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Abstract—Wave Field Synthesis aims at a physically accurate
synthesis of a desired sound field inside an extended listening
area. This area is surrounded by loudspeakers individually driven
by their respective driving signals. Recently, the authors have
published an approach for so-called Local Wave Field Synthesis
which enhances the reproduction accuracy in a limited region by
applying a spatial bandwidth limitation in the circular/spherical
harmonics domain to the desired sound field. This paper presents
an efficient time-domain realisation of the mentioned approach
for 2.5-dimensional synthesis scenarios. It focuses on the model-
based rendering of virtual plane waves and point sources. As
an outcome, the parametric representation of the driving signals
for both source types allows for the reproduction of time-varying
acoustic scenarios. This also includes an adaptation to the tracked
position of a moving listener. The realisation is compared with
conventional Wave Field Synthesis regarding the spatial structure
and spectral properties of the reproduced sound field. The
results confirm the findings of the prior publication, that the
reproduction accuracy can be locally improved with Local Wave
Field Synthesis.

Index Terms—Circular Harmonics, Sound Field Synthesis,
Wave Field Synthesis, Local Wave Field Synthesis

I. INTRODUCTION

Sound Field Synthesis (SFS) techniques aim to synthesize
a desired sound field in a physically accurate manner within
an extended listening area. Wave Field Synthesis (WFS) [1]
and Near-Field-Compensated Higher Order Ambisonics (NFC-
HOA) [2] are well established representatives of this methods.
In SFS, the rendering of acoustic scenarios can be classified
in two fundamental principles: (i) data-based rendering repro-
duces a scene acquired via Sound Field Analysis (SFA) tech-
niques. (ii) model-based rendering uses mathematical models
for virtual sources which are fed by (dry) source signals.
An acoustic scene is typically composed of multiple virtual
sources. Frequently used models are point sources and plane
waves.

The theory of SFS assumes a continuous distribution of
acoustic sources placed around the listening area to reproduce
the desired sound field. In practice, a limited number (up
to hundreds) of individually driven loudspeakers placed at
discrete positions approximates this distribution. The synthesis
accuracy is mainly limited by spatial aliasing artefacts which
are introduced to the reproduced sound field due to the finite
resolution of this discretisation. For some applications, an
accurate reproduction is not necessary in the whole extended
area. For instance, the listener’s position is restricted to a
smaller region of interest. Here, techniques for Local Sound

Field Synthesis (LSFS) are useful as they aim at a more
accurate synthesis within a prioritised area which is smaller
than the area surrounded by the loudspeaker array. Several
approaches [3]–[7] for LSFS have been proposed within the
past decade. Recently, the authors have published a method for
Local Wave Field Synthesis (LWFS) [8] which expands the
desired sound field into circular/spherical harmonics around
a chosen expansion centre. Spatial aliasing is reduced by
truncating the expansion and reproducing the resulting sound
field with conventional WFS.

This paper presents a parametric time-domain realisation
of the mentioned approach focusing on the model-based
rendering of plane waves and point sources. The paramet-
ric implementation allows for time-varying aspects, such as
moving sources or a moving expansion centre. Latter enables
the adaptation to a changing listening position. The realisation
is compared with conventional WFS regarding the spatial
structure and spectral properties of the reproduced sound field.

II. NOMENCLATURE

A position vector x in the three-dimensional, right-hand
coordinate system is defined by its cartesian [x, y, z]T or
its cylindrical representation [ρ cosφ, ρ sinφ, z]T. Within this
treatise components denoted with a subscript ∗, e.g. x∗, belong
to the respective vector x∗. The scalar product of two vectors
is written as 〈·|·〉. The radial frequency ω = 2πf is defined
by the temporal frequency f . The imaginary unit is denoted
by j.

