements have to be performed, which requires a lot of
time and effort.

Recently, continuous measurement techniques have
gained attention [3, 4, 5, 6, 7]. In a continuous measure-
ment, either the loudspeaker or the microphone moves on
a predefined path, while the system is excited by an ex-
citation signal. The instantaneous impulse responses are
computed from the captured signal using a time-varying
system identification method. Compared to conventional
static measurement methods, a large number of impulse
responses can be measured in a short period of time.
Continuous techniques have been used for the measure-
ment of spatial room impulse responses [3, 7, 8], head-
related impulse responses [4, 9], and binaural room im-
pulse responses [10, 6].

The discrete-time signal captured by the moving mi-
crophone constitutes a spatio-temporal sampling of the
sound field [6]. To avoid spatial aliasing, the movement
of the microphone has to be controlled carefully by con-
sidering the spatial bandwidth of the sound field [8]. In
this paper, the impact of the microphone speed on spa-
tial aliasing and the accuracy of the impulse responses is
investigated.

The scope of this paper is restricted to the measurement
of impulse responses on a circle of radius r0, as illus-
trated in Fig. 1(a). The microphone moves at a constant
angular speed Ω. It is further assumed that the sound
field consists of a plane wave propagating under free-field
conditions.

Perfect Sequence Excitation
In a continuous measurement, the acoustic system is typ-
ically excited by a periodic signal,

ψ(n) = ψ(n+N), (1)

that exhibits a self-orthogonal property,

N−1∑
m=0

ψ(m)ψ(m+ n) = σ2
sXN(n), (2)

where σ2
ψ denotes the energy of the signal within a pe-

riod and XN the impulse train with period N . Without
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Figure 1: Spatial sampling of the sound field in a continuous
measurement. (a) The impulse responses of a Dirac shaped
plane (φpw = 270 ◦) wave are measured on a circle of radius
r0. The microphone moves at a constant angular speed Ω.
(b) The excitation signal has a period N = 4 and the total
number of sampling points is L = 20. The effective number
of sampling points is L

N
= 5.

loss of generality, σ2
ψ = 1 is assumed in the remainder.

The period of the excitation signal N has to be longer
than the length of the impulse responses, so that the sys-
tem is fully excited within a period, and also that the
impulse response is not truncated or aliased in the time
domain. A discrete-time signal satisfying (2) is referred
to as a (periodic) perfect sequence [11]. Maximum length
sequences (MLSs) and perfect sweeps [12] are well-known
perfect sequences.

If the plane wave is driven by a perfect sequence, the
sound field can be represented by a finite impulse re-
sponse (FIR) model,

p(φ, n) =

N−1∑
k=0

h(φ, k)ψ(n− k), (3)

where φ denotes the polar angle of the receiver position,
and h(φ, n) the impulse response. Note that the sound
field is periodic in the time domain, p(φ, n) = p(φ, n+N).

By exploiting (2), it can be shown that the impulse re-
sponse is the circular cross-correlation of the sound field

DAGA 2017 Kiel

1142



and the excitation signal,

h(φ, n) =

N−1∑
m=0

p(φ,m)ψ(m+ n). (4)

Due to the N -periodicity of p(φ, n) and ψ(n), (4) also
holds ifm is replaced withm+µN for an arbitrary integer
µ ∈ Z.

Spatial Sampling
Although the movement of the microphone is continuous,
the sound field can be captured only at a finite number
of positions on the trajectory. The captured signal s(n)
thus constitutes a slice of the sound field in the (φ, n)-
plane [4],

s(n) = p (φmic(n), n) , n = 0, . . . , L− 1, (5)

where φmic(n) = Ω × n denotes the polar angle of the
time-varying microphone position. The total length of
the signal is denoted by L ≡ 360

Ω ×fs with fs denoting the
sampling frequency. The number of sampling positions
is thus proportional to fs, and inversely proportional to
Ω.

As illustrated in Fig. 1(b), the captured signal s(n) can
be decomposed into N sequences, where the ν-th se-
quence sν corresponds to a uniform sampling of the sound
field at time n = ν + µN ,

sν(µ) = s(ν + µN)

= p (φmic(ν + µN), ν + µN)

= p (φmic(ν + µN), ν) , (6)

for µ ∈ Z. In the third equality, the periodicity of p(φ, n)
is exploited. For each ν, the number of sampling points
is L

N , and the distribution of the sampling points is an-
gularly shifted by 2πν

L on the circle.

