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Figure 1: Estimation of reflection coefficients by analysis of
the acoustic properties of the early reflections (floor plan [4]).

Introduction

The acoustic reflection coefficients of surfaces are impor-
tant parameters for geometric modeling of acoustic enclo-
sures. They determine the frequency and incidence-angle
dependent reflection characteristics of the walls and fi-
nally the overall perceptual impression of a room. The
reflection coefficient of a particular material is typically
determined by measuring a probe of the material in a
controlled laboratory setup. This is often not possible for
existing rooms, since either material samples may not be
available or their exact specification. A method which al-
lows for the in-situ estimation of acoustic reflection coef-
ficients is therefore of practical interest. Various methods
have been proposed for this purpose, e.g. [1, 2, 3]. Typ-
ically one or more sources and microphones distributed
at distinct locations in the room are used. We focus in
this contribution on methods that utilize (rigid) spher-
ical microphone arrays as these are commonly used for
the capture of spatial sound in virtual acoustics.

Figure 1 depicts the underlying scenario. The spatio-
temporal room impulse responses (SRIRs) from a source
to a spherical microphone array are captured in the en-
vironment of interest. Under the assumption of a specu-
lar reflection model, the early reflections that have only
been reflected once contain the desired information on
the acoustic characteristics of a particular wall. The ba-
sic concept of the proposed approach is to apply beam-
forming techniques in order to extract the spectral prop-
erties of the direct sound and the mirror image sources.
As prerequisite, this requires the localization of direct
sound and early reflections. Reflection coefficients are
in general frequency and incidence-angle dependent. A
consequence of the static setup is that the reflection co-
efficients can only be estimated for the given incidence
angles. Aspects which only have been considered so far
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in the state-of-the art are the (i) automated localization
of image sources, (ii) estimation of frequency dependent
reflection coefficients and (iii) the impact of technical lim-
itations (e.g. number of microphones, sensor noise, ...).

For ease of illustration, the given examples are limited to
(image) sources located in the horizontal plane were the
original sound source and the microphone array are con-
tained in. The derived approach however can be applied
straightforwardly to the general case.

Approach

A wideband approach using the pre-captured SRIRs from
a source to a spherical microphone array is developed.
The underlying signal model is given by the mirror image
source model [5]

P (x, ω) =

Q−1∑
q=0

Aq(αq, βq, ω)
1

rq
e−j

ω
c rq , (1)

where rq = ||x − xq|| denotes the distance between the
q-th source at xq and the position x of the microphone,
Aq(α, β, ω) the reflection coefficient, and αq, βq the eleva-
tion and azimuth angle of the incidence sound at the re-
flective surface. The index zero denotes the direct sound.

The estimation of acoustic reflection coefficients is per-
formed in two stages:

1. localization of direct sound and early reflections,

2. estimation of source levels and reflection coefficients.

The two stages and the subsequent signal processing op-
erations are depicted in Figure 2. The captured SRIRs
are first pre-processed. This may involve operations like
high-pass filtering to cope for the low-frequency limits of
array processing and temporal truncation removing the
higher-order mirror image sources. The pre-processed
SRIRs are then decomposed into their incidence direc-
tions using a plane wave decomposition (PWD) [6] in the
first stage. Inspection of the PWD in the time/incidence-
angle domain reveals that sources generate maxima at a
particular time-instant and incidence-angle (cf. to Fig-
ure 4a). The time-instants of the maxima relate to the
distances of the sources by the speed of sound. These
properties of the PWD are exploited to localize the direct
sound and early reflections. The acoustic properties of
the direct sound and early reflections are then extracted
by beamforming into the estimated incidence-angles of
the localized sources and temporal windowing.
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Figure 2: Signal processing blocks for the estimation of
reflection coefficients (M: # of microphones, P: # of plane
waves, Q: # of sources).

Localization of Sources

First a PWD of the SRIRs is computed as basis for the
localization of direct sound and early reflections. The
PWD is realized by beamforming into all directions.
However, different beamforming methods can be used for
this purpose. A matched-filter beamformer [6, 7] is op-
timized with respect to its signal-to-noise (SNR) ratio
at the output. Since noise is a limiting factor for the
localization of sources, this technique is chosen.

