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In this study, wave field synthesis is used to reproduce a virtual sound field where virtual objects
interact with the sound field. These objects do not emit acoustic waves by themselves, but cause
reflections and scattering for a given incoming wave. In such a non-freefield scenario, the sound
field can be represented as a superposition of the incident field and the scattered field. As proposed
by the equivalent source method, a virtual scattering object can be added to a virtual auditory
scene by synthesizing a directional sound source and driving it with the source signal of the
incident field. The wave field synthesis driving function for the equivalent source is derived by
(i) decomposing the scattered field into spherical harmonics up to a finite order, (ii) taking the
directional gradient of the sound field at each secondary source position, (iii) and applying a
spatial window function to ensure the correct propagation direction within the listening area. The
focus of this paper is the creation of the acoustic shadow caused by the destructive interference
of the incident and scattered fields. The influence of spatial aliasing artifacts and amplitude errors
on the spatial structure of the synthesized sound field are examined by numerical simulations.
Keywords: wave field synthesis, virtual scattering object, sound obstruction, equivalent source
method

1. Introduction

Sound field synthesis is a physically-motivated approach for the reproduction of a desired sound
field within an extended listening area. Typically, a dense arrangement of loudspeakers (termed sec-
ondary sources) is used in order to achieve a high spatial accuracy. The secondary sources are driven
in such a way that the superposition of the individual sound fields is as similar as possible to the de-
sired field. Among others, wave field synthesis (WFS) [1, 2] and near-field compensated higher-order
Ambisonics (NFC-HOA) [3, 4] are the best known analytic approaches for sound field synthesis.

In order to synthesize a complex auditory scene, not only the sound waves emitted by virtual
sources but also their interaction with virtual surfaces and objects have to be taken into account.
While room reflections modify the sound field in a similar manner throughout the enclosed space,
the scattering by an object causes a disturbance within a local area. One of the perceptually relevant
phenomena in scattering is the acoustic shadow created behind the object. The higher the frequency,
the more acoustic energy is obstructed by the scatterer. This leads to a low-pass filtered spectrum in
the acoustic shadow. This spectral cue enables one to detect the existence of a silent object without
any other sensory information [5, 6, 7, 8]. This is of particular interest in understanding the ability of
visually impaired individuals to navigate relying solely on auditory cues [9]. Therefore, synthesizing
a sound field including scattering objects can be used not only in applications for entertainment [10],
but also for the design of a training system to enhance the echolocation ability [11, 12].

The aim of this paper is to synthesize a virtual sound field including a scattering object by using
WFS. In Sec. 2, the incident field and the scattered field are represented in terms of spherical harmon-
ics. The 2.5D WFS driving function is introduced in Sec. 3. The proposed driving function is used to
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synthesize the desired sound field in Sec. 4, and the spatial and spectral properties of the synthesized
sound fields are examined.

Nomenclature The following notational conventions are used throughout this paper. A sound field
in the temporal frequency domain is denoted by uppercase S(x, ω) where x denotes a position vector.
The angular frequency ω is related to the temporal frequency f by ω = 2πf . The spherical coordinate
representation (r, θ, φ) is related to the Cartesian coordinate as x = r sin θ cosφ, y = r sin θ sinφ, z =
r cos θ. The speed of sound is denoted by c, and the imaginary unit is denoted by i.

2. Scattering of a Sound Field

2.1 Spherical harmonics representation

A sound field scattered by an object is represented as a superposition of the incident field and the
scattered field, S(x, ω) = Si(x, ω) + Ss(x, ω). For a given expansion center xc, the sound field can
be expanded in terms of spherical harmonics. In a source-free region, the incident field is represented
as an interior expansion [13, Sec. 6.8]

Si(x, ω) =
∞∑
n=0

n∑
m=−n

S̆mn (ω)jn(ω
c
r)Y m

n (θ, φ), (1)

where S̆mn (ω) denotes the expansion coefficient, jn(ω
c
r) the n-th order spherical Bessel function of

the first kind, and Y m
n (θ, φ) the spherical harmonic of degree n and order m. The spherical harmonic

is defined as [13, Sec. 6.3.3]

Y m
n (θ, φ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos θ)eimφ, (2)

with Pm
n (·) denoting the associated Legendre function. The spherical coordinates are defined as

x − xc = (r, θ, φ). For a compact scattering object bounded within a volume (‖x − xc‖ ≤ R), the
scattered sound field is given as an exterior expansion [14, Sec. 2.4.3]

Ss(x, ω) =
∞∑
n=0

n∑
m=−n

Ămn (ω)h(2)
n (ω

c
r)Y m

n (θ, φ), (3)

where Ămn (ω) denotes the expansion coefficient, and h(2)
n (ω

c
r) the n-th order spherical Hankel function

of the second kind.