III. 2.5D LOCAL WAVE FIELD SYNTHESIS

A. Problem Statement

The fundamental task in LSFS is to reproduce a desired
(aka. virtual) sound field P (x, ω) within a defined listening
region Ωl ⊆ Ω (cf. Fig. 1). In 21/2-dimensional (2.5D)
scenarios [9, Sec. 2.3], reproduction is restricted to the hor-
izontal plane, i.e. z = 0, and Ωl and Ω are hence two-
dimensional areas. For the special case where Ωl = Ω,
approaches are usually referred to as conventional SFS. A
distribution of loudspeakers is positioned along the boundary
∂Ω as so-called secondary sources (loudspeaker symbols).
Each secondary source is oriented along the inward pointing
boundary normal n0(x0) = [cosφn0

, sinφn0
, 0]T. The sound

field emitted by an individual secondary source is commonly
modelled by a monopole point source. It is given by the
three-dimensional free-field Green’s function [10, Eq.(8.41)]
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G(x|x0, ω) with x0 ∈ ∂Ω. Each individual secondary source
is driven by its respective driving signal D(x0, ω) and the
resulting superposition of all secondary sources constitutes the
reproduced sound field. The driving signals have to be chosen
such that the reproduced and the desired sound field coincide
within. Mathematically, this is subsumed by

P (x, ω)
!
=

∮
∂Ω

D(x0, ω)G(x|x0, ω) dl(x0) ∀x ∈ Ωl . (1)

A suitably chosen differential line segment for the integration
along the boundary ∂Ω is denoted by dl(x0).

B. Wave Field Synthesis

WFS is based on a high-frequency approximation of the
Helmholtz Integral Equation (HIE). For 3D scenarios, the
driving function is generally described by [11, Eq. (10)]

DWFS(x0, ω) = −2 aP (x0)
〈
∇x0

P (x0, ω)
∣∣n0(x0)

〉
(2)

where ∇x0
denotes the gradient w.r.t. x0. The selection

criterion aP (x0) activates only the secondary sources, whose
normal points in the direction of propagation of the virtual
sound field at x0. For a virtual plane wave with the propagation
direction npw(φpw) = [cosφpw, sinφpw, 0]T, this criterion is
given as

apw(x0,npw) =

{
1 , if 〈n0|npw〉 ≥ 0 and
0 , otherwise.

(3)

The 2.5D WFS driving function for a plane wave reads [12,
Eq. (2.177)]

DWFS
pw (x0, φpw, ω) =

√
jωc e−j

ω
c 〈x0|npw〉 (4)

×
√

8π|x0 − xref | apw(x0,npw)〈n0|npw〉︸ ︷︷ ︸
w(x0,φpw,xref )

,

where xref denotes the reference point at which the amplitude
of the reproduced and the desired plane wave coincide. The
geometry-dependent weighting factor and delay are subsumed
under w(x0, φpw,xref) and τ(x0, φpw) = 〈x0|npw〉/c, respec-
tively.

C. Continuous Driving Function

Under free-field conditions, any two-dimensional (z-
independent) sound pressure field P (x, ω) that is source-free
in the domain of interest may be expanded about the expansion
centre xc into [10, Eq. (4.49)]

P (x, ω) =
∞∑

µ=−∞
P̌µ(xc, ω)Jµ(ωc ρ

′)e+jµφ
′

(5)

with the regular circular expansion coefficients P̌µ and the µ-th
order cylindrical Bessel function Jµ. The vector x′ = x− xc
describes a position in a shifted frame with the expansion
centre xc as its origin. In order to limit the spatial bandwidth of
P (x, ω) the summation in (5) is bound to a finite order of ±M .
While in [8] the driving function is directly computed from the
truncated circular expansion, an intermediate representation is

∂Ω

Ωn0(x0)

x0

Ωl

Fig. 1: Geometry for Local Sound Field Synthesis

chosen here: The bandwidth-limited sound field is converted
to a plane wave expansion [13, Eq. (2.246)]

P (x, ω) ≈ 1

2π

∫ π

−π
P̄ (φpw,xc, ω) e−j

ω
c 〈x

′|npw〉︸ ︷︷ ︸
plane wave

dφpw (6)

with the plane wave expansion coefficients [13, Eq. (4.91)]