Spatial Interpolation
It was proposed in [6] to interpolate the time-domain
sound field from the sampled values in (6). Once the
sound field p(φ, n) is estimated, the impulse response at
the corresponding position is computed by (4). This ap-
proach is quite flexible since the interpolation method can
be chosen by considering the dynamics of the system, re-
quired technical/perceptual accuracy, and the available
computational power. Linear and cubic spline interpola-
tions were used in [6, 10] for the measurement of binaural
room impulse responses, whereas higher-order interpola-
tion was used in [8] for spatial room impulse responses.

Moreover, it was shown in [13], that currently available
methods can be regarded as implicit spatial interpola-
tions. The normalized least mean square (NLMS) algo-
rithm, for instance, is equivalent to the nearest neighbour
interpolation [14]. The method proposed in [4] corre-
sponds to a sinc interpolation, which is ideal if the anti-
aliasing condition is fulfilled.

0 90 180 270 360
φ / ◦

−4

−2

0

2

4

t 
/ 

m
s

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Impulse responses of a Dirac-shaped plane wave
(φpw = 270 ◦) on a circle of radius r0 = 0.5 m. See (13).

Anti-aliasing Condition
To determine the required number of sampling points,
the spatial bandwidth of the sound field has to be taken
into account. For a given angular frequency ω = 2πf , the
sound field on a circle can be represented by a circular
harmonics expansion [2],

P (φ, ω) =

∞∑
m=−∞

P̊m(ω)eimφ, (7)

where P̊m(ω) denotes them-th expansion coefficient, and
c the speed of sound. The expansion coefficient for a
plane wave e−i

ω
c r0 cos(φ−φpw) reads

P̊m(ω) = i−mJm(ωc r0)e−imφpw , (8)

where Jm(ωc r0) denotes the Bessel function of the first
kind of order m. Although P̊m(ω) is not band-limited
in the circular harmonics domain, its magnitude decays
exponentially for large m [15, Eq. (9.2.1)]. The spatial
bandwidth is often approximated by [2, Sec. 4.2]

M0 = d 2πf
c r0e, (9)

where d·e denotes the ceiling function. Under this ap-
proximation, the number of sampling points must satisfy

L

N
≥ 2M0 = 2dπfsc r0e, (10)

which leads to the anti-aliasing condition for the angular
speed [8, Eq. (14)],

Ω ≤ Ω0 ≡
c

r0N
. (11)

A more pessimistic condition can be derived by approxi-
mating the spatial bandwidth as

Mη = M0 + η, η ∈ Z. (12)

It is worth noting that the maximum allowable Ω can be
also derived considering the Doppler shifts of the indi-
vidual frequencies in ψ(n). The requirement for avoiding
the overlap of the Doppler shifted frequencies leads to
almost the same condition as (11) [4, Eq. (29)].
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(a) Ω = 45 ◦/s
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(b) Ω = 24 ◦/s
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Figure 3: System distances for different angular speeds Ω. Three different interpolation methods are employed (NN: nearest
neighbour, LI: linear interpolation, SI: sinc interpolation). The anti-aliasing angular speed according to (11) is Ω0 ≈ 24.57 ◦/s.
Thus, (a) constitutes an undersampling, (b) a critical sampling, and (c) an oversampling. The SNR at the microphone is 60 dB.
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(b) SNR = 60 dB
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Figure 4: System distances averaged over φ for different angular speeds. Three different methods (NN: nearest neighbour, LI:
linear interpolation, SI: sinc interpolation) are compared for different SNRs. The anti-aliasing angular speed (Ω0 ≈ 24.57 ◦/s)
is indicated by dashed vertical lines.