2.2 Boundary conditions

The expansion coefficient of the scattered field is determined by the boundary condition imposed
on the surface of the scatterer. In the following, a spherical scatterer with radius a centered at xc is
assumed, as illustrated in Fig. 1(a). The boundary condition on the spherical surface ‖x − xc‖ = a
reads [15, Eq. (4.2.2)]

∂S(x, ω)

∂r
+

i

Z
S(x, ω) = 0, (4)

where Z denotes the acoustic impedance at the surface. The expansion coefficient of the scattered
field thus reads [15, Eq. (4.2.9)]

Ămn (ω) = −
ω
c
j′n(ω

c
a) + 1

Z jn(ω
c
a)

ω
c
h

(2)
n

′
(ω
c
a) + 1

Zh
(2)
n (ω

c
a)
S̆mn (ω). (5)
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Figure 1: Sound field of a plane wave (φpw = −π
2
) scattered by a sphere of radius a centered at

(xs, ys, 0). Monochromatic (f = 1 kHz) examples are shown for (b) sound-hard and (c) sound-soft
scatterers where xs = 0, ys = 2, and a = 0.4 m

For a sound-hard (rigid) scatterer, Z tends to infinity and (4) constitutes a Neumann boundary condi-
tion which specifies the derivative of the sound pressure field. The radial component of the particle
velocity thus vanishes at the surface of the sphere, and the expansion coefficient of the scattered field
reads

Ămn (ω) = −
j′n(ω

c
a)

h
(2)
n

′
(ω
c
a)
S̆mn (ω). (6)

For a sound-soft (pressure release) scatterer, where Z=0, (4) constitutes a Dirichlet boundary condi-
tion which specifies the sound pressure along the surface. The coefficient of the scattered field reads

Ămn (ω) = −
jn(ω

c
a)

h
(2)
n (ω

c
a)
S̆mn (ω). (7)

The superposition of Si(x, ω) and Ss(x, ω) is represented as a combination of an interior expansion
and an exterior expansion [13, Sec. 6.10],

S(x, ω) =
∞∑

n=−∞

n∑
m=−n

(
S̆mn (ω)jn(ω

c
r) + Ămn (ω)h(2)

n (ω
c
r)
)
Y m
n (θ, φ), (8)

where either (6) or (7) is plugged into (3) and added to (1).
In practice, the spherical harmonic expansion (8) can be only approximated by a finite number of

terms. The maximum harmonic order N is termed as the modal bandwidth of a truncated expansion.
The modal truncation error for interior and exterior expansions is investigated in [16] and [15, Ch. 9],
respectively. Although Ămn (ω) is computed from S̆mn (ω), this does not mean that the total sound
field S(x, ω) has to be represented with the same coefficients. For instance, the modal bandwidth
of Si(x, ω) can be different from the modal bandwidth of Ss(x, ω). Furthermore, Si(x, ω) can be
expanded with respect to a new expansion center xt,

S(x, ω) =

Ni∑
n=ν

ν∑
µ=−ν

S̆µν (ω)jν(
ω
c
r′)Y µ

ν (θ′, φ′)︸ ︷︷ ︸
Si(x,ω)

+
Ns∑
n=0

n∑
m=−n

Ămn (ω)h(2)
n (ω

c
r)Y m

n (θ, φ),︸ ︷︷ ︸
Ss(x,ω)

(9)

where S̆µν (ω) denotes the coefficient of the translated spherical harmonics expansion. The primed
variables are defined as ‖x − xt‖ = (r′, θ′, φ′). Ni and Ns denote the modal bandwidths of Si(x, ω)
and Ss(x, ω), respectively.
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Figure 2: Frequency responses of scattered sound fields. An incident plane wave (φpw = −π
2
) is

scattered by a sphere of radius 0.4 m at (0, 2, 0). The evaluation point is varied on the x-axis between
−1.5 and 1.5 m. A modal band-limitation is applied only to Ss(x, ω). The truncation errors occur
above the frequency fN = cN

2πa
indicated by dashed lines in (c) and (d) (f25 ≈ 3.4 kHz). The colormaps

are clipped to ±4 dB.