P̄ (φpw,xc, ω) ≈
M∑

µ=−M
jµP̌µ(xc, ω)e+jµφpw (7)

computed from the circular expansion coefficients. Since the
integration in (1) is a linear operation, the driving function
D(x0, ω) to reproduce P (x, ω) can be computed by super-
posing the driving functions necessary to reproduce each indi-
vidual plane wave. Hence, the plane wave in (6) is substituted
with the right-hand side of (4) in order to get

DLWFS(x0, ω) =
√

jωc
1

2π

∫ π

−π
w(x0, φpw,xc) (8)

× P̄ (φpw,xc, ω)e−j
ω
c 〈x

′
0|npw〉 dφpw

as the LWFS driving function. Here, xref = xc has been cho-
sen. The inverse Fourier transform of (8) yields the continuous
time-domain driving signal

dLWFS(x0, t) = hpre(t) ∗t
1

2π

∫ π

−π
w(x0, φpw,xc) (9)

× p̄(φpw,xc, t) ∗t δ
(
t− τ(x′0, φpw)

)
dφpw .

with δ denoting the Dirac delta distribution. The convolution
operator w.r.t to time is denoted by ∗t [14, p. 169]. The well-
known geometry independent WFS pre-filter hpre(t) is the
inverse Fourier transform of

√
jωc .

D. Temporal and Spatial Discretisation
The temporal sampling with a sample period Ts is incorpo-

rated by the substitution (t) → (nTs) → [n] with n ∈ Z.
Further, the plane wave expansion in (9) is approximated
by a sum over Npw equidistant samples on the unit circle,
i.e. φpw → 2πm/Npw with m ∈ Z ∧ 0 ≤ m < Npw. For
brevity, the notation (·)m = (·)[2πm/Npw] is introduced. The
discretised time-domain plane wave expansion coefficients of
the bandlimited sound field

p̄m[xc, n] =
M∑

µ=−M
jµp̌µ[xc, n] e

+j 2π
Npw

µm
(10)
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result from the inverse Fourier transform of (7) and subsequent
discretisation. In order to avoid additional spatial aliasing due
to discretisation of the plane wave expansion, Npw has to
to be significantly greater than 2M + 1. Hence, the equation
states a truncated Inverse Discrete Fourier Transform (IDFT)
w.r.t. to the variable pair (µ,m) weighted by Npw. As the
resulting time-domain plane wave coefficients are expected to
be real-valued, the equation can be efficiently implemented
by an Inverse Fast Fourier Transform (IFFT) for a conjugate-
symmetric input using only the circular coefficients for non-
negative µ together with a suitable zero-padding. The discrete
driving signal reads

dLWFS[x0, n] =hpre[n] ∗n
1

Npw

Npw−1∑
m=0

wm(x0,xc)

× p̄m[xc, n] ∗n δ
[
n− τm(x′0)

Ts

] (11)

with ∗n as the discrete convolution operator w.r.t n. As the
delay τm(x′0) is generally not an integer multiple of the sample
period Ts, fractional delay (FD) filters [15] have to be applied
for interpolation. For more information on FD filters in the
context of a similar approach for LWFS the reader is referred
to [16]. Within this publication, it is assumed that the FD filter
is designed such that its introduced distortions are negligible
within the observed frequency range.

The realisation of (10) and (11) is summarised in Fig. 2:
The WFS pre-filter hpre[n] can be directly applied to the dry
source signal s[n]. The result is then filtered by the circular
expansion coefficients, followed by the mentioned IFFT. The
individual plane wave signals p̄m are buffered in delaylines
allowing to request differently delayed and weighted versions
for each secondary source. As the remaining task, parametric
expressions of the circular expansion coefficients p̌µ[xc, n]
have to be provided for the plane wave and the point source.

IV. MODEL-BASED RENDERING

A. Plane Wave

The circular expansion coefficients of a plane wave are
given in the time-frequency domain as [17, Eq. (2.41)]

P̌m(xc, ω) = e−j
ω
c 〈xc|ns〉 j−µ e−jµφs , (12)

with ns = [cosφs, sinφs, 0]T defining the propagation di-
rection. The coefficients are transferred to the discrete time
domain using the inverse Fourier transform and subsequent
discretisation. Similar to (11), a FD interpolation is necessary,
which can be directly applied to the source signal s[n].