Evaluation
In this section, the continuous measurement of spatial
room impulse responses is simulated for the configura-
tion in Fig. 1(a). The plane wave propagates parallel to
the xy-plane with an angle of φpw = 270◦. The impulse
response at (r0, φ) thus reads

h(φ, t) = δ
(
t− r0

c cos(φ− φpw)
)
, (13)

as shown in Fig. 2. The sampling frequency is fs =
16 kHz and the speed of sound is assumed to c = 343 m/s.
The plane wave is driven by a perfect sweep with a period
of N = 1600 corresponding to 0.1 s. The microphone is
assumed to be omni-directional. Non-integer delays were
implemented with fractional delay filters [16]. According
to (11), the anti-aliasing angular speed is Ω0 ≈ 24.57 ◦/s.
The angular speed and the signal-to-noise ratio at the
microphone were varied:

Ω =
360

7
,

360

8
, . . . ,

360

28
◦/s,

SNR = 40, 60, 80 dB.

The captured signal s(n) is simulated, and the sound field
on the circle is reconstructed by using different interpo-
lation methods:

• Nearest neighbour (NN): equivalent to the NLMS
algorithm with step size 1 [17]

• Linear interpolation (LI)

• (periodic) Sinc interpolation (SI): equivalent to the
approach based on the projection-slice theorem [4]

Finally, the impulse responses are obtained by (4).

The accuracy of the measurement is evaluated in terms
of normalized system distance (SD) defined as

SD(φ) =

(∑N−1
n=0 |h(φ, n)− ĥ(φ, n)|2∑N−1

n=0 |h(φ, n)|2

)1/2

(14)

where h(φ, n) denotes the original impulse response and
ĥ(φ, n) the estimated impulse response.

In Fig. 3, the performance of the employed methods is
shown for different angular speeds (Ω = 15, 24, 45 ◦/s).
Generally, a slowly moving microphone achieves better
performance. In other words, the reconstruction error is
reduced by increasing the number of sampling points. If
the anti-aliasing condition is not fulfilled, as in Fig. 3(a),
there is no benefit of using a higher-order interpolation.
The slight improvements around φ = 90, 270◦ are at-
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tributed to the piecewise constant value of the time de-
lay r

c cos(φ−φpw) (see Fig. 4), where the system is nearly
time-invariant.

In Fig. 3(b), the angular speed of the microphone is
slightly below the anti-aliasing speed, Ω < Ω0. The
sinc interpolation clearly outperforms the other meth-
ods. However, the corresponding system distance (blue
curve) still exhibits angular dependencies, meaning that
the performance depends on the time variance of the sys-
tem. Therefore, the value of Ω0 seems to be a little op-
timistic, due to the crude approximation of the spatial
bandwidth of the sound field (9).

The angular speed is further decreased in Fig. 3(c). The
sinc interpolation is able to achieve a low system dis-
tance that does not depend on φ. The effect of the time
variability is thus perfectly compensated. The achiev-
able accuracy (minimum system distance) is limited by
the SNR.

In Fig. 4, the system distances are averaged over φ. For
Ω > Ω0, the performance is governed by the time vari-
ability of the system. While there is no significant dif-
ference among the methods, the linear interpolation is
slightly better than the others. For Ω < Ω0, the sinc
interpolation achieves apparently the best performance.
The corresponding system distance exhibits a dramatic
decrease until it reaches the noise floor. The system dis-
tances for NN and LI decrease monotonically irrespective
to the relation of Ω and Ω0.

Conclusion

The continuous measurement of impulse responses is con-
sidered as a sound field interpolation problem. The signal
captured by the microphone is interpreted in terms of a
spatio-temporal sampling of the sound field. The origi-
nal sound field is interpolated from the sampled values.
The impulse responses are then obtained by computing
the circular cross-correlation of the estimated sound field
and the excitation signal.

By numerical simulations, the influence of the micro-
phone speed on the performance of a continuous measure-
ment is investigated. The microphone speed was varied
and the performance was compared for different interpo-
lation methods. The sinc interpolation achieves the low-
est system distance, provided that the angular speed of
the microphone fulfills the anti-aliasing condition. This
validates the interpretation of the continuous measure-
ment as an interpolation problem.

It was pointed out that the anti-aliasing condition intro-
duced by earlier studies is rather optimistic. To assure a
better performance, the anti-aliasing condition has to be
derived based on a better approximation of the spatial
bandwidth. If the anti-aliasing condition cannot be met
or if the spatial bandwidth is not known, linear interpo-
lation may be preferred.
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