2.3 Spatial and Spectral Properties

In this section, an incident plane wave is considered which propagates parallel to the xy-plane
(θpw = π

2
) with polar angle φpw

Si(x, ω) = e−i
ω
c
r cos(φ−φpw), (10)

as illustrated in Fig. 1(a). The expansion coefficient for the plane wave reads [13, Eq. (6.175)]

Si(x, ω) = 4πi−njn(ω
c
r)Y m

n (π
2
, φpw)∗, (11)

where (·)∗ denotes the complex conjugate. The resulting sound fields for sound-hard and sound-
soft scatterers are shown in Fig. 1(b) and 1(c), respectively. The frequency responses are shown
in Fig. 2 for different receiver positions. As can be seen in Fig. 1(b) and 1(c), the most apparent
difference between the two boundary conditions is the shape and size of the acoustic shadow behind
the sphere. For the sound-hard scatterer, a high amplitude is observed right in the middle of the
acoustic shadow, which is due to the constructive interferences of the diffracted waves. For lower
frequencies (< 200 Hz), a slight boost is observed for the sound-hard scatterer (Fig. 2(a)) whereas
a slight attenuation can be seen for the sound-soft scatterer (Fig. 2(c)). The acoustic shadow of the
sound-soft scatterer is wider and its width is more uniform. Fig. 2(b) and 2(d) show that a modal
truncation causes deviations at higher frequencies, the lower bound of which can be approximated as
fN = cN

2πa
. Interestingly, the erroneous magnitude responses above fN seem similar for sound-hard

and sound-soft cases.
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3. Wave Field Synthesis

Assuming the secondary source distribution to be continuous, the sound field synthesis problem
can be formulated as an integral equation

S(x, ω) =

∫
∂Ω0

D(x0, ω)G(x− x0, ω)dA0, (12)

where G(x− x0, ω) denotes the Green’s function of the secondary source at x0 = (r0, θ0, φ0) ∈ ∂Ω0,
D(x0, ω) the corresponding driving function, and dA0 the surface element.

Instead of solving (12) directly, the WFS driving function is derived by introducing a high-
frequency/far-field approximation to the Kirchhoff-Helmholtz integral equation and assuming a Neu-
mann boundary condition [17, Ch. 2]. This eliminates the dipole term of the Kirchhoff-Helmholtz
integral which is simplified to a form as (12). The spectral weight of the remaining monopole term
is interpreted as the WFS driving function, which is given as the directional gradient of S(x, ω) with
respect to the normal vector n(x0) [2, Sec. 2],

D(x0, ω) = −2a(x0)〈∇S(x, ω)|x=x0 ,n(x0)〉, (13)

where ∇S(x, ω)|x=x0 denotes the gradient of the sound field evaluated at the respective secondary
source position, and 〈·, ·〉 the inner product of two vectors. The secondary source selection window
a(x0) ensures that the propagation direction of the synthesized sound field is correct [18]. For a
comprehensive overview of WFS, the reader is refer to [2, 17].

In this paper, a 2.5D configuration is considered where a two-dimensional sound field is synthe-
sized only in the xy-plane by using a secondary point sources distributed on the same plane. Due to
the dimensionality mismatch between the desired sound field (2D) and the acoustic properties of the
secondary sources (3D), amplitude deviations occur in the synthesized sound field [19, 20]. In prac-
tice, the continuous distribution of the secondary sources is discretized and only a finite number of
secondary sources are used. This constitutes a spatial sampling of the driving function which results
in spatial aliasing artifacts [21].

Since the desired sound field is represented with spherical harmonics, the directional gradient has
to be evaluated in the spherical coordinate system and the driving function is given as a series expan-
sion. The WFS driving function based on circular/spherical harmonics representations are introduced
in [22, 23, 24, 25]. According to [25, Eq. (27)], the 2.5D WFS driving function for the scattered field
reads

Ds(x, ω) =− 2a(x0)

√
2π‖xref−x0‖

i
ω
c

Ns∑
m=−Ns

Ăm|m|

4πim−|m|Y
−|m|
m (π

2
, 0)

(14)

×
[
〈êr,n(x0)〉 ω

2c

(
H (2)
m−1(ω

c
r0)−H (2)

m+1(ω
c
r0)
)

+ 〈êφ,n(x0)〉(im)H (2)
m(ω

c
r0)
]
eimφ0 ,

where H (2)
m(·) denotes the m-th order Hankel function of the second kind, and êr and êφ the respective

unit vectors. Note that, due to the 2.5D configuration, only a subset of the expansion coefficients
Ămn (ω) are required (n = |m|). The term

√
‖xref − x0‖ corrects the amplitude for the reference point

xref. The driving function for the incident field can be computed similarly [25, Eq. (27)]

Di(x, ω) =− 2a(x0)

√
2π‖xref−x0‖

i
ω
c

Ni∑
m=−Ni

S̆m|m|

4πim−|m|Y
−|m|
m (π

2
, 0)

(15)

×
[
〈êr,n(x0)〉 ω

2c

(
Jm−1(ω

c
r0)− Jm+1(ω

c
r0)
)