B. Point Source

A point source is a three-dimensional sound field and
cannot be fully described by a circular expansion. However,
an approximative conversion formula [8, Eq. (32)] can be
applied to its spherical expansion coefficients [18, Eq. (4.2.5)]
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Fig. 2: The block-diagram shows the signal flow for the time-domain
realisation of model-based rendering in LWFS. The vectors wm and
τm subsume all wm(x0,xc) and τm(x

′
0), respectively.

to express the point source in terms of circular expansion
coefficients

P̌µ(xc, ω) =
j|µ|−µ

4π
(−jωc )h

(2)
|µ|(

ω
c ρ
′
s) e−jµφ

′
s . (13)

The sound source position x′s is hereby restricted to the
horizontal plane. The |µ|-th order spherical Hankel function
[18, Eq. (2.1.76)] of second kind is denoted by h(2)

|µ| . The time-
frequency dependent part of the coefficients can be expressed
in the Laplace-domain (jω → s) as [19, Eq. (3.20)]

−jωc h
(2)
|µ|(

ω
c ρ
′
s) = jν

e−s
ρ
′
s
c

ρ′s

∏|µ|
l=1(s− c

ρ
′
s

σ
(|µ|)
l )

s|µ|

∣∣∣∣∣∣
s=jω

, (14)

with σ
(|µ|)
l being the l-th zero of a |µ|-th order polynomial

[19, Eq. (3.21)]. A direct implementation of (13) as a Infinite
Impulse Response (IIR) filter, e.g. via the bilinear transform,
is not possible due to stability problems caused by the pole
of order |µ| at s = 0. Also an Finite Impulse Response (FIR)
implementation, e.g. via the frequency-sampling method, is
challenging as the pole induces very high amplitudes for low
frequencies.

In the context of SFA using spherical microphone arrays
[20], Linkwitz-Riley (LR) [21] highpass filters were used to
stabilise the spherical Hankel functions. For each mode µ,
a filter of order 2η ≥ |µ| was used to compensate the pole
at s = 0. As filters of different orders and with different
cut-off frequencies where applied to individual modes, phase
match between the modes had to be preserved by a cascade of
(M − 1) LR allpass filters which mimic the phase distortions
introduced to the other modes. While this was feasible for
a low M (≈ 4) which is common for spherical microphone
arrays, model-based SFS may require much higher M . Hence,
computational complexity is reduced by applying the same
highpass filter to all modes, whereas 2η ≥ M . As a draw-
back, this results in a strong highpass-characteristic of the
reproduced sound field. As conventional WFS is aliasing-free
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Fig. 3: The plots qualitatively show time-snapshots of the reproduced sound fields using different SFS approaches (columns, reference shown
in brackets). The colour encodes the logarithmically scaled magnitude ranging from -60 (white) to 0 dB (dark blue). The desired sound
field is a plane wave (PW) and a point source (PS). The expansion centre xc for the LWFS approaches is set to [0, 0, 0]

T
m (top) and

[−0.75, 0.75, 0]
T
m (bottom). It is indicated by the red cross and is added to the WFS plots for comparison. The time in each snapshot is

set to t = |xs−xc|/c. The green line indicates of the wave front of the desired sound field as the ground truth.

at low frequencies, a frequency crossover is used to combine
the WFS and LWFS driving functions to

D(x0, ω) = DWFS(x0, ω)LP 2η
fc

(ω)+DLWFS(x0, ω)HP 2η
fc

(ω)
(15)

with LP 2η
fc

(ω) and HP 2η
fc

(ω) denoting a 2η-th order transient-
imperfect LR crossover pair with the joined allpass character-
istic

AP 2η
fc

(ω) = LP 2η
fc

(ω) +HP 2η
fc

(ω) . (16)

The highpass HP 2η
fc

(ω) is combined with the spherical Hankel
function for each mode µ in order to explicitly remove its poles
and establish stability. The cut-off (or crossover) frequency fc
may be chosen according to the aliasing frequency, i.e. the
frequency up to which WFS does not introduce significant
aliasing to the reproduced sound field. A discrete-time imple-
mentation is achieved via the bilinear transform together with
a frequency pre-warping at fc.