Matched-Filter Beamformer

A matched-filter is a linear filter which is used to detect
signal templates of finite duration in a noisy observed
signal. It is assumed that the time-alignment of the tem-
plates is not known and that the templates are superim-
posed by additive white Gaussian noise. The matched-
filter results from optimizing for a maximum SNR at its
output. It is given as the time-reversed conjugate of the
signal template. This principle is applied to beamforming
for spherical microphone arrays by transforming the inci-
dent sound field on the sphere into its spherical harmonics
expansion coefficients (spherical Fourier transform) [6]

P̊mn (ω) =

∫ 2π

0

∫ π

0

P (θ, φ, ω) [Y mn (θ, φ)]
∗

sin(θ)dθdφ (2)

where θ, φ denote the elevation and azimuth angle on the
sphere of radius R and Y mn (θ, φ) the spherical harmonics
defined as

Y mn (θ, φ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pmn (cos θ)eimφ, (3)

where Pmn (cos θ) denote the associated Legendre func-
tions or degree m ∈ −n, . . . , n and order n ∈ N. As we
are aiming at a far-field beamformer, the signal template
equals the sound field of a unit-amplitude plane wave im-
pinging onto the north-pole (θ = 0, φ = 0) of the sphere.
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Figure 3: White-noise gain (WNG) of a modal, matched
filter and null-steering beamformer (rigid array, R = 0.1 m,
N = 10, Lebedev grid, modal order of simulated soundfield
Nsf = 32, θpw = 90o, φpw = 0o, Tikhonov regularization
β=0.01).

Its zonal spherical harmonics expansion coefficients are
given as

b̊n(r, ω) = 4πin

[
jn(

ω

c
r)−

j′n(ωcR)

h
(2)′
n (ωcR)

h(2)n (
ω

c
r)

]
, (4)

where jn(·) and h
(2)
n (·) denote the n-th order spheri-

cal Bessel and Hankel function of second kind, respec-
tively. Primed quantities denote derivatives with respect
to the argument. A PWD P̄ (θ, φ, ω) is then computed
by performing an inverse spherical Fourier transform of
P̊mn (ω) · b̊n(R,ω)

P̄ (θ, φ, ω) =

∞∑
n=0

n∑
m=−n

P̊mn (ω) · b̊n(R,ω)Y mn (θ, φ). (5)

Inverse temporal Fourier transform yields the time-
domain PWD p̄(θ, φ, t) which is used in the remainder
for localization of sources. As example, Figure 4a shows
the PWD of multiple point sources. The white-noise-gain
(WNG) quantifies the attenuation of spatio-temporal un-
correlated Gaussian noise by a beamformer. Figure 3
shows the WNG of a matched-filter beamformer in com-
parison to a modal beamformer optimized for maximum
directivity. It is evident that the matched-filter beam-
former attenuates the sensor noise over the entire fre-
quency range.

Localization

Feature detection techniques from computer vision are
applied for the identification and localization of sources in
the PWD p̄(θ, φ, t). The Laplacian of Gaussian (LoG) [8]
approach is chosen among the commonly applied blob
detection techniques. The magnitude |p̄(θ, φ, t)| of the
PWD serves as ’input image’. In the LoG approach the
input is first filtered by a Gaussian kernel of different
scales, then the scale-normalized Lapacian operator is
applied to the filtered input and the simultaneous max-
ima/minima of the operator output at the different scales
are detected.
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The approach has been modified to match the specific
properties of the PWD. Point sources exhibit an ampli-
tude decay over distance. In order to obtain comparable
levels for the image sources, the amplitude decay is com-
pensated. The periodicity of the PWD with respect to
the elevation and azimuth angle is considered by using a
periodic convolution for the filtering with the Gaussian
kernel. The kernel itself is modified such to account for
the asymmetric spatio-temporal structure of the PWD
of a point source. The direct sound is identified as the
source with the closest distance. The example depicted
in Figure 4 shows the localization of five point sources by
the outlined method. White Gaussian noise with a peak-
signal-to-noise ratio (PSNR) of 60 dB is added to the
microphone signals in order to simulate equipment noise.
The PWD, as well as the localized source positions are
shown in Figure 4a, the pre-processed PWD filtered by
the Gaussian kernel at different scales in Figure 4b. Here
the source locations are clearly visible as dark spots in
all scales.

Estimation of Reflection Coefficients

From the mirror image source model (1) two conclusions
can be drawn for the estimation of the reflection coeffi-
cients from the PWD: (i) the level of the direct sound
has to be considered and (ii) the amplitude decay of the
sources has to be compensated.

Null-Steering Beamformer

The far-field null-steering beamformer is a data-
dependent beamformer which cancels out the mutual in-
terference between plane waves incident from different di-
rections. Once the source locations have been estimated,
a linear system of equations is constructed

P(ω) = A(ω) · P̄(ω), (6)

where the M × 1 and Q × 1 vectors P(ω) and P̄(ω) are
composed from the microphone signals P (θ, φ, ω) and

the plane wave decomposition P̄ (θ̂q, φ̂q, ω) for the esti-

mated source locations θ̂q, φ̂q, r̂q. The M × Q matrix
A(ω) contains the response of a unit-amplitude plane
wave on the microphone array for the estimated source
locations. Since typically Q < M , (6) is overdeterminded
and solved for the least-squares solution. This approach
is also known as linearly constrained minimum-variance
beamformer [6]. The resulting WNG depends on the
source arrangement and suffers if the desired source is
close to a null. Towards low frequencies it generally dete-
riorates and regularization may be necessary. The WNG
of a null-steering beamformer (without regularization) is
shown in Figure 3.