+ 〈êφ,n(x0)〉(im)Jm(ω
c
r0)
]
eimφ0 ,

where Jm(·) denotes the m-th order Bessel function of the first kind. The expansion center of (15)
has to be chosen carefully. A modally band-limited interior expansion exhibits a high accuracy only
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(c) f = 2.5 kHz, Ni = 15

Figure 3: Monochromatic sound fields synthesized using 60 loudspeakers uniformly distributed on
the line y = 1.5 m with spacing of ∆x = 0.15 m. An incident plane wave (φpw = −π

2
) is scattered

by a rigid (Z = ∞) sphere with radius of a = 0.4 m placed at (0, 2, 0). In (a) and (b), a modal
truncation (Ns = 15) is applied only on Ss(x, ω), while in (c), the same modal truncation is applied
on both Si(x, ω) and Ss(x, ω).

within a circular/spherical region in the vicinity of the expansion center [16]. It is thus beneficial to
expand the incident field with respect to a point in the middle of the listening area. If the incident
field is a plane wave or a spherical wave, the analytic driving functions introduced in [2, Eq. (27) and
(29)] can be used, which exhibit infinite modal bandwidths.

4. Evaluation

In this section, the proposed driving function is used for the synthesis of a sound field including
a scattering sphere. Again, the configuration in Fig. 1(a) is considered. The sound field is synthe-
sized by using 60 secondary monopole sources distributed on the line y = 2 m with spacing of
∆x = 0.15 m. Figure 3 shows the synthesized sound field for a sound-hard sphere. In Fig. 3(a) and
3(b), a modal band-limitation was applied only to the driving function of the scattered fieldDs(x0, ω).
The incident plane wave was synthesized by using the driving function in [2, Eq. (27)] which exhibits
an infinite modal bandwidth. In Fig. 3(a), the interference of the incident and scattered field is ap-
propriately synthesized, apart from amplitude deviations. For higher frequencies, shown in Fig. 3(b),
the sound field is impaired due to spatial aliasing artifacts. The artifacts are mostly distributed in
the upper part of the listening area. The higher the frequency, the more spatial aliasing occurs and
the smaller gets the acoustic shadow. The influence of spatial aliasing for different frequencies is
shown in Fig. 4. As can be seen in Fig. 4(a), the synthesized sound field suffers from spatial alias-
ing above the spatial aliasing frequency (≈ 2.3 kHz) irrespective of the listening position along the
x-axis. Similar spectral responses are observed in Fig. 4(b) where the listener is fixed at (0, 0, 0) and
the position of the scattering sphere was varied. The deviations in the lower frequencies are attributed
to the high-frequency approximation of the Kirchhoff-Helmholtz integral equation.

The spatial distribution of these artifacts can be controlled to some extent by applying a modal
band-limitation to the incident field. In Fig. 3(c), the incident field is expanded at (0, 0, 0) with a
finite modal bandwidth (Ni = 15). The desired sound field is synthesized more accurately within a
circular area, but more deviations are observed outside. The local improvements in terms of spectral
responses are demonstrated in Fig. 4(c) and Fig. 4(d). This approach is referred to as local WFS,
where the position of the listener is assumed to be known and the synthesized sound field is optimized
to the respective area [25].
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Figure 4: Frequency responses of the synthesized sound fields. An incident plane wave (φpw = −π
2
)

is scattered by a sound-soft (Z = 0) sphere or radius a = 0.4 m. The modal bandwidth of the driving
function for Ss(x, ω) is truncated to N = 15. The driving function for Si(x, ω) exhibits an infinite
modal bandwidth in (a) and (b), and a finite modal bandwidth (N = 15) in (c) and (d). In (a) and (c),
the listener position is varied on the line y = 0. In (b) and (d), the position of the scattering sphere is
varied on y = 2. The colormaps are clipped to ±4 dB.

5. Conclusion

In this paper, a virtual sound field was synthesized by WFS, where a virtual object scatters the
incoming sound field. The scattered field is added to the incident field by synthesizing an equivalent
source. The directivity of the source is determined by the boundary condition on the surface of the
scatterer and represented by a spherical harmonics expansion. As a proof of concept, the sound field of
a plane wave was synthesized which is scattered by a sphere. While the proposed approach performs
properly at lower frequencies, spatial aliasing artifacts limit the performance at higher frequencies.
In particular, the size of the acoustic shadow decreases above the spatial aliasing frequency. To
overcome this problem, a modal band-limitation is applied to the incident field, which enables to
control the position and size of the error-free region. The proposed method can be extended for more
complex auditory scenes, e.g. multiple scatterers.
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