As an optional processing step, the allpass characteristic of
the crossover pair is compensated by applying its inverse to
the driving function such that

D(x0, ω) =
[
AP 2η

fc
(ω)
]−1

×[
DWFS(x0, ω)LP 2η

fc
(ω) +DLWFS(x0, ω)HP 2η

fc
(ω)
] (17)

holds. Since the inverse of an allpass generally results in an
unstable filter, the so-called backward filtering approach is
utilised: The inverse of an allpass filter is equivalent to its
conjugate complex, which corresponds to a time inversion of
the allpass’ impulse response. Latter behaviour can also be
achieved by time-inverting the allpass’ input signal and time-
inverting the resulting output signal, again. An online, block-
based approach for backward filtering is given in [22].

V. EVALUATION

For the evaluation, a circular array of 1.5 metre radius
consisting of 56 equi-angular spaced loudspeakers is used, cf.
black dots in Fig. 3. The array is centred at the coordinates’
origin and is located in the horizontal plane. A plane wave
with a propagation direction of npw = [0,−1, 0]T and a point
source located at xs = [0, 2.5, 0]Tm define the desired sound
fields. As the source signal, a broadband impulse emitted at
t = 0 is chosen. The sample rate 1/Ts and the speed of sound
c are set to 44.1 kHz and 343 m/s, respectively. For LWFS, M
and Npw are set to 27 and 1024, respectively. For the synthesis
of the point source, the crossover frequency fc is set to 1.2kHz
and a LR crossover with order 2η = 28 is used. For WFS, xref

is kept constant at [0, 0, 0]T m.
The sound field plots shown in Fig. 3 are used to analyse in

how far LWFS is capable to reconstruct the spatial structure
of the sound field. Especially, an accurate synthesis of the
first wave front with a correct propagation direction is desired
as this is likely to trigger humans’ precedence effect [23]
to correctly localise the sound source. It can be seen for
conventional WFS, that the mentioned wave front is recon-
structed well over the whole listening area, but followed by
aliasing components, which is characteristic for this method.
For a virtual plane wave, LWFS yields good results near the
expansion centre, which agrees with evaluations done in [8].
For the point source, both methods yield the correct structure
near the expansion centre. Without the allpass compensation
of the LR crossover, significant phase distortions behind the
first wave front can be observed, cf. third column in Fig. 3.

The magnitude spectra of the reproduced sound fields
evaluated for different expansion centres are depicted in Fig. 4.
The results agree with the prior observations from the sound
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field plots: WFS introduces significant aliasing artefacts above
≈ 1 kHz. For LWFS, only minor fluctuations at high frequen-
cies can be identified. Note, that a comparison between (15)
and (17) for the synthesis of a point source is obsolete, as the
optional allpass compensation does not effect the magnitude
spectrum. For all methods, deviations at low frequencies are
caused by the high-frequency approximations included in the
theory of WFS, which also builds the basis for the LWFS
approaches. Contrary to LWFS, the reference position xref in
WFS is independent from xc, which results in an amplitude
offset for evaluation positions other than xref .

VI. CONLUSION

This paper presents a time-domain realisation of a Local
Wave Field Synthesis approach using spatially bandwidth-
limited sound fields. A parametric implementation for model-
based rendering targeting plane waves and point sources as
virtual source models is given. The main building blocks are
their circular expansion coefficients, an IFFT to convert this
representation into a plane wave expansion and a bank of delay
lines to synthesise individual plane waves. While the coeffi-
cients for a plane wave can be provided straightforwardly, two
approaches have been presented to overcome stability prob-
lems for the IIR implementation of a point source. For both
approaches, a frequency crossover between the conventional
WFS and LWFS driving signal was suggested. The presented
realisation allows for the synthesis of time-varying scenarios,
as scene parameters like source positions or the circular
expansion centre can be changed. Future work includes the
consideration of other crossover approaches for the synthesis
of the point source. Also the artefact-free handling of IIR filter
coefficient changes has to be addressed.
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