Level Estimation

In order to extract the acoustic properties of one partic-
ular (image) source, the time-domain output p̄(θ̂q, φ̂q, t)
of the null-steering beamformer is windowed symmetri-
cally around the time-instance which coincides with the
estimated distance r̂q of that source. Figure 5 shows the
output signal of the beamformer and the corresponding

window. The level of the source is estimated by comput-
ing the square root of the power of the windowed signal.

Coefficient Estimation

In order to estimate the reflection coefficients of the sur-
faces creating the mirror image sources, the windowed
time-domain output of the null-steering beamformer is
fed into a fractional octave-band filter bank. In building
acoustics a bandwith of one octave is common, starting
from 125 Hz [9]. The level is computed for each frequency
band. These levels are then normalized with respect to
the estimated level of the direct sound and the level de-
cay.

Simulation Results

The presented approach is evaluated by numerical sim-
ulation of the sound field in a medium sized room. The
mirror image source model [5] with frequency-dependent
reflection coefficients is used for this purpose. The re-
flection coefficients of floor and ceiling were set to fully
absorbing, the reflection coefficients of the side walls
according to the reflection properties of a 1/4” wood
panel [9]. The size of the room is 10 × 11 × 3 m, the
source is located at (7, 8, 1.8) m and the microphone array
at (1.1, 4.5, 1.8) m. The pressure on a rigid sphere with
radius R = 0.1 m is simulated for M = 170 microphones
distributed on its surface according to the Lebedev grid.
Spatio-temporal white Gaussian noise with a PSNR of
60 dB is added to the microphone signals. A rectangular
window of 6.3 ms length is used to window the output
of the null-steering beamformer. The room simulation,
as well as the beamforming and coefficient estimation al-
gorithms were implemented on basis of the Sound Field
Analysis toolbox for numpy1. The localization using the
modified LoG approach is implemented on basis of the
scikit-image2 toolbox.

Figure 6 shows the matched-filter PWD computed from
the simulated microphone signals and the localized
sources. The direct sound and the mirror image sources
are localized accurately, despite the additive noise. Some
near-field effects can be observed at low frequencies for
the direct sound. Figure 7 shows the true and estimated
levels for the direct sound, as well as the true and esti-
mated reflection coefficients of the side walls. Deviations
are present for the direct sound at low frequencies which
can be accounted to near-field effects. For the mirror im-
age sources located at higher distances these deviations
are significantly lower.

Conclusions

The paper presents an approach to the localization of
mirror image sources and reflection coefficient estimation
on the basis of impulse responses captured in-situ by a
spherical microphone array. The aim of the approach is
to gain additional insights on the acoustic environment in
the scope of virtual acoustics were microphone arrays of

1https://github.com/spatialaudio/sfa-numpy
2http://scikit-image.org/
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(a) Plane wave decomposition and localized
sources (yellow crosses).

(b) Pre-processed PWD filtered by multiscale Gaussian kernel.

Figure 4: Localization of multiple point sources (rigid array, R = 0.1 m, N = 10, Lebedev grid, PSNR = 60 dB, Nsf = 32,
fs = 32 kHz, Q = 5).

Figure 5: Windowed output of null-steering beamformer
(rigid array, R = 0.1 m, N = 10, Lebedev grid, Nsf = 32,
Q = 5, fs = 32 kHz, 1/4” wood panel).

Figure 6: Plane wave decomposition, localized direct sound
and mirror image sources (yellow circles: true positions, yel-
low crosses: estimated positions).

Figure 7: Estimated reflection coefficients (true coefficients:
orange bars, estimated coefficients: blue bars).

moderate size are frequently applied. In additional simu-
lations the approach turned out to be quite robust. How-
ever some parameters of the localization algorithm and
the regularization of the null-steering beamformer may
have to be optimized in a particular application. Prelim-
inary results with measured datasets where promising.
A detailed evaluation was not possible with the available
datasets due to a lack of ground truth data.

Future work may include the application of a near-field
null-steering beamformer and the combination of the (im-
age) source localization with room geometry estimation,
for instance using [10], in order to link the estimated re-
flection coefficients to the room geometry.
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